Optical neural networks (ONN) are experiencing a renaissance, driven by the transformative impact of artificial intelligence, as arithmetic pressures are progressively increasing the demand for optical computation. Diffractive deep neural networks (D2NN) are the important subclass of ONN, providing a novel architecture for computation with trained diffractive layers. Given that D2NN directly process light waves, they inherently parallelize multiple tasks and reduce data processing latency, positioning them as a promising technology for future optical computing applications. This paper begins with a brief review of the evolution of ONN and a concept of D2NN, followed by a detailed discussion of the theoretical foundations, model optimizations, and application scenarios of D2NN. Furthermore, by analyzing current application scenarios and technical limitations, this paper provides an evidence-based prediction of the future trajectory of D2NN and outlines a roadmap of research and development efforts to unlock its full potential.

1.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
,
436
(
2015
).
2.
K.
He
,
X.
Zhang
,
S.
Ren
, and
J.
Sun
, “
Delving deep into rectifiers: Surpassing human-level performance on ImageNET classification
,” in
Proceedings of the IEEE International Conference on Computer Vision
(
IEEE
,
2015
), p.
1026
.
3.
O.
Russakovsky
,
J.
Deng
,
H.
Su
,
J.
Krause
,
S.
Satheesh
,
S.
Ma
,
Z.
Huang
,
A.
Karpathy
,
A.
Khosla
, and
M.
Bernstein
, “
ImageNET large scale visual recognition challenge
,”
Int. J. Comput. Vision
115
,
211
(
2015
).
4.
Y.
Shen
,
N. C.
Harris
,
S.
Skirlo
,
M.
Prabhu
,
T.
Baehr-Jones
,
M.
Hochberg
,
X.
Sun
,
S.
Zhao
,
H.
Larochelle
, and
D.
Englund
, “
Deep learning with coherent nanophotonic circuits
,”
Nat. Photonics
11
,
441
(
2017
).
5.
R.
Collobert
and
J.
Weston
, “
A unified architecture for natural language processing: Deep neural networks with multitask learning
,” in
Proceedings of the 25th International Conference on Machine Learning
(
Association for Computing Machinery
,
2008
), p.
160
.
6.
L.
Cutrona
,
E.
Leith
,
C.
Palermo
, and
L.
Porcello
, “
Optical data processing and filtering systems
,”
IRE Trans. Inf. Theory
6
,
386
(
1960
).
7.
J.-H.
Han
,
F.
Boeuf
,
J.
Fujikata
,
S.
Takahashi
,
S.
Takagi
, and
M.
Takenaka
, “
Efficient low-loss InGaAsP/Si hybrid MOS optical modulator
,”
Nat. Photonics
11
,
486
(
2017
).
8.
J.
Liu
,
A. S.
Raja
,
M.
Karpov
,
B.
Ghadiani
,
M. H.
Pfeiffer
,
B.
Du
,
N. J.
Engelsen
,
H.
Guo
,
M.
Zervas
, and
T. J.
Kippenberg
, “
Ultralow-power chip-based soliton microcombs for photonic integration
,”
Optica
5
,
1347
(
2018
).
9.
J.
Feldmann
,
N.
Youngblood
,
M.
Karpov
,
H.
Gehring
,
X.
Li
,
M.
Stappers
,
M.
Le Gallo
,
X.
Fu
,
A.
Lukashchuk
, and
A. S.
Raja
, “
Parallel convolutional processing using an integrated photonic tensor core
,”
Nature
589
,
52
(
2021
).
10.
D.
Psaltis
and
N.
Farhat
, “
Optical information processing based on an associative-memory model of neural nets with thresholding and feedback
,”
Opt. Lett.
10
,
98
(
1985
).
11.
K.
Wagner
and
D.
Psaltis
, “
Multilayer optical learning networks
,”
Appl. Opt.
26
,
5061
(
1987
).
12.
K.
Vandoorne
,
J.
Dambre
,
D.
Verstraeten
,
B.
Schrauwen
, and
P.
Bienstman
, “
Parallel reservoir computing using optical amplifiers
,”
IEEE Trans. Neural Networks
22
,
1469
(
2011
).
13.
N. H.
Farhat
,
D.
Psaltis
,
A.
Prata
, and
E.
Paek
, “
Optical implementation of the Hopfield model
,”
Appl. Opt.
24
,
1469
(
1985
).
14.
D.
Psaltis
,
D.
Brady
,
X.-G.
Gu
, and
S.
Lin
, “
Holography in artificial neural networks
,”
Nature
343
,
325
(
1990
).
15.
S. L.
Yeh
,
R. C.
Lo
, and
C. Y.
Shi
, “
Optical implementation of the Hopfield neural network with matrix gratings
,”
Appl. Opt.
43
,
858
(
2004
).
16.
Z.
Deng
,
D.-K.
Qing
,
P. R.
Hemmer
, and
M. S.
Zubairy
, “
Implementation of optical associative memory by a computer-generated hologram with a novel thresholding scheme
,”
Opt. Lett
30
,
1944
1946
(
2005
).
17.
A. R.
Romariz
and
K. H.
Wagner
, “
Tunable vertical-cavity surface-emitting laser with feedback to implement a pulsed neural model. 1. Principles and experimental demonstration
,”
Appl. Opt.
46
,
4736
(
2007
).
18.
S.
Pai
,
Z.
Sun
,
T. W.
Hughes
,
T.
Park
,
B.
Bartlett
,
I. A.
Williamson
,
M.
Minkov
,
M.
Milanizadeh
,
N.
Abebe
, and
F.
Morichetti
, “
Experimentally realized in situ backpropagation for deep learning in photonic neural networks
,”
Science
380
,
398
(
2023
).
19.
Z.
Xu
,
T.
Zhou
,
M.
Ma
,
C.
Deng
,
Q.
Dai
, and
L.
Fang
, “
Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial general intelligence
,”
Science
384
,
202
(
2024
).
20.
X.
Lin
,
Y.
Rivenson
,
N. T.
Yardimci
,
M.
Veli
,
Y.
Luo
,
M.
Jarrahi
, and
A.
Ozcan
, “
All-optical machine learning using diffractive deep neural networks
,”
Science
361
,
1004
(
2018
).
21.
J.
Li
,
Y.-C.
Hung
,
O.
Kulce
,
D.
Mengu
, and
A.
Ozcan
, “
Polarization multiplexed diffractive computing: All-optical implementation of a group of linear transformations through a polarization-encoded diffractive network
,”
Light Sci. Appl.
11
,
153
(
2022
).
22.
J.
Feldmann
,
N.
Youngblood
,
C. D.
Wright
,
H.
Bhaskaran
, and
W. H.
Pernice
, “
All-optical spiking neurosynaptic networks with self-learning capabilities
,”
Nature
569
,
208
(
2019
).
23.
F.
Ashtiani
,
A. J.
Geers
, and
F. J. N.
Aflatouni
, “
An on-chip photonic deep neural network for image classification
,”
Nature
606
,
501
(
2022
).
24.
B.
Bai
,
Q.
Yang
,
H.
Shu
,
L.
Chang
,
F.
Yang
,
B.
Shen
,
Z.
Tao
,
J.
Wang
,
S.
Xu
, and
W.
Xie
, “
Microcomb-based integrated photonic processing unit
,”
Nat. Commun.
14
,
66
(
2023
).
25.
D.
Pierangeli
,
V.
Palmieri
,
G.
Marcucci
,
C.
Moriconi
,
G.
Perini
,
M.
De Spirito
,
M.
Papi
, and
C.
Conti
, “
Deep optical neural network by living tumour brain cells
,” arxiv:1812.09311 (
2018
).
26.
E.
Khoram
,
A.
Chen
,
D.
Liu
,
L.
Ying
,
Q.
Wang
,
M.
Yuan
, and
Z.
Yu
, “
Nanophotonic media for artificial neural inference
,”
Photonics Res.
7
,
823
(
2019
).
27.
C.
Qian
,
Z.
Wang
,
H.
Qian
,
T.
Cai
,
B.
Zheng
,
X.
Lin
,
Y.
Shen
,
I.
Kaminer
,
E.
Li
, and
H.
Chen
, “
Dynamic recognition and mirage using neuro-metamaterials
,”
Nat. Commun.
13
,
2694
(
2022
).
28.
Y.
Zuo
,
B.
Li
,
Y.
Zhao
,
Y.
Jiang
,
Y.-C.
Chen
,
P.
Chen
,
G.-B.
Jo
,
J.
Liu
, and
S.
Du
, “
All-optical neural network with nonlinear activation functions
,”
Optica
6
,
1132
(
2019
).
29.
X.
Luo
,
Y.
Hu
,
X.
Ou
,
X.
Li
,
J.
Lai
,
N.
Liu
,
X.
Cheng
,
A.
Pan
, and
H.
Duan
, “
Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible
,”
Light Sci. Appl.
11
,
158
(
2022
).
30.
M. S. S.
Rahman
,
X.
Yang
,
J.
Li
,
B.
Bai
, and
A.
Ozcan
, “
Universal linear intensity transformations using spatially incoherent diffractive processors
,”
Light Sci. Appl.
12
,
195
(
2023
).
31.
T.
Fu
,
Y.
Zang
,
H.
Huang
,
Z.
Du
,
C.
Hu
,
M.
Chen
,
S.
Yang
, and
H.
Chen
, “
On-chip photonic diffractive optical neural network based on a spatial domain electromagnetic propagation model
,”
Opt. Express
29
,
31924
(
2021
).
32.
M.
Veli
,
D.
Mengu
,
N. T.
Yardimci
,
Y.
Luo
,
J.
Li
,
Y.
Rivenson
,
M.
Jarrahi
, and
A.
Ozcan
, “
Terahertz pulse shaping using diffractive surfaces
,”
Nat. Commun.
12
,
37
(
2021
).
33.
P.
Buske
,
A.
Völl
,
M.
Eisebitt
,
J.
Stollenwerk
, and
C.
Holly
, “
Advanced beam shaping for laser materials processing based on diffractive neural networks
,”
Opt. Express
30
,
22798
(
2022
).
34.
B.
Bai
,
Y.
Luo
,
T.
Gan
,
J.
Hu
,
Y.
Li
,
Y.
Zhao
,
D.
Mengu
,
M.
Jarrahi
, and
A.
Ozcan
, “
To image, or not to image: Class-specific diffractive cameras with all-optical erasure of undesired objects
,”
eLight
2
(
1
),
14
(
2022
).
35.
B.
Bai
,
H.
Wei
,
X.
Yang
,
T.
Gan
,
D.
Mengu
,
M.
Jarrahi
, and
A.
Ozcan
, “
Data‐class‐specific all‐optical transformations and encryption
,”
Adv. Mater.
35
,
2212091
(
2023
).
36.
Y.
Luo
,
D.
Mengu
,
N. T.
Yardimci
,
Y.
Rivenson
,
M.
Veli
,
M.
Jarrahi
, and
A.
Ozcan
, “
Design of task-specific optical systems using broadband diffractive neural networks
,”
Light Sci. Appl.
8
,
112
(
2019
).
37.
Z.
Huang
,
P.
Wang
,
J.
Liu
,
W.
Xiong
,
Y.
He
,
J.
Xiao
,
H.
Ye
,
Y.
Li
,
S.
Chen
, and
D.
Fan
, “
All-optical signal processing of vortex beams with diffractive deep neural networks
,”
Phys. Rev. Appl.
15
,
014037
(
2021
).
38.
M. S.
Sakib Rahman
and
A.
Ozcan
, “
Computer-free, all-optical reconstruction of holograms using diffractive networks
,”
ACS Photonics
8
,
3375
(
2021
).
39.
D.
Mengu
and
A.
Ozcan
, “
All‐optical phase recovery: Diffractive computing for quantitative phase imaging
,”
Adv. Opt. Mater.
10
,
2200281
(
2022
).
40.
M.
Born
and
E.
Wolf
, “
Principles of optics: Electromagnetic theory of propagation
,” in
Interference and Diffraction of Light
(
Elsevier
,
2013
).
41.
N.
Mukunda
, “
Consistency of Rayleigh's diffraction formulas with Kirchhoff's boundary conditions
,”
J. Opt. Soc. Am.
52
,
336
(
1962
).
42.
D.
Mengu
,
Y.
Luo
,
Y.
Rivenson
, and
A.
Ozcan
, “
Analysis of diffractive optical neural networks and their integration with electronic neural networks
,”
IEEE J. Sel. Top. Quantum Electron.
26
,
3700114
(
2020
).
43.
H.
Dou
,
Y.
Deng
,
T.
Yan
,
H.
Wu
,
X.
Lin
, and
Q.
Dai
, “
Residual D2NN: Training diffractive deep neural networks via learnable light shortcuts
,”
Opt. Lett.
45
,
2688
(
2020
).
44.
V.
Wiley
and
T.
Lucas
, “
Computer vision and image processing: A paper review
,”
Int. J. Artif. Intell. Res.
2
,
29
(
2018
).
45.
T.
Fang
,
J.
Li
,
X.
Zhang
, and
X.
Dong
, “
Classification accuracy improvement of the optical diffractive deep neural network by employing a knowledge distillation and stochastic gradient descent β-Lasso joint training framework
,”
Opt. Express
29
,
44264
(
2021
).
46.
J. T.
Springenberg
,
A.
Dosovitskiy
,
T.
Brox
, and
M.
Riedmiller
, “
Striving for simplicity: The all convolutional net
,” arXiv:1412.6806 (
2014
).
47.
L.
Breiman
, “
Bagging predictors
,”
Mach. Learn.
24
,
123
(
1996
).
48.
B.
Lakshminarayanan
,
A.
Pritzel
, and
C.
Blundell
, “
Simple and scalable predictive uncertainty estimation using deep ensembles
,” in
Advances in Neural Information Processing Systems
(
Neural Information Processing Systems Foundation
,
2017
), Vol.
30
.
49.
C.
Ju
,
A.
Bibaut
, and
M.
van der Laan
, “
The relative performance of ensemble methods with deep convolutional neural networks for image classification
,”
J. Appl. Stat.
45
,
2800
(
2018
).
50.
J.
Li
,
D.
Mengu
,
Y.
Luo
,
Y.
Rivenson
, and
A.
Ozcan
, “
Class-specific differential detection in diffractive optical neural networks improves inference accuracy
,”
Adv. Photonics
1
,
046001
(
2019
).
51.
M. S. S.
Rahman
,
J.
Li
,
D.
Mengu
,
Y.
Rivenson
, and
A.
Ozcan
, “
Ensemble learning of diffractive optical networks
,”
Light Sci. Appl.
10
,
14
(
2021
).
52.
J.
Shi
,
L.
Zhou
,
T.
Liu
,
C.
Hu
,
K.
Liu
,
J.
Luo
,
H.
Wang
,
C.
Xie
, and
X.
Zhang
, “
Multiple-view D2NNs array: Realizing robust 3D object recognition
,”
Opt. Lett.
46
,
3388
(
2021
).
53.
J.
Shi
,
Y.
Chen
, and
X.
Zhang
, “
Broad-spectrum diffractive network via ensemble learning
,”
Opt. Lett.
47
,
605
(
2022
).
54.
Y.
Li
,
Z.
Zheng
,
R.
Li
,
Q.
Chen
,
H.
Luan
,
H.
Yang
,
Q.
Zhang
, and
M.
Gu
, “
Multiscale diffractive U-Net: A robust all-optical deep learning framework modeled with sampling and skip connections
,”
Opt. Express
30
,
36700
(
2022
).
55.
F.
Chen
,
J.
LaMacchia
, and
D.
Fraser
, “
Holographic storage in lithium niobate
,”
Appl. Phys. Lett.
13
,
223
(
1968
).
56.
L.
Mandel
and
E.
Wolf
,
Optical Coherence and Quantum Optics
(
Cambridge University Press
,
1995
).
57.
T.
Yan
,
J.
Wu
,
T.
Zhou
,
H.
Xie
,
F.
Xu
,
J.
Fan
,
L.
Fang
,
X.
Lin
, and
Q.
Dai
, “
Fourier-space diffractive deep neural network
,”
Phys. Rev. Lett.
123
,
023901
(
2019
).
58.
M.
Song
,
R.
Li
, and
J.
Wang
, “
Only frequency domain diffractive deep neural networks
,”
Appl. Opt.
62
,
1082
(
2023
).
59.
D. N.
Christodoulides
,
T. H.
Coskun
,
M.
Mitchell
, and
M.
Segev
, “
Theory of incoherent self-focusing in biased photorefractive media
,”
Phys. Rev. Lett.
78
,
646
(
1997
).
60.
L.
Waller
,
G.
Situ
, and
J. W.
Fleischer
, “
Phase-space measurement and coherence synthesis of optical beams
,”
Nat. Photonics
6
,
474
(
2012
).
61.
Y.
Sun
,
M.
Dong
,
M.
Yu
,
J.
Xia
,
X.
Zhang
,
Y.
Bai
,
L.
Lu
, and
L.
Zhu
, “
Nonlinear all-optical diffractive deep neural network with 10.6 μm wavelength for image classification
,”
Int. J. Opt.
2021
,
6667495
.
62.
Y.
Sun
,
M.
Dong
,
M.
Yu
,
L.
Lu
,
S.
Liang
,
J.
Xia
, and
L.
Zhu
, “
Modeling and simulation of all-optical diffractive neural network based on nonlinear optical materials
,”
Opt. Lett.
47
,
126
(
2022
).
63.
T.
Wang
,
M. M.
Sohoni
,
L. G.
Wright
,
M. M.
Stein
,
S.-Y.
Ma
,
T.
Onodera
,
M. G.
Anderson
, and
P. L.
McMahon
, “
Image sensing with multilayer nonlinear optical neural networks
,”
Nat. Photonics
17
,
408
(
2023
).
64.
J. P.
Marangos
, “
Electromagnetically induced transparency
,”
J. Mod. Opt.
45
,
471
(
1998
).
65.
M.
Fleischhauer
,
A.
Imamoglu
, and
J. P.
Marangos
, “
Electromagnetically induced transparency: Optics in coherent media
,”
Rev. Mod. Phys.
77
,
633
(
2005
).
66.
C.
Kai
,
Z.
Lianqing
,
L.
Xiaoping
,
Y.
Qifeng
, and
L.
Fei
, “
All-polarization-maintaining fiber laser mode-locked by graphene
,”
Infrared Laser Eng.
46
,
1005004
(
2017
).
67.
M.
Divyasree
,
E.
Shiju
,
J.
Francis
,
P.
Anusha
,
S. V.
Rao
, and
K.
Chandrasekharan
, “
ZnSe/PVP nanocomposites: Synthesis, structural and nonlinear optical analysis
,”
Mater. Chem. Phys.
197
,
208
(
2017
).
68.
R.
Divya
,
N.
Manikandan
,
T. S.
Girisun
, and
G.
Vinitha
, “
Investigations on the structural, morphological, linear and third order nonlinear optical properties of manganese doped zinc selenide nanoparticles for optical limiting application
,”
Opt. Mater.
100
,
109641
(
2020
).
69.
T.
Zhou
,
L.
Fang
,
T.
Yan
,
J.
Wu
,
Y.
Li
,
J.
Fan
,
H.
Wu
,
X.
Lin
, and
Q.
Dai
, “
In situ optical backpropagation training of diffractive optical neural networks
,”
Photonics Res.
8
,
940
(
2020
).
70.
I. U.
Idehenre
,
E. S.
Harper
, and
M. S.
Mills
, “
Diffractive deep neural network adjoint assist or (DNA)2: A fast and efficient nonlinear diffractive neural network implementation
,”
Opt. Express
30
,
7441
(
2022
).
71.
M.
Hermans
,
J.
Dambre
, and
P.
Bienstman
, “
Optoelectronic systems trained with backpropagation through time
,”
IEEE Trans. Neural Networks Learn. Syst.
26
,
1545
(
2015
).
72.
T. W.
Hughes
,
M.
Minkov
,
Y.
Shi
, and
S.
Fan
, “
Training of photonic neural networks through in situ backpropagation and gradient measurement
,”
Optica
5
,
864
(
2018
).
73.
Y.
Li
,
R.
Chen
,
B.
Sensale-Rodriguez
,
W.
Gao
, and
C.
Yu
, “
Real-time multi-task diffractive deep neural networks via hardware-software co-design
,”
Sci. Rep.
11
,
11013
(
2021
).
74.
J.
Su
,
Y.
Yuan
,
C.
Liu
, and
J.
Li
, “
Multitask learning by multiwave optical diffractive network
,”
Math. Probl. Eng.
2020
,
9748380
.
75.
Z.
Duan
,
H.
Chen
, and
X.
Lin
, “
Optical multi-task learning using multi-wavelength diffractive deep neural networks
,”
Nanophotonics
12
,
893
(
2023
).
76.
J.
Li
,
T.
Gan
,
B.
Bai
,
Y.
Luo
,
M.
Jarrahi
, and
A.
Ozcan
, “
Massively parallel universal linear transformations using a wavelength-multiplexed diffractive optical network
,”
Adv. Photonics
5
,
016003
(
2023
).
77.
Y.
Wang
,
A.
Yu
,
Y.
Cheng
, and
J. J. L.
Qi
, “
Matrix diffractive deep neural networks merging polarization into meta‐devices
,”
Laser Photonics Rev.
18
,
2300903
(
2024
).
78.
T.
Zhou
,
X.
Lin
,
J.
Wu
,
Y.
Chen
,
H.
Xie
,
Y.
Li
,
J.
Fan
,
H.
Wu
,
L.
Fang
, and
Q.
Dai
, “
Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit
,”
Nat. Photonics
15
,
367
(
2021
).
79.
C.
Liu
,
Q.
Ma
,
Z. J.
Luo
,
Q. R.
Hong
,
Q.
Xiao
,
H. C.
Zhang
,
L.
Miao
,
W. M.
Yu
,
Q.
Cheng
, and
L.
Li
, “
A programmable diffractive deep neural network based on a digital-coding metasurface array
,”
Nat. Electron.
5
,
113
(
2022
).
80.
T. J.
Cui
,
M. Q.
Qi
,
X.
Wan
,
J.
Zhao
, and
Q.
Cheng
, “
Coding metamaterials, digital metamaterials and programmable metamaterials
,”
Light Sci. Appl.
3
,
e218
(
2014
).
81.
T. J.
Cui
,
S.
Liu
, and
L.
Zhang
, “
Information metamaterials and metasurfaces
,”
J. Mater. Chem. C
5
,
3644
(
2017
).
82.
H.
Zeng
,
J.
Fan
,
Y.
Zhang
,
Y.
Su
,
C.
Qiu
, and
W.
Gao
, “
Graphene plasmonic spatial light modulator for reconfigurable diffractive optical neural networks
,”
Opt. Express
30
,
12712
(
2022
).
83.
R.
Chen
,
Y.
Tang
,
J.
Ma
, and
W.
Gao
, “
Scientific computing with diffractive optical neural networks
,”
Adv. Intell. Syst.
5
,
2300536
(
2023
).
84.
S.
Zarei
,
M.
Marzban
, and
A.
Khavasi
, “
Integrated photonic neural network based on silicon metalines
,”
Opt. Express
28
,
36668
(
2020
).
85.
T.
Fu
,
Y.
Zang
,
Y.
Huang
,
Z.
Du
,
H.
Huang
,
C.
Hu
,
M.
Chen
,
S.
Yang
, and
H.
Chen
, “
Photonic machine learning with on-chip diffractive optics
,”
Nat. Commun.
14
,
70
(
2023
).
86.
Z.
Wang
,
L.
Chang
,
F.
Wang
,
T.
Li
, and
T.
Gu
, “
Integrated photonic metasystem for image classifications at telecommunication wavelength
,”
Nat. Commun.
13
,
2131
(
2022
).
87.
N.
Yu
,
P.
Genevet
,
M. A.
Kats
,
F.
Aieta
,
J.-P.
Tetienne
,
F.
Capasso
, and
Z.
Gaburro
, “
Light propagation with phase discontinuities: Generalized laws of reflection and refraction
,”
Science
334
,
333
(
2011
).
88.
S.
Sun
,
K.-Y.
Yang
,
C.-M.
Wang
,
T.-K.
Juan
,
W. T.
Chen
,
C. Y.
Liao
,
Q.
He
,
S.
Xiao
,
W.-T.
Kung
, and
G.-Y.
Guo
, “
High-efficiency broadband anomalous reflection by gradient meta-surfaces
,”
Nano Lett.
12
,
6223
(
2012
).
89.
Y.
Hu
,
L.
Li
,
R.
Wang
,
J.
Song
,
H.
Wang
,
H.
Duan
,
J.
Ji
, and
Y.
Meng
, “
High-speed parallel plasmonic direct-writing nanolithography using metasurface-based plasmonic lens
,”
Engineering
7
,
1623
(
2021
).
90.
Y.
Hu
,
Y.
Jiang
,
Y.
Zhang
,
X.
Yang
,
X.
Ou
,
L.
Li
,
X.
Kong
,
X.
Liu
,
C.-W.
Qiu
, and
H.
Duan
, “
Asymptotic dispersion engineering for ultra-broadband meta-optics
,”
Nat. Commun.
14
,
6649
(
2023
).
91.
X.
Luo
,
S.
Dong
,
Z.
Wei
,
Z.
Wang
,
Y.
Hu
,
H.
Duan
, and
X.
Cheng
, “
Full‐Fourier‐component tailorable optical neural meta‐transformer
,”
Laser Photonics Rev.
17
,
2300272
(
2023
).
92.
H.
Yang
,
P.
He
,
K.
Ou
,
Y.
Hu
,
Y.
Jiang
,
X.
Ou
,
H.
Jia
,
Z.
Xie
,
X.
Yuan
, and
H.
Duan
, “
Angular momentum holography via a minimalist metasurface for optical nested encryption
,”
Light Sci. Appl.
12
,
79
(
2023
).
93.
H.
Zhang
,
M.
Gu
,
X.
Jiang
,
J.
Thompson
,
H.
Cai
,
S.
Paesani
,
R.
Santagati
,
A.
Laing
,
Y.
Zhang
, and
M.
Yung
, “
An optical neural chip for implementing complex-valued neural network
,”
Nat. Commun.
12
,
457
(
2021
).
94.
X.
Zhao
,
H.
Lv
,
C.
Chen
,
S.
Tang
,
X.
Liu
, and
Q.
Qi
, “
On-chip reconfigurable optical neural networks
,”
Res. Square
(
2021
).
95.
F.
Léonard
,
E. J.
Fuller
,
C. M.
Teeter
, and
C. M.
Vineyard
, “
High accuracy single-layer free-space diffractive neuromorphic classifiers for spatially incoherent light
,”
Opt. Express
30
,
12510
(
2022
).
96.
M. J.
Filipovich
,
A.
Malyshev
, and
A.
Lvovsky
, “
Diffractive optical neural networks with arbitrary spatial coherence
,” in
Machine Learning with New Compute Paradigms
(
2023
).
97.
Z.
Ye
,
C.
Zhou
,
C.-X.
Ding
,
J.
Zhao
,
S.
Jiao
,
H.-B.
Wang
, and
J.
Xiong
, “
Ghost diffractive deep neural networks: optical classifications using light's second-order coherence
,”
Phys. Rev. Appl.
20
,
054012
(
2023
).
98.
I.
Idehenre
and
M.
Mills
, “
Multi-directional beam steering using diffractive neural networks
,”
Opt. Express
28
,
25915
(
2020
).
99.
J.
Shi
,
D.
Wei
,
C.
Hu
,
M.
Chen
,
K.
Liu
,
J.
Luo
, and
X.
Zhang
, “
Robust light beam diffractive shaping based on a kind of compact all-optical neural network
,”
Opt. Express
29
,
7084
(
2021
).
100.
P.
Refregier
and
B.
Javidi
, “
Optical image encryption based on input plane and Fourier plane random encoding
,”
Opt. Lett.
20
,
767
(
1995
).
101.
A.
Alfalou
and
C.
Brosseau
, “
Optical image compression and encryption methods
,”
Adv. Opt. Photonics
1
,
589
(
2009
).
102.
Y.
Gao
,
S.
Jiao
,
J.
Fang
,
T.
Lei
,
Z.
Xie
, and
X.
Yuan
, “
Multiple-image encryption and hiding with an optical diffractive neural network
,”
Opt. Commun.
463
,
125476
(
2020
).
103.
X.
Yang
,
M. S. S.
Rahman
,
B.
Bai
,
J.
Li
, and
A.
Ozcan
, “
Complex-valued universal linear transformations and image encryption using spatially incoherent diffractive networks
,”
Adv. Photonics Nexus
3
,
016010
(
2024
).
104.
O. E.
DeLange
, “
Wide-band optical communication systems: Part II—Frequency-division multiplexing
,”
Proc. IEEE
58
,
1683
(
1970
).
105.
S.
Zheng
,
S.
Xu
, and
D.
Fan
, “
Orthogonality of diffractive deep neural network
,”
Opt. Lett.
47
,
1798
(
2022
).
106.
W.
Xiong
,
Z.
Huang
,
P.
Wang
,
X.
Wang
,
Y.
He
,
C.
Wang
,
J.
Liu
,
H.
Ye
,
D.
Fan
, and
S.
Chen
, “
Optical diffractive deep neural network-based orbital angular momentum mode add–drop multiplexer
,”
Opt. Express
29
,
36936
(
2021
).
107.
J.
Zhang
,
Z.
Ye
,
J.
Yin
,
L.
Lang
, and
S.
Jiao
, “
Polarized deep diffractive neural network for sorting, generation, multiplexing, and de-multiplexing of orbital angular momentum modes
,”
Opt. Express
30
,
26728
(
2022
).
108.
M.
Defrise
and
G. T.
Gullberg
, “
Image reconstruction
,”
Phys. Med. Biol.
51
,
R139
(
2006
).
109.
R. K.
Kostuk
,
Holography: Principles and Applications
(
CRC Press
,
2019
).
110.
D.
Liao
,
M.
Wang
,
K. F.
Chan
,
C. H.
Chan
, and
H.
Wang
, “
A deep-learning enabled discrete dielectric lens antenna for terahertz reconfigurable holographic imaging
,”
IEEE Antennas Wireless Propag. Lett.
21
,
823
(
2022
).
111.
Z.
Huang
,
Y.
He
,
P.
Wang
,
W.
Xiong
,
H.
Wu
,
J.
Liu
,
H.
Ye
,
Y.
Li
,
D.
Fan
, and
S.
Chen
, “
Orbital angular momentum deep multiplexing holography via an optical diffractive neural network
,”
Opt. Express
30
,
5569
(
2022
).
112.
L.
Allen
,
M. W.
Beijersbergen
,
R.
Spreeuw
, and
J.
Woerdman
, “
Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes
,”
Phys. Rev. A
45
,
8185
(
1992
).
113.
J.
Wang
,
J.-Y.
Yang
,
I. M.
Fazal
,
N.
Ahmed
,
Y.
Yan
,
H.
Huang
,
Y.
Ren
,
Y.
Yue
,
S.
Dolinar
, and
M.
Tur
, “
Terabit free-space data transmission employing orbital angular momentum multiplexing
,”
Nat. Photonics
6
,
488
(
2012
).
114.
Y.
Park
,
C.
Depeursinge
, and
G.
Popescu
, “
Quantitative phase imaging in biomedicine
,”
Nat. Photonics
12
,
578
(
2018
).
115.
Y.
Li
,
Y.
Luo
,
D.
Mengu
,
B.
Bai
, and
A.
Ozcan
, “
Quantitative phase imaging (QPI) through random diffusers using a diffractive optical network
,”
Light Adv. Manuf.
4
,
17
(
2023
).
116.
C.-Y.
Shen
,
J.
Li
,
D.
Mengu
, and
A.
Ozcan
, “
Multispectral quantitative phase imaging using a diffractive optical network
,”
Adv. Intell. Syst.
5
,
2300300
(
2023
).
117.
L. L.
Ma
,
C.
Liu
,
S. B.
Wu
,
P.
Chen
,
Q. M.
Chen
,
J. X.
Qian
,
S. J.
Ge
,
Y. H.
Wu
,
W.
Hu
, and
Y. Q.
Lu
, “
Programmable self-propelling actuators enabled by a dynamic helical medium
,”
Sci. Adv.
7
,
eabh3505
(
2021
).
118.
J.
Cheng
,
S.
Yu
,
R.
Wang
, and
Q.
Ge
, “
Digital light processing based multimaterial 3D printing: Challenges, solutions and perspectives
,”
Int. J. Extreme Manuf.
6
,
042006
(
2024
).
119.
M.
Pan
,
Y.
Fu
,
M.
Zheng
,
H.
Chen
,
Y.
Zang
,
H.
Duan
,
Q.
Li
,
M.
Qiu
, and
Y.
Hu
, “
Dielectric metalens for miniaturized imaging systems: Progress and challenges
,”
Light Sci. Appl.
11
,
195
(
2022
).
120.
Y.
Hu
,
L.
Li
,
Y.
Wang
,
M.
Meng
,
L.
Jin
,
X.
Luo
,
Y.
Chen
,
X.
Li
,
S.
Xiao
, and
H.
Wang
, “
Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface
,”
Nano Lett.
20
,
994
(
2020
).
121.
H.
Yang
,
Y.
Jiang
,
Y.
Hu
,
K.
Ou
, and
H.
Duan
, “
Noninterleaved metasurface for full‐polarization three‐dimensional vectorial holography
,”
Laser Photonics Rev.
16
,
2200351
(
2022
).
122.
Y.
Hu
,
X.
Luo
,
Y.
Chen
,
Q.
Liu
,
X.
Li
,
Y.
Wang
,
N.
Liu
, and
H.
Duan
, “
3D-integrated metasurfaces for full-colour holography
,”
Light Sci. Appl.
8
,
86
(
2019
).
You do not currently have access to this content.