Solution-based processing of two-dimensional (2D) materials has garnered significant interest as a facile and versatile route for the large-scalable production of 2D material films. Despite the benefits in process, these films were not considered suitable for device applications during the early stages of research because their electronic properties were far from those of 2D materials obtained through micromechanical exfoliation or chemical vapor deposition. Due to the small lateral dimensions and polydisperse thickness of constituent 2D nanosheets, the resulting film tends to be porous and exhibits numerous inter-sheet junctions, primarily contacting edge-to-edge. This nanosheet morphology leads to poor electrical conductivity of the network, and also hinders the film functioning as a semiconductor or an insulator. To produce ultrathin 2D nanosheets with narrow thickness distribution and large lateral sizes, various chemical exfoliation strategies have been explored, but these are limited by long process times, involvement of harsh chemicals, and/or undesired structural damage or phase changes. Recent breakthroughs in electrochemical exfoliation using tetraalkylammonium intercalants enabled the production of high-quality 2D nanosheets with structural characteristics favorable for producing ultrathin, conformal films of 2D materials, which allow for scalable production of high-performance electronic components that can readily be assembled into functional devices via solution-processing. In this review article, we aim to offer an extensive introduction solution-based processing techniques for acquiring 2D nanosheets, their subsequent assembly into thin films, and their diverse applications, primarily focusing on electronics and optoelectronics but also extending to other fields. Remaining challenges and potential avenues for advancement will also be discussed.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
(
2004
).
2.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
, “
The electronic properties of graphene
,”
Rev. Mod. Phys.
81
,
109
(
2009
).
3.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
, “
Atomically thin MoS2: A new direct-gap semiconductor
,”
Phys. Rev. Lett.
105
,
136805
(
2010
).
4.
R.
Ganatra
and
Q.
Zhang
, “
Few-layer MoS2: A promising layered semiconductor
,”
ACS Nano
8
,
4074
(
2014
).
5.
A.
Carvalho
,
M.
Wang
,
X.
Zhu
,
A. S.
Rodin
,
H.
Su
, and
A. H.
Castro Neto
, “
Phosphorene: From theory to applications
,”
Nat. Rev. Mater.
1
,
16061
(
2016
).
6.
M.
Chhowalla
,
D.
Jena
, and
H.
Zhang
, “
Two-dimensional semiconductors for transistors
,”
Nat. Rev. Mater.
1
,
16052
(
2016
).
7.
K. S.
Novoselov
,
A.
Mishchenko
,
A.
Carvalho
, and
A. H.
Castro Neto
, “
2D materials and van der Waals heterostructures
,”
Science
353
,
aac9439
(
2016
).
8.
J. R.
Schaibley
,
H.
Yu
,
G.
Clark
,
P.
Rivera
,
J. S.
Ross
,
K. L.
Seyler
,
W.
Yao
, and
X.
Xu
, “
Valleytronics in 2D materials
,”
Nat. Rev. Mater.
1
,
16055
(
2016
).
9.
J.
Lynch
,
L.
Guarneri
,
D.
Jariwala
, and
J.
van de Groep
, “
Exciton resonances for atomically-thin optics
,”
J. Appl. Phys.
132
,
091102
(
2022
).
10.
Y.-C.
Lin
,
R.
Torsi
,
R.
Younas
,
C. L.
Hinkle
,
A. F.
Rigosi
,
H. M.
Hill
,
K.
Zhang
,
S.
Huang
,
C. E.
Shuck
,
C.
Chen
,
Y.-H.
Lin
,
D.
Maldonado-Lopez
,
J. L.
Mendoza-Cortes
,
J.
Ferrier
,
S.
Kar
,
N.
Nayir
,
S.
Rajabpour
,
A. C. T.
van Duin
,
X.
Liu
,
D.
Jariwala
,
J.
Jiang
,
J.
Shi
,
W.
Mortelmans
,
R.
Jaramillo
,
J. M. J.
Lopes
,
R.
Engel-Herbert
,
A.
Trofe
,
T.
Ignatova
,
S. H.
Lee
,
Z.
Mao
,
L.
Damian
,
Y.
Wang
,
M. A.
Steves
,
K. L.
Knappenberger
, Jr.
,
Z.
Wang
,
S.
Law
,
G.
Bepete
,
D.
Zhou
,
J.-X.
Lin
,
M. S.
Scheurer
,
J.
Li
,
P.
Wang
,
G.
Yu
,
S.
Wu
,
D.
Akinwande
,
J. M.
Redwing
,
M.
Terrones
, and
J. A.
Robinson
, “
Recent advances in 2D material theory, synthesis, properties, and applications
,”
ACS Nano
17
,
9694
(
2023
).
11.
J.
Li
,
M. M.
Naiini
,
S.
Vaziri
,
M. C.
Lemme
, and
M.
Östling
, “
Inkjet printing of MoS2
,”
Adv. Funct. Mater.
24
,
6524
(
2014
).
12.
N.
Wang
,
N.
Mao
,
Z.
Wang
,
X.
Yang
,
X.
Zhou
,
H.
Liu
,
S.
Qiao
,
X.
Lei
,
J.
Wang
,
H.
Xu
,
X.
Ling
,
Q.
Zhang
,
Q.
Feng
, and
J.
Kong
, “
Electrochemical delamination of ultralarge few-layer black phosphorus with a hydrogen-free intercalation mechanism
,”
Adv. Mater.
33
,
2005815
(
2021
).
13.
Y.
Huang
,
Y.-H.
Pan
,
R.
Yang
,
L.-H.
Bao
,
L.
Meng
,
H.-L.
Luo
,
Y.-Q.
Cai
,
G.-D.
Liu
,
W.-J.
Zhao
,
Z.
Zhou
,
L.-M.
Wu
,
Z.-L.
Zhu
,
M.
Huang
,
L.-W.
Liu
,
L.
Liu
,
P.
Cheng
,
K.-H.
Wu
,
S.-B.
Tian
,
C.-Z.
Gu
,
Y.-G.
Shi
,
Y.-F.
Guo
,
Z. G.
Cheng
,
J.-P.
Hu
,
L.
Zhao
,
G.-H.
Yang
,
E.
Sutter
,
P.
Sutter
,
Y.-L.
Wang
,
W.
Ji
,
X.-J.
Zhou
, and
H.-J.
Gao
, “
Universal mechanical exfoliation of large-area 2D crystals
,”
Nat. Commun.
11
,
2453
(
2020
).
14.
G. F.
Walker
and
W. G.
Garrett
, “
Chemical exfoliation of vermiculite and the production of colloidal dispersions
,”
Science
156
,
385
(
1967
).
15.
V.
Nicolosi
,
M.
Chhowalla
,
M. G.
Kanatzidis
,
M. S.
Strano
, and
J. N.
Coleman
, “
Liquid exfoliation of layered materials
,”
Science
340
,
1226419
(
2013
).
16.
P.
Joensen
,
R. F.
Frindt
, and
S. R.
Morrison
, “
Single-layer MoS2
,”
Mater. Res. Bull.
21
,
457
(
1986
).
17.
W. M. R.
Divigalpitiya
,
S. R.
Morrison
, and
R. F.
Frindt
, “
Thin oriented films of molybdenum disulphide
,”
Thin Solid Films
186
,
177
(
1990
).
18.
D. W.
Murphy
and
G. W.
Hull
, Jr.
, “
Monodispersed tantalum disulfide and adsorption complexes with cations
,”
J. Chem. Phys.
62
,
973
(
1975
).
19.
C.
Liu
,
O.
Singh
,
P.
Joensen
,
A. E.
Curzon
, and
R. F.
Frindt
, “
X-ray and electron microscopy studies of single-layer TaS2 and NbS2
,”
Thin Solid Films
113
,
165
(
1984
).
20.
B. C.
Brodie
, “
XIII. On the atomic weight of graphite
,”
Philos. Trans. R. Soc. London
149
,
249
(
1859
).
21.
L.
Staudenmaier
, “
Method for the preparation of graphitic acid
,”
Ber. Dtsch. Chem. Ges.
31
,
1481
(
1898
).
22.
W. S.
Hummers
, Jr.
and
R. E.
Offeman
, “
Preparation of graphitic oxide
,”
J. Am. Chem. Soc.
80
,
1339
(
1958
).
23.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
, “
Two-dimensional gas of massless Dirac fermions in graphene
,”
Nature
438
,
197
(
2005
).
24.
Y.
Zhang
,
Y.-W.
Tan
,
H. L.
Stormer
, and
P.
Kim
, “
Experimental observation of the quantum Hall effect and Berry's phase in graphene
,”
Nature
438
,
201
(
2005
).
25.
Y.-P.
Xie
,
X.-J.
Zhang
, and
Z.-P.
Liu
, “
Graphite to diamond: Origin for kinetics selectivity
,”
J. Am. Chem. Soc.
139
,
2545
(
2017
).
26.
K.
Watanabe
and
T.
Taniguchi
, “
Far-UV photoluminescence microscope for impurity domain in hexagonal-boron-nitride single crystals by high-pressure, high-temperature synthesis
,”
npj 2D Mater. Appl.
3
,
40
(
2019
).
27.
S.
Ashraf
,
V.
Forsberg
,
C. G.
Mattsson
, and
G.
Thungström
, “
Thermoelectric properties of n-type molybdenum disulfide (MoS2) thin film by using a simple measurement method
,”
Materials
12
,
3521
(
2019
).
28.
K.
Du
,
W.
Yang
,
S.
Deng
,
X.
Li
, and
P.
Yang
, “
High-quality black phosphorus quantum dots fabricated via microwave-tailored technology
,”
Nanomaterials
10
,
139
(
2020
).
29.
F.
Cantos-Prieto
,
A.
Falin
,
M.
Alliati
,
D.
Qian
,
R.
Zhang
,
T.
Tao
,
M. R.
Barnett
,
E. J. G.
Santos
,
L. H.
Li
, and
E.
Navarro-Moratalla
, “
Layer-dependent mechanical properties and enhanced plasticity in the van der Waals chromium trihalide magnets
,”
Nano Lett.
21
,
3379
(
2021
).
30.
R. N.
Jenjeti
,
R.
Kumar
,
M. P.
Austeria
, and
S.
Sampath
, “
Field effect transistor based on layered NiPS3
,”
Sci. Rep.
8
,
8586
(
2018
).
31.
C. R.
Dean
,
A. F.
Young
,
I.
Meric
,
C.
Lee
,
L.
Wang
,
S.
Sorgenfrei
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Kim
,
K. L.
Shepard
, and
J.
Hone
, “
Boron nitride substrates for high-quality graphene electronics
,”
Nat. Nanotechnol.
5
,
722
(
2010
).
32.
C. G.
Low
,
Q.
Zhang
,
Y.
Hao
, and
R. S.
Ruoff
, “
Graphene field effect transistors with mica as gate dielectric layers
,”
Small
10
,
4213
(
2014
).
33.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
, “
Single-layer MoS2 transistors
,”
Nat. Nanotechnol.
6
,
147
(
2011
).
34.
T.
Nakahara
,
T.
Kobayashi
,
T.
Dohi
,
T.
Yoshimura
,
N.
Fujimura
, and
D.
Kiriya
, “
Spontaneous crystal fluctuation in hydrocarbon polymer-coated monolayer MoS2, MoSe2, WS2, and WSe2 with strong photoluminescence enhancement
,”
ACS Photonics
10
,
3605
(
2023
).
35.
B.
Jariwala
,
D.
Voiry
,
A.
Jindal
,
B. A.
Chalke
,
R.
Bapat
,
A.
Thamizhavel
,
M.
Chhowalla
,
M.
Deshmukh
, and
A.
Bhattacharya
, “
Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals
,”
Chem. Mater.
28
,
3352
(
2016
).
36.
H.
Liu
,
A. T.
Neal
,
Z.
Zhu
,
Z.
Luo
,
X.
Xu
,
D.
Tománek
, and
P. D.
Ye
, “
Phosphorene: An unexplored 2D semiconductor with a high hole mobility
,”
ACS Nano
8
,
4033
(
2014
).
37.
L.
Li
,
Y.
Yu
,
G. J.
Ye
,
Q.
Ge
,
X.
Ou
,
H.
Wu
,
D.
Feng
,
X. H.
Chen
, and
Y.
Zhang
, “
Black phosphorus field-effect transistors
,”
Nat. Nanotechnol.
9
,
372
(
2014
).
38.
D. A.
Bandurin
,
A. V.
Tyurnina
,
G. L.
Yu
,
A.
Mishchenko
,
V.
Zólyomi
,
S. V.
Morozov
,
R. K.
Kumar
,
R. V.
Gorbachev
,
Z. R.
Kudrynskyi
,
S.
Pezzini
,
Z. D.
Kovalyuk
,
U.
Zeitler
,
K. S.
Novoselov
,
A.
Patanè
,
L.
Eaves
,
I. V.
Grigorieva
,
V. I.
Fal'ko
,
A. K.
Geim
, and
Y.
Cao
, “
High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe
,”
Nat. Nanotechnol.
12
,
223
(
2017
).
39.
E.
Mercado
,
Y.
Zhou
,
Y.
Xie
,
Q.
Zhao
,
H.
Cai
,
B.
Chen
,
W.
Jie
,
S.
Tongay
,
T.
Wang
, and
M.
Kuball
, “
Passivation of layered gallium telluride by double encapsulation with graphene
,”
ACS Omega
4
,
18002
(
2019
).
40.
C.-H.
Lee
,
E. C.
Silva
,
L.
Calderin
,
M. A. T.
Nguyen
,
M. J.
Hollander
,
B.
Bersch
,
T. E.
Mallouk
, and
J. A.
Robinson
, “
Tungsten ditelluride: A layered semimetal
,”
Sci. Rep.
5
,
10013
(
2015
).
41.
Y.
Zhao
,
J.
Qiao
,
Z.
Yu
,
P.
Yu
,
K.
Xu
,
S. P.
Lau
,
W.
Zhou
,
Z.
Liu
,
X.
Wang
,
W.
Ji
, and
Y.
Chai
, “
High-electron-mobility and air-stable 2D layered PtSe2 FETs
,”
Adv. Mater.
29
,
1604230
(
2017
).
42.
Á.
Pásztor
,
A.
Scarfato
, and
C.
Renner
, “
Note: Mechanical in situ exfoliation of van der Waals materials
,”
Rev. Sci. Instrum.
88
,
076104
(
2017
).
43.
J.-U.
Lee
,
S.
Lee
,
J. H.
Ryoo
,
S.
Kang
,
T. Y.
Kim
,
P.
Kim
,
C.-H.
Park
,
J.-G.
Park
, and
H.
Cheong
, “
Ising-type magnetic ordering in atomically thin FePS3
,”
Nano Lett.
16
,
7433
(
2016
).
44.
Y.
Zhou
,
D.
Wu
,
Y.
Zhu
,
Y.
Cho
,
Q.
He
,
X.
Yang
,
K.
Herrera
,
Z.
Chu
,
Y.
Han
,
M. C.
Downer
,
H.
Peng
, and
K.
Lai
, “
Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes
,”
Nano Lett.
17
,
5508
(
2017
).
45.
F.
Liu
,
L.
You
,
K. L.
Seyler
,
X.
Li
,
P.
Yu
,
J.
Lin
,
X.
Wang
,
J.
Zhou
,
H.
Wang
,
H.
He
,
S. T.
Pantelides
,
W.
Zhou
,
P.
Sharma
,
X.
Xu
,
P. M.
Ajayan
,
J.
Wang
, and
Z.
Liu
, “
Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes
,”
Nat. Commun.
7
,
12357
(
2016
).
46.
A.
Azizi
,
M.
Dogan
,
J. D.
Cain
,
K.
Lee
,
X.
Yu
,
W.
Shi
,
E. C.
Glazer
,
M. L.
Cohen
, and
A.
Zettl
, “
Experimental and theoretical study of possible collective electronic states in exfoliable Re-doped NbS2
,”
ACS Nano
15
,
18297
(
2021
).
47.
T.
Dvir
,
F.
Massee
,
L.
Attias
,
M.
Khodas
,
M.
Aprili
,
C. H. L.
Quay
, and
H.
Steinberg
, “
Spectroscopy of bulk and few-layer superconducting NbSe2 with van der Waals tunnel junctions
,”
Nat. Commun.
9
,
598
(
2018
).
48.
O.
Lopez-Sanchez
,
D.
Lembke
,
M.
Kayci
,
A.
Radenovic
, and
A.
Kis
, “
Ultrasensitive photodetectors based on monolayer MoS2
,”
Nat. Nanotechnol.
8
,
497
(
2013
).
49.
A.
Splendiani
,
L.
Sun
,
Y.
Zhang
,
T.
Li
,
J.
Kim
,
C.-Y.
Chim
,
G.
Galli
, and
F.
Wang
, “
Emerging photoluminescence in monolayer MoS2
,”
Nano Lett.
10
,
1271
(
2010
).
50.
Y. T.
Lee
,
K.
Choi
,
H. S.
Lee
,
S.-W.
Min
,
P. J.
Jeon
,
D. K.
Hwang
,
H. J.
Choi
, and
S.
Im
, “
Graphene versus ohmic metal as source-drain electrode for MoS2 nanosheet transistor channel
,”
Small
10
,
2356
(
2014
).
51.
T.
Roy
,
M.
Tosun
,
J. S.
Kang
,
A. B.
Sachid
,
S. B.
Desai
,
M.
Hettick
,
C. C.
Hu
, and
A.
Javey
, “
Field-effect transistors built from all two-dimensional material components
,”
ACS Nano
8
,
6259
(
2014
).
52.
X.
Cui
,
G.-H.
Lee
,
Y. D.
Kim
,
G.
Arefe
,
P. Y.
Huang
,
C.-H.
Lee
,
D. A.
Chenet
,
X.
Zhang
,
L.
Wang
,
F.
Ye
,
F.
Pizzocchero
,
B. S.
Jessen
,
K.
Watanabe
,
T.
Taniguchi
,
D. A.
Muller
,
T.
Low
,
P.
Kim
, and
J.
Hone
, “
Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform
,”
Nat. Nanotechnol.
10
,
534
(
2015
).
53.
D.
Jariwala
,
A. R.
Davoyan
,
J.
Wong
, and
H. A.
Atwater
, “
Van der Waals materials for atomically-thin photovoltaics: Promise and outlook
,”
ACS Photonics
4
,
2962
(
2017
).
54.
P. V.
Pham
,
S. C.
Bodepudi
,
K.
Shehzad
,
Y.
Liu
,
Y.
Xu
,
B.
Yu
, and
X.
Duan
, “
2D heterostructures for ubiquitous electronics and optoelectronics: Principles, opportunities, and challenges
,”
Chem. Rev.
122
,
6514
(
2022
).
55.
F.
Xia
,
T.
Mueller
,
Y.-M.
Lin
,
A.
Valdes-Garcia
, and
P.
Avouris
, “
Ultrafast graphene photodetector
,”
Nat. Nanotechnol.
4
,
839
(
2009
).
56.
Y.
Zhang
,
L.
Zhang
, and
C.
Zhou
, “
Review of chemical vapor deposition of graphene and related applications
,”
Acc. Chem. Res.
46
,
2329
(
2013
).
57.
Z.
Cai
,
B.
Liu
,
X.
Zou
, and
H.-M.
Cheng
, “
Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures
,”
Chem. Rev.
118
,
6091
(
2018
).
58.
S.
Song
,
Y.
Sim
,
S.-Y.
Kim
,
J. H.
Kim
,
I.
Oh
,
W.
Na
,
D. H.
Lee
,
J.
Wang
,
S.
Yan
,
Y.
Liu
,
J.
Kwak
,
J.-H.
Chen
,
H.
Cheong
,
J.-W.
Yoo
,
Z.
Lee
, and
S.-Y.
Kwon
, “
Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal–semiconductor contacts at the Schottky–Mott limit
,”
Nat. Electron.
3
,
207
(
2020
).
59.
S.
Song
,
A.
Yoon
,
S.
Jang
,
J.
Lynch
,
J.
Yang
,
J.
Han
,
M.
Choe
,
Y. H.
Jin
,
C. Y.
Chen
,
Y.
Cheon
,
J.
Kwak
,
C.
Jeong
,
H.
Cheong
,
D.
Jariwala
,
Z.
Lee
, and
S.-Y.
Kwon
, “
Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes
,”
Nat. Commun.
14
,
4747
(
2023
).
60.
S.
Song
,
S.
Jeon
,
M.
Rahaman
,
J.
Lynch
,
D.
Rhee
,
P.
Kumar
,
S.
Chakravarthi
,
G.
Kim
,
X.
Du
,
E. W.
Blanton
,
K.
Kisslinger
,
M.
Snure
,
N. R.
Glavin
,
E. A.
Stach
,
R. H.
Olsson
, and
D.
Jariwala
, “
Wafer-scale growth of two-dimensional, phase-pure InSe
,”
Matter
6
,
3483
(
2023
).
61.
L.
Zang
,
L.
Chen
,
D.
Tan
,
X.
Cao
,
N.
Sun
, and
C.
Jiang
, “
Research on multi-morphology evolution of MoS2 in chemical vapor deposition
,”
ChemistrySelect
6
,
8107
(
2021
).
62.
D.-B.
Seo
,
T. N.
Trung
,
S.-S.
Bae
, and
E.-T.
Kim
, “
Improved photoelectrochemical performance of MoS2 through morphology-controlled chemical vapor deposition growth on graphene
,”
Nanomaterials
11
,
1585
(
2021
).
63.
Y.
Hernandez
,
V.
Nicolosi
,
M.
Lotya
,
F. M.
Blighe
,
Z.
Sun
,
S.
De
,
I. T.
McGovern
,
B.
Holland
,
M.
Byrne
,
Y. K.
Gun'Ko
,
J. J.
Boland
,
P.
Niraj
,
G.
Duesberg
,
S.
Krishnamurthy
,
R.
Goodhue
,
J.
Hutchison
,
V.
Scardaci
,
A. C.
Ferrari
, and
J. N.
Coleman
, “
High-yield production of graphene by liquid-phase exfoliation of graphite
,”
Nat. Nanotechnol.
3
,
563
(
2008
).
64.
J. N.
Coleman
,
M.
Lotya
,
A.
O'Neill
,
S. D.
Bergin
,
P. J.
King
,
U.
Khan
,
K.
Young
,
A.
Gaucher
,
S.
De
,
R. J.
Smith
,
I. V.
Shvets
,
S. K.
Arora
,
G.
Stanton
,
H.-Y.
Kim
,
K.
Lee
,
G. T.
Kim
,
G. S.
Duesberg
,
T.
Hallam
,
J. J.
Boland
,
J. J.
Wang
,
J. F.
Donegan
,
J. C.
Grunlan
,
G.
Moriarty
,
A.
Shmeliov
,
R. J.
Nicholls
,
J. M.
Perkins
,
E. M.
Grieveson
,
K.
Theuwissen
,
D. W.
McComb
,
P. D.
Nellist
, and
V.
Nicolosi
, “
Two-dimensional nanosheets produced by liquid exfoliation of layered materials
,”
Science
331
,
568
(
2011
).
65.
R. J.
Smith
,
P. J.
King
,
M.
Lotya
,
C.
Wirtz
,
U.
Khan
,
S.
De
,
A.
O'Neill
,
G. S.
Duesberg
,
J. C.
Grunlan
,
G.
Moriarty
,
J.
Chen
,
J.
Wang
,
A. I.
Minett
,
V.
Nicolosi
, and
J. N.
Coleman
, “
Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions
,”
Adv. Mater.
23
,
3944
(
2011
).
66.
J. N.
Coleman
, “
Liquid exfoliation of defect-free graphene
,”
Acc. Chem. Res.
46
,
14
(
2013
).
67.
K. R.
Paton
,
E.
Varrla
,
C.
Backes
,
R. J.
Smith
,
U.
Khan
,
A.
O'Neill
,
C.
Boland
,
M.
Lotya
,
O. M.
Istrate
,
P.
King
,
T.
Higgins
,
S.
Barwich
,
P.
May
,
P.
Puczkarski
,
I.
Ahmed
,
M.
Moebius
,
H.
Pettersson
,
E.
Long
,
J.
Coelho
,
S. E.
O'Brien
,
E. K.
McGuire
,
B. M.
Sanchez
,
G. S.
Duesberg
,
N.
McEvoy
,
T. J.
Pennycook
,
C.
Downing
,
A.
Crossley
,
V.
Nicolosi
, and
J. N.
Coleman
, “
Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids
,”
Nat. Mater.
13
,
624
(
2014
).
68.
J.
Kang
,
J.-W. T.
Seo
,
D.
Alducin
,
A.
Ponce
,
M. J.
Yacaman
, and
M. C.
Hersam
, “
Thickness sorting of two-dimensional transition metal dichalcogenides via copolymer-assisted density gradient ultracentrifugation
,”
Nat. Commun.
5
,
5478
(
2014
).
69.
J.
Zhu
,
J.
Kang
,
J.
Kang
,
D.
Jariwala
,
J. D.
Wood
,
J.-W. T.
Seo
,
K.-S.
Chen
,
T. J.
Marks
, and
M. C.
Hersam
, “
Solution-processed dielectrics based on thickness-sorted two-dimensional hexagonal boron nitride nanosheets
,”
Nano Lett.
15
,
7029
(
2015
).
70.
J.
Kang
,
J. D.
Wood
,
S. A.
Wells
,
J.-H.
Lee
,
X.
Liu
,
K.-S.
Chen
, and
M. C.
Hersam
, “
Solvent exfoliation of electronic-grade, two-dimensional black phosphorus
,”
ACS Nano
9
,
3596
(
2015
).
71.
J.
Kang
,
V. K.
Sangwan
,
J. D.
Wood
,
X.
Liu
,
I.
Balla
,
D.
Lam
, and
M. C.
Hersam
, “
Layer-by-layer sorting of rhenium disulfide via high-density isopycnic density gradient ultracentrifugation
,”
Nano Lett.
16
,
7216
(
2016
).
72.
J.
Kang
,
S. A.
Wells
,
J. D.
Wood
,
J.-H.
Lee
,
X.
Liu
,
C. R.
Ryder
,
J.
Zhu
,
J. R.
Guest
,
C. A.
Husko
, and
M. C.
Hersam
, “
Stable aqueous dispersions of optically and electronically active phosphorene
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
11688
(
2016
).
73.
J.
Kang
,
V. K.
Sangwan
,
H.-S.
Lee
,
X.
Liu
, and
M. C.
Hersam
, “
Solution-processed layered gallium telluride thin-film photodetectors
,”
ACS Photonics
5
,
3996
(
2018
).
74.
J.
Kang
,
S. A.
Wells
,
V. K.
Sangwan
,
D.
Lam
,
X.
Liu
,
J.
Luxa
,
Z.
Sofer
, and
M. C.
Hersam
, “
Solution-based processing of optoelectronically active indium selenide
,”
Adv. Mater.
30
,
1802990
(
2018
).
75.
C.
Backes
,
D.
Campi
,
B. M.
Szydlowska
,
K.
Synnatschke
,
E.
Ojala
,
F.
Rashvand
,
A.
Harvey
,
A.
Griffin
,
Z.
Sofer
,
N.
Marzari
,
J. N.
Coleman
, and
D. D.
O'Regan
, “
Equipartition of energy defines the size–thickness relationship in liquid-exfoliated nanosheets
,”
ACS Nano
13
,
7050
(
2019
).
76.
S.
Biccai
,
S.
Barwich
,
D.
Boland
,
A.
Harvey
,
D.
Hanlon
,
N.
McEvoy
, and
J. N.
Coleman
, “
Exfoliation of 2D materials by high shear mixing
,”
2D Mater.
6
,
015008
(
2019
).
77.
Y. S.
Cho
,
D.
Rhee
,
J.
Eom
,
J.
Kim
,
M.
Jung
,
Y.
Son
,
Y.-K.
Han
,
K. K.
Kim
, and
J.
Kang
, “
Scalable synthesis of Pt nanoflowers on solution-processed MoS2 thin film for efficient hydrogen evolution reaction
,”
Small Sci.
2
,
2200043
(
2022
).
78.
Z.
Lin
,
Y.
Huang
, and
X.
Duan
, “
Van der Waals thin-film electronics
,”
Nat. Electron.
2
,
378
(
2019
).
79.
A. G.
Kelly
,
D.
O'Suilleabhain
,
C.
Gabbett
, and
J. N.
Coleman
, “
The electrical conductivity of solution-processed nanosheet networks
,”
Nat. Rev. Mater.
7
,
217
(
2022
).
80.
J.
Kim
,
O.
Song
,
Y. S.
Cho
,
M.
Jung
,
D.
Rhee
, and
J.
Kang
, “
Revisiting solution-based processing of van der Waals layered materials for electronics
,”
ACS Mater. Au
2
,
382
(
2022
).
81.
O.
Song
and
J.
Kang
, “
Solution-processed 2D materials for electronic applications
,”
ACS Appl. Electron. Mater.
5
,
1335
(
2023
).
82.
T.
Carey
,
S.
Cacovich
,
G.
Divitini
,
J.
Ren
,
A.
Mansouri
,
J. M.
Kim
,
C.
Wang
,
C.
Ducati
,
R.
Sordan
, and
F.
Torrisi
, “
Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics
,”
Nat. Commun.
8
,
1202
(
2017
).
83.
J.-W. T.
Seo
,
J.
Zhu
,
V. K.
Sangwan
,
E. B.
Secor
,
S. G.
Wallace
, and
M. C.
Hersam
, “
Fully inkjet-printed, mechanically flexible MoS2 nanosheet photodetectors
,”
ACS Appl. Mater. Interfaces
11
,
5675
(
2019
).
84.
R.
Worsley
,
L.
Pimpolari
,
D.
McManus
,
N.
Ge
,
R.
Ionescu
,
J. A.
Wittkopf
,
A.
Alieva
,
G.
Basso
,
M.
Macucci
,
G.
Iannaccone
,
K. S.
Novoselov
,
H.
Holder
,
G.
Fiori
, and
C.
Casiraghi
, “
All-2D material inkjet-printed capacitors: Toward fully printed integrated circuits
,”
ACS Nano
13
,
54
(
2019
).
85.
A. G.
Kelly
,
T.
Hallam
,
C.
Backes
,
A.
Harvey
,
A. S.
Esmaeily
,
I.
Godwin
,
J.
Coelho
,
V.
Nicolosi
,
J.
Lauth
,
A.
Kulkarni
,
S.
Kinge
,
L. D. A.
Siebbeles
,
G. S.
Duesberg
, and
J. N.
Coleman
, “
All-printed thin-film transistors from networks of liquid-exfoliated nanosheets
,”
Science
356
,
69
(
2017
).
86.
T. M.
Higgins
,
S.
Finn
,
M.
Matthiesen
,
S.
Grieger
,
K.
Synnatschke
,
M.
Brohmann
,
M.
Rother
,
C.
Backes
, and
J.
Zaumseil
, “
Electrolyte-gated n-type transistors produced from aqueous inks of WS2 nanosheets
,”
Adv. Funct. Mater.
29
,
1804387
(
2019
).
87.
A. G.
Kelly
,
D.
Finn
,
A.
Harvey
,
T.
Hallam
, and
J. N.
Coleman
, “
All-printed capacitors from graphene-BN-graphene nanosheet heterostructures
,”
Appl. Phys. Lett.
109
,
023107
(
2016
).
88.
Y.
Nalawade
,
J.
Pepper
,
A.
Harvey
,
A.
Griffin
,
D.
Caffrey
,
A. G.
Kelly
, and
J. N.
Coleman
, “
All-printed dielectric capacitors from high-permittivity, liquid-exfoliated BiOCl nanosheets
,”
ACS Appl. Electron. Mater.
2
,
3233
(
2020
).
89.
G.
Eda
,
H.
Yamaguchi
,
D.
Voiry
,
T.
Fujita
,
M.
Chen
, and
M.
Chhowalla
, “
Photoluminescence from chemically exfoliated MoS2
,”
Nano Lett.
11
,
5111
(
2011
).
90.
K. H.
Park
,
B. H.
Kim
,
S. H.
Song
,
J.
Kwon
,
B. S.
Kong
,
K.
Kang
, and
S.
Jeon
, “
Exfoliation of non-oxidized graphene flakes for scalable conductive film
,”
Nano Lett.
12
,
2871
(
2012
).
91.
N. I.
Kovtyukhova
,
Y.
Wang
,
R.
Lv
,
M.
Terrones
,
V. H.
Crespi
, and
T. E.
Mallouk
, “
Reversible intercalation of hexagonal boron nitride with Brønsted acids
,”
J. Am. Chem. Soc.
135
,
8372
(
2013
).
92.
N. I.
Kovtyukhova
,
Y.
Wang
,
A.
Berkdemir
,
R.
Cruz-Silva
,
M.
Terrones
,
V. H.
Crespi
, and
T. E.
Mallouk
, “
Non-oxidative intercalation and exfoliation of graphite by Brønsted acids
,”
Nat. Chem.
6
,
957
(
2014
).
93.
J.
Zhang
,
N.
Kong
,
S.
Uzun
,
A.
Levitt
,
S.
Seyedin
,
P. A.
Lynch
,
S.
Qin
,
M.
Han
,
W.
Yang
,
J.
Liu
,
X.
Wang
,
Y.
Gogotsi
, and
J. M.
Razal
, “
Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity
,”
Adv. Mater.
32
,
2001093
(
2020
).
94.
C.-J.
Shih
,
A.
Vijayaraghavan
,
R.
Krishnan
,
R.
Sharma
,
J.-H.
Han
,
M.-H.
Ham
,
Z.
Jin
,
S.
Lin
,
G. L. C.
Paulus
,
N. F.
Reuel
,
Q. H.
Wang
,
D.
Blankschtein
, and
M. S.
Strano
, “
Bi- and trilayer graphene solutions
,”
Nat. Nanotechnol.
6
,
439
(
2011
).
95.
M.
Osada
,
G.
Takanashi
,
B.-W.
Li
,
K.
Akatsuka
,
Y.
Ebina
,
K.
Ono
,
H.
Funakubo
,
K.
Takada
, and
T.
Sasaki
, “
Controlled polarizability of one-nanometer-thick oxide nanosheets for tailored, high-κ nanodielectrics
,”
Adv. Funct. Mater.
21
,
3482
(
2011
).
96.
Z.
Lin
,
Y.
Liu
,
U.
Halim
,
M.
Ding
,
Y.
Liu
,
Y.
Wang
,
C.
Jia
,
P.
Chen
,
X.
Duan
,
C.
Wang
,
F.
Song
,
M.
Li
,
C.
Wan
,
Y.
Huang
, and
X.
Duan
, “
Solution-processable 2D semiconductors for high-performance large-area electronics
,”
Nature
562
,
254
(
2018
).
97.
X.
Gao
,
J.
Yin
,
G.
Bian
,
H.-Y.
Liu
,
C.-P.
Wang
,
X.-X.
Pang
, and
J.
Zhu
, “
High-mobility patternable MoS2 percolating nanofilms
,”
Nano Res.
14
,
2255
(
2021
).
98.
J.
Kim
,
D.
Rhee
,
O.
Song
,
M.
Kim
,
Y. H.
Kwon
,
D. U.
Lim
,
I. S.
Kim
,
V.
Mazánek
,
L.
Valdman
,
Z.
Sofer
,
J. H.
Cho
, and
J.
Kang
, “
All-solution-processed van der Waals heterostructures for wafer-scale electronics
,”
Adv. Mater.
34
,
2106110
(
2022
).
99.
O.
Song
,
D.
Rhee
,
J.
Kim
,
Y.
Jeon
,
V.
Mazánek
,
A.
Söll
,
Y. A.
Kwon
,
J. H.
Cho
,
Y.-H.
Kim
,
Z.
Sofer
, and
J.
Kang
, “
All inkjet-printed electronics based on electrochemically exfoliated two-dimensional metal, semiconductor, and dielectric
,”
npj 2D Mater. Appl.
6
,
64
(
2022
).
100.
Z.
Yan
,
D.
Xu
,
Z.
Lin
,
P.
Wang
,
B.
Cao
,
H.
Ren
,
F.
Song
,
C.
Wan
,
L.
Wang
,
J.
Zhou
,
X.
Zhao
,
J.
Chen
,
Y.
Huang
, and
X.
Duan
, “
Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes
,”
Science
375
,
852
(
2022
).
101.
D.
Rhee
,
B.
Han
,
M.
Jung
,
J.
Kim
,
O.
Song
, and
J.
Kang
, “
Hierarchical nanoscale structuring of solution-processed 2D van der Waals networks for wafer-scale, stretchable electronics
,”
ACS Appl. Mater. Interfaces
14
,
57153
(
2022
).
102.
T.
Zou
,
H.-J.
Kim
,
S.
Kim
,
A.
Liu
,
M.-Y.
Choi
,
H.
Jung
,
H.
Zhu
,
I.
You
,
Y.
Reo
,
W.-J.
Lee
,
Y.-S.
Kim
,
C.-J.
Kim
, and
Y.-Y.
Noh
, “
High-performance solution-processed 2D p-type WSe2 transistors and circuits through molecular doping
,”
Adv. Mater.
35
,
2208934
(
2023
).
103.
J.
Kang
,
V. K.
Sangwan
,
J. D.
Wood
, and
M. C.
Hersam
, “
Solution-based processing of monodisperse two-dimensional nanomaterials
,”
Acc. Chem. Res.
50
,
943
(
2017
).
104.
Z.
Li
,
R. J.
Young
,
C.
Backes
,
W.
Zhao
,
X.
Zhang
,
A. A.
Zhukov
,
E.
Tillotson
,
A. P.
Conlan
,
F.
Ding
,
S. J.
Haigh
,
K. S.
Novoselov
, and
J. N.
Coleman
, “
Mechanisms of liquid-phase exfoliation for the production of graphene
,”
ACS Nano
14
,
10976
(
2020
).
105.
J.
Shen
,
Y.
He
,
J.
Wu
,
C.
Gao
,
K.
Keyshar
,
X.
Zhang
,
Y.
Yang
,
M.
Ye
,
R.
Vajtai
,
J.
Lou
, and
P. M.
Ajayan
, “
Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components
,”
Nano Lett.
15
,
5449
(
2015
).
106.
P.
Turner
,
M.
Hodnett
,
R.
Dorey
, and
J. D.
Carey
, “
Controlled sonication as a route to in-situ graphene flake size control
,”
Sci. Rep.
9
,
8710
(
2019
).
107.
M.
Yi
and
Z.
Shen
, “
A review on mechanical exfoliation for the scalable production of graphene
,”
J. Mater. Chem. A
3
,
11700
(
2015
).
108.
A. P.
Rooney
,
Z.
Li
,
W.
Zhao
,
A.
Gholinia
,
A.
Kozikov
,
G.
Auton
,
F.
Ding
,
R. V.
Gorbachev
,
R. J.
Young
, and
S. J.
Haigh
, “
Anomalous twin boundaries in two dimensional materials
,”
Nat. Commun.
9
,
3597
(
2018
).
109.
A. V.
Alaferdov
,
A.
Gholamipour-Shirazi
,
M. A.
Canesqui
,
Y. A.
Danilov
, and
S. A.
Moshkalev
, “
Size-controlled synthesis of graphite nanoflakes and multi-layer graphene by liquid phase exfoliation of natural graphite
,”
Carbon
69
,
525
(
2014
).
110.
A.
Liscio
,
K.
Kouroupis-Agalou
,
X. D.
Betriu
,
A.
Kovtun
,
E.
Treossi
,
N. M.
Pugno
,
G.
De Luca
,
L.
Giorgini
, and
V.
Palermo
, “
Evolution of the size and shape of 2D nanosheets during ultrasonic fragmentation
,”
2D Mater.
4
,
025017
(
2017
).
111.
Y.
Lin
,
T. V.
Williams
,
T.-B.
Xu
,
W.
Cao
,
H. E.
Elsayed-Ali
, and
J. W.
Connell
, “
Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: Critical role of water
,”
J. Phys. Chem. C
115
,
2679
(
2011
).
112.
A.
Gupta
,
V.
Arunachalam
, and
S.
Vasudevan
, “
Liquid-phase exfoliation of MoS2 nanosheets: The critical role of trace water
,”
J. Phys. Chem. Lett.
7
,
4884
(
2016
).
113.
A.
Jawaid
,
D.
Nepal
,
K.
Park
,
M.
Jespersen
,
A.
Qualley
,
P.
Mirau
,
L. F.
Drummy
, and
R. A.
Vaia
, “
Mechanism for liquid phase exfoliation of MoS2
,”
Chem. Mater.
28
,
337
(
2016
).
114.
L.-J.
Ji
,
Y.
Qin
,
D.
Gui
,
W.
Li
,
Y.
Li
,
X.
Li
, and
P.
Lu
, “
Quantifying the exfoliation ease level of 2D materials via mechanical anisotropy
,”
Chem. Mater.
30
,
8732
(
2018
).
115.
X.
Chen
,
J. F.
Dobson
, and
C. L.
Raston
, “
Vortex fluidic exfoliation of graphite and boron nitride
,”
Chem. Commun.
48
,
3703
(
2012
).
116.
T. S.
Tran
,
S. J.
Park
,
S. S.
Yoo
,
T.-R.
Lee
, and
T.
Kim
, “
High shear-induced exfoliation of graphite into high quality graphene by Taylor–Couette flow
,”
RSC Adv.
6
,
12003
(
2016
).
117.
L.
Liu
,
Z.
Shen
,
M.
Yi
,
X.
Zhang
, and
S.
Ma
, “
A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces
,”
RSC Adv.
4
,
36464
(
2014
).
118.
F.
Xu
,
B.
Ge
,
J.
Chen
,
A.
Nathan
,
L. L.
Xin
,
H.
Ma
,
H.
Min
,
C.
Zhu
,
W.
Xia
,
Z.
Li
,
S.
Li
,
K.
Yu
,
L.
Wu
,
Y.
Cui
,
L.
Sun
, and
Y.
Zhu
, “
Scalable shear-exfoliation of high-quality phosphorene nanoflakes with reliable electrochemical cycleability in nano batteries
,”
2D Mater.
3
,
025005
(
2016
).
119.
A. S.
Chan
,
X.
Fu
,
G. N.
Panin
,
H. D.
Cho
,
D. J.
Lee
, and
T. W.
Kang
, “
Shear exfoliation and photoresponse of 2D-layered gallium selenide nanosheets
,”
Phys. Status Solidi RRL
12
,
1800226
(
2018
).
120.
E.
Varrla
,
K. R.
Paton
,
C.
Backes
,
A.
Harvey
,
R. J.
Smith
,
J.
McCauley
, and
J. N.
Coleman
, “
Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender
,”
Nanoscale
6
,
11810
(
2014
).
121.
M.
Yi
and
Z.
Shen
, “
Kitchen blender for producing high-quality few-layer graphene
,”
Carbon
78
,
622
(
2014
).
122.
E.
Varrla
,
C.
Backes
,
K. R.
Paton
,
A.
Harvey
,
Z.
Gholamvand
,
J.
McCauley
, and
J. N.
Coleman
, “
Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation
,”
Chem. Mater.
27
,
1129
(
2015
).
123.
A.
Pattammattel
and
C. V.
Kumar
, “
Kitchen chemistry 101: Multigram production of high quality biographene in a blender with edible proteins
,”
Adv. Funct. Mater.
25
,
7088
(
2015
).
124.
B.
Kulyk
,
M. A.
Freitas
,
N. F.
Santos
,
F.
Mohseni
,
A. F.
Carvalho
,
K.
Yasakau
,
A. J. S.
Fernandes
,
A.
Bernardes
,
B.
Figueiredo
,
R.
Silva
,
J.
Tedim
, and
F. M.
Costa
, “
A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings
,”
Crit. Rev. Solid State Mater. Sci.
47
,
309
(
2022
).
125.
L. K.
Wei
,
S. Z.
Abd Rahim
,
M. M.
Al Bakri Abdullah
,
A. T.
Yin
,
M. F.
Ghazali
,
M. F.
Omar
,
O.
Nemeș
,
A. V.
Sandu
,
P.
Vizureanu
, and
A. E.
Abdellah
, “
Producing metal powder from machining chips using ball milling process: A review
,”
Materials
16
,
4635
(
2023
).
126.
M.
Broseghini
,
L.
Gelisio
,
M.
D'Incau
,
C. L.
Azanza Ricardo
,
N. M.
Pugno
, and
P.
Scardi
, “
Modeling of the planetary ball-milling process: The case study of ceramic powders
,”
J. Eur. Ceram. Soc.
36
,
2205
(
2016
).
127.
V. K.
Gupta
, “
Effect of particulate environment on the grinding kinetics of mixtures of minerals in ball mills
,”
Powder Technol.
375
,
549
(
2020
).
128.
F.
Delogu
,
G.
Gorrasi
, and
A.
Sorrentino
, “
Fabrication of polymer nanocomposites via ball milling: Present status and future perspectives
,”
Prog. Mater. Sci
86
,
75
(
2017
).
129.
R.
Janot
and
D.
Guérard
, “
Ball-milling: The behavior of graphite as a function of the dispersal media
,”
Carbon
40
,
2887
(
2002
).
130.
Y.
Yao
,
Z.
Lin
,
Z.
Li
,
X.
Song
,
K.-S.
Moon
, and
C.-P.
Wong
, “
Large-scale production of two-dimensional nanosheets
,”
J. Mater. Chem.
22
,
13494
(
2012
).
131.
A. M.
Abdelkader
and
I. A.
Kinloch
, “
Mechanochemical exfoliation of 2D crystals in deep eutectic solvents
,”
ACS Sustainable Chem. Eng.
4
,
4465
(
2016
).
132.
Y.
Zhou
,
L.
Xu
,
M.
Liu
,
Z.
Qi
,
W.
Wang
,
J.
Zhu
,
S.
Chen
,
K.
Yu
,
Y.
Su
,
B.
Ding
,
L.
Qiu
, and
H.-M.
Cheng
, “
Viscous solvent-assisted planetary ball milling for the scalable production of large ultrathin two-dimensional materials
,”
ACS Nano
16
,
10179
(
2022
).
133.
M. V.
Antisari
,
A.
Montone
,
N.
Jovic
,
E.
Piscopiello
,
C.
Alvani
, and
L.
Pilloni
, “
Low energy pure shear milling: A method for the preparation of graphite nano-sheets
,”
Scr. Mater.
55
,
1047
(
2006
).
134.
C.
Knieke
,
A.
Berger
,
M.
Voigt
,
R. N. K.
Taylor
,
J.
Röhrl
, and
W.
Peukert
, “
Scalable production of graphene sheets by mechanical delamination
,”
Carbon
48
,
3196
(
2010
).
135.
C.
Damm
,
T. J.
Nacken
, and
W.
Peukert
, “
Quantitative evaluation of delamination of graphite by wet media milling
,”
Carbon
81
,
284
(
2015
).
136.
I.-Y.
Jeon
,
H.-J.
Choi
,
S.-M.
Jung
,
J.-M.
Seo
,
M.-J.
Kim
,
L.
Dai
, and
J.-B.
Baek
, “
Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction
,”
J. Am. Chem. Soc.
135
,
1386
(
2013
).
137.
S.
Deng
,
X.-D.
Qi
,
Y.-L.
Zhu
,
H.-J.
Zhou
,
F.
Chen
, and
Q.
Fu
, “
A facile way to large-scale production of few-layered graphene via planetary ball mill
,”
Chin. J. Polym. Sci.
34
,
1270
(
2016
).
138.
A.-S.
Al-Sherbini
,
M.
Bakr
,
I.
Ghoneim
, and
M.
Saad
, “
Exfoliation of graphene sheets via high energy wet milling of graphite in 2-ethylhexanol and kerosene
,”
J. Adv. Res.
8
,
209
(
2017
).
139.
X.
Li
,
J.
Shen
,
C.
Wu
, and
K.
Wu
, “
Ball-mill-exfoliated graphene: Tunable electrochemistry and phenol sensing
,”
Small
15
,
1805567
(
2019
).
140.
H.
Zhu
,
Y.
Cao
,
J.
Zhang
,
W.
Zhang
,
Y.
Xu
,
J.
Guo
,
W.
Yang
, and
J.
Liu
, “
One-step preparation of graphene nanosheets via ball milling of graphite and the application in lithium-ion batteries
,”
J. Mater. Sci.
51
,
3675
(
2016
).
141.
L.
Liu
,
Z.
Xiong
,
D.
Hu
,
G.
Wu
, and
P.
Chen
, “
Production of high quality single- or few-layered graphene by solid exfoliation of graphite in the presence of ammonia borane
,”
Chem. Commun.
49
,
7890
(
2013
).
142.
T.
Xing
,
L. H.
Li
,
L.
Hou
,
X.
Hu
,
S.
Zhou
,
R.
Peter
,
M.
Petravic
, and
Y.
Chen
, “
Disorder in ball-milled graphite revealed by Raman spectroscopy
,”
Carbon
57
,
515
(
2013
).
143.
N. J.
Welham
,
V.
Berbenni
, and
P. G.
Chapman
, “
Effect of extended ball milling on graphite
,”
J. Alloys Compd.
349
,
255
(
2003
).
144.
W.
Zhao
,
M.
Fang
,
F.
Wu
,
H.
Wu
,
L.
Wang
, and
G.
Chen
, “
Preparation of graphene by exfoliation of graphite using wet ball milling
,”
J. Mater. Chem.
20
,
5817
(
2010
).
145.
W.
Zhao
,
F.
Wu
,
H.
Wu
, and
G.
Chen
, “
Preparation of colloidal dispersions of graphene sheets in organic solvents by using ball milling
,”
J. Nanomater.
2010
,
528235
.
146.
M.
Mao
,
S.
Chen
,
P.
He
,
H.
Zhang
, and
H.
Liu
, “
Facile and economical mass production of graphene dispersions and flakes
,”
J. Mater. Chem. A
2
,
4132
(
2014
).
147.
V.
León
,
A. M.
Rodriguez
,
P.
Prieto
,
M.
Prato
, and
E.
Vázquez
, “
Exfoliation of graphite with triazine derivatives under ball-milling conditions: Preparation of few-layer graphene via selective noncovalent interactions
,”
ACS Nano
8
,
563
(
2014
).
148.
Y.
Lv
,
L.
Yu
,
C.
Jiang
,
S.
Chen
, and
Z.
Nie
, “
Synthesis of graphene nanosheet powder with layer number control via a soluble salt-assisted route
,”
RSC Adv.
4
,
13350
(
2014
).
149.
I.-Y.
Jeon
,
Y.-R.
Shin
,
G.-J.
Sohn
,
H.-J.
Choi
,
S.-Y.
Bae
,
J.
Mahmood
,
S.-M.
Jung
,
J.-M.
Seo
,
M.-J.
Kim
,
D.
Wook Chang
,
L.
Dai
, and
J.-B.
Baek
, “
Edge-carboxylated graphene nanosheets via ball milling
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
5588
(
2012
).
150.
L. H.
Li
,
Y.
Chen
,
G.
Behan
,
H.
Zhang
,
M.
Petravic
, and
A. M.
Glushenkov
, “
Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling
,”
J. Mater. Chem.
21
,
11862
(
2011
).
151.
C.
Damm
,
J.
Körner
, and
W.
Peukert
, “
Delamination of hexagonal boron nitride in a stirred media mill
,”
J. Nanopart. Res.
15
,
1561
(
2013
).
152.
Deepika
,
L. H.
Li
,
A. M.
Glushenkov
,
S. K.
Hait
,
P.
Hodgson
, and
Y.
Chen
, “
High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil
,”
Sci. Rep.
4
,
7288
(
2014
).
153.
D.
Lee
,
B.
Lee
,
K. H.
Park
,
H. J.
Ryu
,
S.
Jeon
, and
S. H.
Hong
, “
Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling
,”
Nano Lett.
15
,
1238
(
2015
).
154.
H.
Shalchian
,
J.
Vahdati Khaki
,
A.
Babakhani
,
G.
Taglieri
,
I.
De Michelis
,
V.
Daniele
, and
F.
Veglio
, “
On the mechanism of molybdenite exfoliation during mechanical milling
,”
Ceram. Int.
43
,
12957
(
2017
).
155.
A.
Tayyebi
,
N.
Ogino
,
T.
Hayashi
, and
N.
Komatsu
, “
Size-controlled MoS2 nanosheet through ball milling exfoliation: Parameter optimization, structural characterization and electrocatalytic application
,”
Nanotechnology
31
,
075704
(
2020
).
156.
A.
Ambrosi
,
X.
Chia
,
Z.
Sofer
, and
M.
Pumera
, “
Enhancement of electrochemical and catalytic properties of MoS2 through ball-milling
,”
Electrochem. Commun.
54
,
36
(
2015
).
157.
W.
Liu
,
Y.
Zhu
,
X.
Xu
,
S.
Wang
, and
X.
Zhang
, “
Preparation of few-layer black phosphorus by wet ball milling exfoliation
,”
J. Mater. Sci.
31
,
9543
(
2020
).
158.
Y. K.
Kim
,
Y.
Lee
, and
K.-Y.
Shin
, “
Black phosphorus-based smart electrorheological fluid with tailored phase transition and exfoliation
,”
J. Ind. Eng. Chem.
90
,
333
(
2020
).
159.
M.
Wen
,
J.
Wang
,
R.
Tong
,
D.
Liu
,
H.
Huang
,
Y.
Yu
,
Z.-K.
Zhou
,
P. K.
Chu
, and
X.-F.
Yu
, “
A low-cost metal-free photocatalyst based on black phosphorus
,”
Adv. Sci.
6
,
1801321
(
2019
).
160.
S. V.
Pedersen
,
F.
Muramutsa
,
J. D.
Wood
,
C.
Husko
,
D.
Estrada
, and
B. J.
Jaques
, “
Mechanochemical conversion kinetics of red to black phosphorus and scaling parameters for high volume synthesis
,”
npj 2D Mater. Appl.
4
,
36
(
2020
).
161.
F.
Zhou
,
S.
Li
,
L.
Ouyang
,
J.
Liu
,
J.
Liu
,
Z.
Huang
, and
M.
Zhu
, “
Facile synthesis of black phosphorene via a low melting media assisted ball milling
,”
Chem. Eng. J.
444
,
136593
(
2022
).
162.
L.
Burk
,
M.
Gliem
, and
R.
Mülhaupt
, “
Mechanochemical routes to functionalized graphene nanofillers tuned for lightweight carbon/hydrocarbon composites
,”
Macromol. Mater. Eng.
304
,
1800496
(
2019
).
163.
S.
Rosenkranz
,
S.
Breitung-Faes
, and
A.
Kwade
, “
Experimental investigations and modelling of the ball motion in planetary ball mills
,”
Powder Technol.
212
,
224
(
2011
).
164.
C. F.
Burmeister
and
A.
Kwade
, “
Process engineering with planetary ball mills
,”
Chem. Soc. Rev.
42
,
7660
(
2013
).
165.
H.
Mio
,
J.
Kano
,
F.
Saito
, and
K.
Kaneko
, “
Effects of rotational direction and rotation-to-revolution speed ratio in planetary ball milling
,”
Mater. Sci. Eng., A
332
,
75
(
2002
).
166.
P.
Baláž
,
M.
Achimovičová
,
M.
Baláž
,
P.
Billik
,
Z.
Cherkezova-Zheleva
,
J. M.
Criado
,
F.
Delogu
,
E.
Dutková
,
E.
Gaffet
,
F. J.
Gotor
,
R.
Kumar
,
I.
Mitov
,
T.
Rojac
,
M.
Senna
,
A.
Streletskii
, and
K.
Wieczorek-Ciurowa
, “
Hallmarks of mechanochemistry: From nanoparticles to technology
,”
Chem. Soc. Rev.
42
,
7571
(
2013
).
167.
H.
Mio
,
J.
Kano
,
F.
Saito
, and
K.
Kaneko
, “
Optimum revolution and rotational directions and their speeds in planetary ball milling
,”
Int. J. Miner. Process.
74
,
S85
(
2004
).
168.
B. K.
Mishra
and
R. K.
Rajamani
, “
Motion analysis in tumbling mills by the discrete element method
,”
KONA Powder Part. J.
8
,
92
(
1990
).
169.
A. S.
Rogachev
,
D. O.
Moskovskikh
,
A. A.
Nepapushev
,
T. A.
Sviridova
,
S. G.
Vadchenko
,
S. A.
Rogachev
, and
A. S.
Mukasyan
, “
Experimental investigation of milling regimes in planetary ball mill and their influence on structure and reactivity of gasless powder exothermic mixtures
,”
Powder Technol.
274
,
44
(
2015
).
170.
M.
Buzaglo
,
I. P.
Bar
,
M.
Varenik
,
L.
Shunak
,
S.
Pevzner
, and
O.
Regev
, “
Graphite-to-graphene: Total conversion
,”
Adv. Mater.
29
,
1603528
(
2017
).
171.
A.
Hendaoui
and
A.
Alshammari
, “
Preparation of nitrogen-doped holey multilayer graphene using high-energy ball milling of graphite in presence of melamine
,”
Materials
16
,
219
(
2023
).
172.
J.
Ghosh
,
S.
Mazumdar
,
M.
Das
,
S.
Ghatak
, and
A. K.
Basu
, “
Microstructural characterization of amorphous and nanocrystalline boron nitride prepared by high-energy ball milling
,”
Mater. Res. Bull.
43
,
1023
(
2008
).
173.
J. F.
Swindells
,
C.
Snyder
,
R. C.
Hardy
, and
P.
Golden
,
Viscosities of Sucrose Solutions at Various Temperatures: Tables of Recalculated Values
(
US Government Printing Office
,
1958
).
174.
S.
Chen
,
R.
Xu
,
J.
Liu
,
X.
Zou
,
L.
Qiu
,
F.
Kang
,
B.
Liu
, and
H.-M.
Cheng
, “
Simultaneous production and functionalization of boron nitride nanosheets by sugar-assisted mechanochemical exfoliation
,”
Adv. Mater.
31
,
1804810
(
2019
).
175.
W.
Lei
,
V. N.
Mochalin
,
D.
Liu
,
S.
Qin
,
Y.
Gogotsi
, and
Y.
Chen
, “
Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization
,”
Nat. Commun.
6
,
8849
(
2015
).
176.
C.
Teng
,
L.
Su
,
J.
Chen
, and
J.
Wang
, “
Flexible, thermally conductive layered composite films from massively exfoliated boron nitride nanosheets
,”
Composites, Part A
124
,
105498
(
2019
).
177.
P. G.
Karagiannidis
,
S. A.
Hodge
,
L.
Lombardi
,
F.
Tomarchio
,
N.
Decorde
,
S.
Milana
,
I.
Goykhman
,
Y.
Su
,
S. V.
Mesite
,
D. N.
Johnstone
,
R. K.
Leary
,
P. A.
Midgley
,
N. M.
Pugno
,
F.
Torrisi
, and
A. C.
Ferrari
, “
Microfluidization of graphite and formulation of graphene-based conductive inks
,”
ACS Nano
11
,
2742
(
2017
).
178.
S.
Bellani
,
E.
Petroni
,
A. E.
Del Rio Castillo
,
N.
Curreli
,
B.
Martín-García
,
R.
Oropesa-Nuñez
,
M.
Prato
, and
F.
Bonaccorso
, “
Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors
,”
Adv. Funct. Mater.
29
,
1807659
(
2019
).
179.
J.
Chen
,
M.
Duan
, and
G.
Chen
, “
Continuous mechanical exfoliation of graphene sheets via three-roll mill
,”
J. Mater. Chem.
22
,
19625
(
2012
).
180.
W.
Zheng
,
J.
Lee
,
Z.-W.
Gao
,
Y.
Li
,
S.
Lin
,
S. P.
Lau
, and
L. Y. S.
Lee
, “
Laser-assisted ultrafast exfoliation of black phosphorus in liquid with tunable thickness for Li-ion batteries
,”
Adv. Energy Mater.
10
,
1903490
(
2020
).
181.
J.
Lyklema
, “
The surface tension of pure liquids: Thermodynamic components and corresponding states
,”
Colloids Surf., A
156
,
413
(
1999
).
182.
G.
Cunningham
,
M.
Lotya
,
C. S.
Cucinotta
,
S.
Sanvito
,
S. D.
Bergin
,
R.
Menzel
,
M. S. P.
Shaffer
, and
J. N.
Coleman
, “
Solvent exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds
,”
ACS Nano
6
,
3468
(
2012
).
183.
Y.
Hernandez
,
M.
Lotya
,
D.
Rickard
,
S. D.
Bergin
, and
J. N.
Coleman
, “
Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery
,”
Langmuir
26
,
3208
(
2010
).
184.
C. M.
Hansen
,
Hansen Solubility Parameters: A User's Handbook
(
CRC Press
,
2007
).
185.
G.
Hu
,
J.
Kang
,
L. W. T.
Ng
,
X.
Zhu
,
R. C. T.
Howe
,
C. G.
Jones
,
M. C.
Hersam
, and
T.
Hasan
, “
Functional inks and printing of two-dimensional materials
,”
Chem. Soc. Rev.
47
,
3265
(
2018
).
186.
M.
Lotya
,
Y.
Hernandez
,
P. J.
King
,
R. J.
Smith
,
V.
Nicolosi
,
L. S.
Karlsson
,
F. M.
Blighe
,
S.
De
,
Z.
Wang
,
I. T.
McGovern
,
G. S.
Duesberg
, and
J. N.
Coleman
, “
Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions
,”
J. Am. Chem. Soc.
131
,
3611
(
2009
).
187.
A.
Ciesielski
and
P.
Samorì
, “
Graphene via sonication assisted liquid-phase exfoliation
,”
Chem. Soc. Rev.
43
,
381
(
2014
).
188.
F.
Bonaccorso
,
A.
Lombardo
,
T.
Hasan
,
Z.
Sun
,
L.
Colombo
, and
A. C.
Ferrari
, “
Production and processing of graphene and 2D crystals
,”
Mater. Today
15
,
564
(
2012
).
189.
F.
Bonaccorso
,
A.
Bartolotta
,
J. N.
Coleman
, and
C.
Backes
, “
2D-crystal-based functional inks
,”
Adv. Mater.
28
,
6136
(
2016
).
190.
C.
Backes
,
B. M.
Szydłowska
,
A.
Harvey
,
S.
Yuan
,
V.
Vega-Mayoral
,
B. R.
Davies
,
P-l
Zhao
,
D.
Hanlon
,
E. J. G.
Santos
,
M. I.
Katsnelson
,
W. J.
Blau
,
C.
Gadermaier
, and
J. N.
Coleman
, “
Production of highly monolayer enriched dispersions of liquid-exfoliated nanosheets by liquid cascade centrifugation
,”
ACS Nano
10
,
1589
(
2016
).
191.
V.
Rahneshin
,
M.
Farzad
,
S.
Azizi
, and
B.
Panchapakesan
, “
Versatile high-performance inkjet-printed paper photo-actuators based on 2D materials
,”
Nanotechnology
31
,
025708
(
2020
).
192.
Y.
Jeon
,
D.
Rhee
,
B.
Wu
,
V.
Mazanek
,
I. S.
Kim
,
D.
Son
,
Z.
Sofer
, and
J.
Kang
, “
Electrochemically exfoliated phosphorene nanosheet thin films for wafer-scale near-infrared phototransistor array
,”
npj 2D Mater. Appl.
6
,
82
(
2022
).
193.
Y. S.
Cho
,
D.
Rhee
,
J.
Lee
,
S. Y.
Jung
,
J.
Eom
,
V.
Mazanek
,
B.
Wu
,
T.
Kang
,
S.
Baek
,
H.
Choi
,
Z.
Sofer
,
S.
Lee
, and
J.
Kang
, “
Electronic and electrocatalytic applications based on solution-processed two-dimensional platinum diselenide with thickness-dependent electronic properties
,”
EcoMat
5
,
e12358
(
2023
).
194.
X.
Sun
,
D.
Luo
,
J.
Liu
, and
D. G.
Evans
, “
Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation
,”
ACS Nano
4
,
3381
(
2010
).
195.
A. A.
Green
and
M. C.
Hersam
, “
Solution phase production of graphene with controlled thickness via density differentiation
,”
Nano Lett.
9
,
4031
(
2009
).
196.
L.
Torrisi
,
M.
Cutroneo
,
A.
Torrisi
, and
L.
Silipigni
, “
Measurements on five characterizing properties of graphene oxide and reduced graphene oxide foils
,”
Phys. Status Solidi A
219
,
2100628
(
2022
).
197.
S. K.
Nayak
,
S.
Mohanty
, and
S. K.
Nayak
, “
Mechanical properties and thermal conductivity of epoxy composites enhanced by h-BN/RGO and mh-BN/GO hybrid filler for microelectronics packaging application
,”
SN Appl. Sci.
1
,
337
(
2019
).
198.
J.
Ning
,
Y.
Wang
,
T. Y.
Teo
,
C.-C.
Huang
,
I.
Zeimpekis
,
K.
Morgan
,
S. L.
Teo
,
D. W.
Hewak
,
M.
Bosman
, and
R. E.
Simpson
, “
Low energy switching of phase change materials using a 2D thermal boundary layer
,”
ACS Appl. Mater. Interfaces
14
,
41225
(
2022
).
199.
G. A.
Slack
, “
Thermal conductivity of elements with complex lattices: B, P, S
,”
Phys. Rev.
139
,
A507
(
1965
).
200.
M. S.
Arnold
,
A. A.
Green
,
J. F.
Hulvat
,
S. I.
Stupp
, and
M. C.
Hersam
, “
Sorting carbon nanotubes by electronic structure using density differentiation
,”
Nat. Nanotechnol.
1
,
60
(
2006
).
201.
G. K.
Serhatkulu
,
C.
Dilek
, and
E.
Gulari
, “
Supercritical CO2 intercalation of layered silicates
,”
J. Supercrit. Fluids
39
,
264
(
2006
).
202.
N.-W.
Pu
,
C.-A.
Wang
,
Y.
Sung
,
Y.-M.
Liu
, and
M.-D.
Ger
, “
Production of few-layer graphene by supercritical CO2 exfoliation of graphite
,”
Mater. Lett.
63
,
1987
(
2009
).
203.
Z.
Sun
,
Q.
Fan
,
M.
Zhang
,
S.
Liu
,
H.
Tao
, and
J.
Texter
, “
Supercritical fluid-facilitated exfoliation and processing of 2D materials
,”
Adv. Sci.
6
,
1901084
(
2019
).
204.
H. S.
Sim
,
T. A.
Kim
,
K. H.
Lee
, and
M.
Park
, “
Preparation of graphene nanosheets through repeated supercritical carbon dioxide process
,”
Mater. Lett.
89
,
343
(
2012
).
205.
Y.
Wang
,
Z.
Chen
,
Z.
Wu
,
Y.
Li
,
W.
Yang
, and
Y.
Li
, “
High-efficiency production of graphene by supercritical CO2 exfoliation with rapid expansion
,”
Langmuir
34
,
7797
(
2018
).
206.
N.
Song
,
J.
Jia
,
W.
Wang
,
Y.
Gao
,
Y.
Zhao
, and
Y.
Chen
, “
Green production of pristine graphene using fluid dynamic force in supercritical CO2
,”
Chem. Eng. J.
298
,
198
(
2016
).
207.
Y.
Gao
,
W.
Shi
,
W.
Wang
,
Y.
Wang
,
Y.
Zhao
,
Z.
Lei
, and
R.
Miao
, “
Ultrasonic-assisted production of graphene with high yield in supercritical CO2 and its high electrical conductivity film
,”
Ind. Eng. Chem. Res.
53
,
2839
(
2014
).
208.
W.
Wang
,
Y.
Wang
,
Y.
Gao
, and
Y.
Zhao
, “
Control of number of graphene layers using ultrasound in supercritical CO2 and their application in lithium-ion batteries
,”
J. Supercrit. Fluids
85
,
95
(
2014
).
209.
X.
Tian
,
Y.
Li
,
Z.
Chen
,
Q.
Li
,
L.
Hou
,
J.
Wu
,
Y.
Tang
, and
Y.
Li
, “
Shear-assisted production of few-layer boron nitride nanosheets by supercritical CO2 exfoliation and its use for thermally conductive epoxy composites
,”
Sci. Rep.
7
,
17794
(
2017
).
210.
Y.
Wang
,
C.
Zhou
,
W.
Wang
, and
Y.
Zhao
, “
Preparation of two dimensional atomic crystals BN, WS2, and MoS2 by supercritical CO2 assisted with ultrasound
,”
Ind. Eng. Chem. Res.
52
,
4379
(
2013
).
211.
X.
Tian
,
J.
Wu
,
Q.
Li
,
Y.
Li
,
Z.
Chen
,
Y.
Tang
, and
Y.
Li
, “
Scalable production of few-layer molybdenum disulfide nanosheets by supercritical carbon dioxide
,”
J. Mater. Sci.
53
,
7258
(
2018
).
212.
S.
Yan
,
B.
Wang
,
Z.
Wang
,
D.
Hu
,
X.
Xu
,
J.
Wang
, and
Y.
Shi
, “
Supercritical carbon dioxide-assisted rapid synthesis of few-layer black phosphorus for hydrogen peroxide sensing
,”
Biosens. Bioelectron.
80
,
34
(
2016
).
213.
L.
Li
,
X.
Zheng
,
J.
Wang
,
Q.
Sun
, and
Q.
Xu
, “
Solvent-exfoliated and functionalized graphene with assistance of supercritical carbon dioxide
,”
ACS Sustainable Chem. Eng.
1
,
144
(
2013
).
214.
X.
Zheng
,
Q.
Xu
,
J.
Li
,
L.
Li
, and
J.
Wei
, “
High-throughput, direct exfoliation of graphite to graphene via a cooperation of supercritical CO2 and pyrene-polymers
,”
RSC Adv.
2
,
10632
(
2012
).
215.
Q.
Chen
,
Y.
Ji
,
D.
Zhang
,
J.
Shi
,
Y.
Xiao
, and
J.
Che
, “
Fabrication of fluorographene nanosheets with high yield and good quality based on supercritical fluid-phase exfoliation
,”
J. Nanopart. Res.
18
,
199
(
2016
).
216.
L.
Li
,
J.
Xu
,
G.
Li
,
X.
Jia
,
Y.
Li
,
F.
Yang
,
L.
Zhang
,
C.
Xu
,
J.
Gao
,
Y.
Liu
, and
Z.
Fang
, “
Preparation of graphene nanosheets by shear-assisted supercritical CO2 exfoliation
,”
Chem. Eng. J.
284
,
78
(
2016
).
217.
Z.
Chen
,
H.
Miao
,
J.
Wu
,
Y.
Tang
,
W.
Yang
,
L.
Hou
,
F.
Yang
,
X.
Tian
,
L.
Zhang
, and
Y.
Li
, “
Scalable production of hydrophilic graphene nanosheets via in situ ball-milling-assisted supercritical CO2 exfoliation
,”
Ind. Eng. Chem. Res.
56
,
6939
(
2017
).
218.
D.
Rangappa
,
K.
Sone
,
M.
Wang
,
U. K.
Gautam
,
D.
Golberg
,
H.
Itoh
,
M.
Ichihara
, and
I.
Honma
, “
Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation
,”
Chem. Eur. J.
16
,
6488
(
2010
).
219.
P.
Thangasamy
and
M.
Sathish
, “
Supercritical fluid processing: A rapid, one-pot exfoliation process for the production of surfactant-free hexagonal boron nitride nanosheets
,”
CrystEngComm
17
,
5895
(
2015
).
220.
C.
Liu
,
G.
Hu
, and
H.
Gao
, “
Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N,N-dimethylformamide
,”
J. Supercrit. Fluids
63
,
99
(
2012
).
221.
C.
Liu
and
G.
Hu
, “
Effect of nitric acid treatment on the preparation of graphene sheets by supercritical N,N-dimethylformamide exfoliation
,”
Ind. Eng. Chem. Res.
53
,
14310
(
2014
).
222.
Y. D.
Liu
,
L.
Ren
,
X.
Qi
,
L. W.
Yang
,
G. L.
Hao
,
J.
Li
,
X. L.
Wei
, and
J. X.
Zhong
, “
Preparation, characterization and photoelectrochemical property of ultrathin MoS2 nanosheets via hydrothermal intercalation and exfoliation route
,”
J. Alloys Compd.
571
,
37
(
2013
).
223.
J.
Zheng
,
H.
Zhang
,
S.
Dong
,
Y.
Liu
,
C.
Tai Nai
,
H.
Suk Shin
,
H.
Young Jeong
,
B.
Liu
, and
K.
Ping Loh
, “
High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide
,”
Nat. Commun.
5
,
2995
(
2014
).
224.
G.
Yang
,
H.
Wang
,
N.
Wang
,
R.
Sun
, and
C. P.
Wong
, paper
presented at the 2018 IEEE 68th Electronic Components and Technology Conference (ECTC)
,
2018
.
225.
X.
Liu
,
M.
Zheng
,
K.
Xiao
,
Y.
Xiao
,
C.
He
,
H.
Dong
,
B.
Lei
, and
Y.
Liu
, “
Simple, green and high-yield production of single- or few-layer graphene by hydrothermal exfoliation of graphite
,”
Nanoscale
6
,
4598
(
2014
).
226.
S.
Yang
,
K.
Zhuo
,
Z.
Zhang
,
J.
Liu
,
G.
Bai
, and
J.
Wang
, “
Sodium fluoride-assisted hydrothermal exfoliation of graphite into graphene as filler of epoxy resin coating to protect aluminum
,”
J. Phys. Chem. C
123
,
27969
(
2019
).
227.
M.
Ahmadi
,
O.
Zabihi
,
Q.
Li
,
S. M.
Fakhrhoseini
, and
M.
Naebe
, “
A hydrothermal-assisted ball milling approach for scalable production of high-quality functionalized MoS2 nanosheets for polymer nanocomposites
,”
Nanomaterials
9
,
1400
(
2019
).
228.
Q.
Yang
,
M.
Zhou
,
M.
Yang
,
Z.
Zhang
,
J.
Yu
,
Y.
Zhang
,
W.
Cheng
, and
X.
Li
, “
High-yield production of few-layer graphene via new-fashioned strategy combining resonance ball milling and hydrothermal exfoliation
,”
Nanomaterials
10
,
667
(
2020
).
229.
Y.-J.
Zhu
and
F.
Chen
, “
Microwave-assisted preparation of inorganic nanostructures in liquid phase
,”
Chem. Rev.
114
,
6462
(
2014
).
230.
W.
Wu
,
J.
Xu
,
X.
Tang
,
P.
Xie
,
X.
Liu
,
J.
Xu
,
H.
Zhou
,
D.
Zhang
, and
T.
Fan
, “
Two-dimensional nanosheets by rapid and efficient microwave exfoliation of layered materials
,”
Chem. Mater.
30
,
5932
(
2018
).
231.
M.
Matsumoto
,
Y.
Saito
,
C.
Park
,
T.
Fukushima
, and
T.
Aida
, “
Ultrahigh-throughput exfoliation of graphite into pristine ‘single-layer’ graphene using microwaves and molecularly engineered ionic liquids
,”
Nat. Chem.
7
,
730
(
2015
).
232.
Z.
Liu
,
Y.
Wang
,
Z.
Wang
,
Y.
Yao
,
J.
Dai
,
S.
Das
, and
L.
Hu
, “
Solvo-thermal microwave-powered two-dimensional material exfoliation
,”
Chem. Commun.
52
,
5757
(
2016
).
233.
D. R.
Dreyer
,
S.
Park
,
C. W.
Bielawski
, and
R. S.
Ruoff
, “
The chemistry of graphene oxide
,”
Chem. Soc. Rev.
39
,
228
(
2010
).
234.
A. M.
Dimiev
and
J. M.
Tour
, “
Mechanism of graphene oxide formation
,”
ACS Nano
8
,
3060
(
2014
).
235.
O. C.
Compton
and
S. T.
Nguyen
, “
Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials
,”
Small
6
,
711
(
2010
).
236.
A.
Jiříčková
,
O.
Jankovský
,
Z.
Sofer
, and
D.
Sedmidubský
, “
Synthesis and applications of graphene oxide
,”
Materials
15
,
920
(
2022
).
237.
D. C.
Marcano
,
D. V.
Kosynkin
,
J. M.
Berlin
,
A.
Sinitskii
,
Z.
Sun
,
A.
Slesarev
,
L. B.
Alemany
,
W.
Lu
, and
J. M.
Tour
, “
Improved synthesis of graphene oxide
,”
ACS Nano
4
,
4806
(
2010
).
238.
M. M.
Gudarzi
,
M. H. M.
Moghadam
, and
F.
Sharif
, “
Spontaneous exfoliation of graphite oxide in polar aprotic solvents as the route to produce graphene oxide—organic solvents liquid crystals
,”
Carbon
64
,
403
(
2013
).
239.
D. E.
Wessbecher
,
W. C.
Forsman
, and
J. R.
Gaier
, “
Synthesis and stability of Br2, ICI and IBr intercalated pitch-based graphite fibers
,”
Synth. Met.
26
,
185
(
1988
).
240.
C.
Simon
,
I.
Rosenman
,
F.
Batallan
,
G.
Pepy
, and
H.
Lauter
, “
Neutron diffraction on bromine intercalated in graphite
,”
Synth. Met.
23
,
147
(
1988
).
241.
T.
Sasa
,
Y.
Takahashi
, and
T.
Mukaibo
, “
Crystal structure of graphite bromine lamellar compounds
,”
Carbon
9
,
407
(
1971
).
242.
W.
Krone
,
G.
Wortmann
, and
G.
Kaindl
, “
Intercalate structure in halogen-intercalated graphite
,”
Synth. Met.
29
,
247
(
1989
).
243.
F.
Hof
,
A.
Impellizzeri
,
E.
Picheau
,
X.
Che
,
A.
Pénicaud
, and
C. P.
Ewels
, “
Chainlike structure formed in iodine monochloride graphite intercalation compounds
,”
J. Phys. Chem. C
125
,
23383
(
2021
).
244.
E.
Tcherner
,
P. K.
Ummat
, and
W. R.
Datars
, “
Carrier orbit coupling in stage-2 IBr graphite
,”
J. Phys.
9
,
8221
(
1997
).
245.
H. S. S.
Ramakrishna Matte
,
A.
Gomathi
,
A. K.
Manna
,
D. J.
Late
,
R.
Datta
,
S. K.
Pati
, and
C. N. R.
Rao
, “
MoS2 and WS2 analogues of graphene
,”
Angew. Chem., Int. Ed.
49
,
4059
(
2010
).
246.
Y.
Li
,
Y.
Liang
,
F. C.
Robles Hernandez
,
H.
Deog Yoo
,
Q.
An
, and
Y.
Yao
, “
Enhancing sodium-ion battery performance with interlayer-expanded MoS2–PEO nanocomposites
,”
Nano Energy
15
,
453
(
2015
).
247.
D.
Voiry
,
H.
Yamaguchi
,
J.
Li
,
R.
Silva
,
D. C. B.
Alves
,
T.
Fujita
,
M.
Chen
,
T.
Asefa
,
V. B.
Shenoy
,
G.
Eda
, and
M.
Chhowalla
, “
Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution
,”
Nat. Mater.
12
,
850
(
2013
).
248.
J. H.
Lee
,
W. S.
Jang
,
S. W.
Han
, and
H. K.
Baik
, “
Efficient hydrogen evolution by mechanically strained MoS2 nanosheets
,”
Langmuir
30
,
9866
(
2014
).
249.
M.
Acerce
,
D.
Voiry
, and
M.
Chhowalla
, “
Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials
,”
Nat. Nanotechnol.
10
,
313
(
2015
).
250.
L.
Lan
,
D.
Chen
,
Y.
Yao
,
X.
Peng
,
J.
Wu
,
Y.
Li
,
J.
Ping
, and
Y.
Ying
, “
Phase-dependent fluorescence quenching efficiency of MoS2 nanosheets and their applications in multiplex target biosensing
,”
ACS Appl. Mater. Interfaces
10
,
42009
(
2018
).
251.
K. C.
Knirsch
,
N. C.
Berner
,
H. C.
Nerl
,
C. S.
Cucinotta
,
Z.
Gholamvand
,
N.
McEvoy
,
Z.
Wang
,
I.
Abramovic
,
P.
Vecera
,
M.
Halik
,
S.
Sanvito
,
G. S.
Duesberg
,
V.
Nicolosi
,
F.
Hauke
,
A.
Hirsch
,
J. N.
Coleman
, and
C.
Backes
, “
Basal-plane functionalization of chemically exfoliated molybdenum disulfide by diazonium salts
,”
ACS Nano
9
,
6018
(
2015
).
252.
A.
Ambrosi
,
Z.
Sofer
, and
M.
Pumera
, “
Lithium Intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2
,”
Small
11
,
605
(
2015
).
253.
X.
Fan
,
P.
Xu
,
Y. C.
Li
,
D.
Zhou
,
Y.
Sun
,
M. A. T.
Nguyen
,
M.
Terrones
, and
T. E.
Mallouk
, “
Controlled exfoliation of MoS2 crystals into trilayer nanosheets
,”
J. Am. Chem. Soc.
138
,
5143
(
2016
).
254.
M.-W.
Sun
,
Z.
Li
,
Q.-Y.
Wang
,
N.
Zhang
,
R.
Xie
,
X.-J.
Ju
,
W.
Wang
,
Z.
Liu
, and
L.-Y.
Chu
, “
MoS2 laminate membranes with structural-phase-dependent permeation for molecular separation
,”
Cell Rep. Phys. Sci.
4
,
101239
(
2023
).
255.
D. M.
Sim
,
H. J.
Han
,
S.
Yim
,
M.-J.
Choi
,
J.
Jeon
, and
Y. S.
Jung
, “
Long-term stable 2H-MoS2 dispersion: Critical role of solvent for simultaneous phase restoration and surface functionalization of liquid-exfoliated MoS2
,”
ACS Omega
2
,
4678
(
2017
).
256.
D.
Voiry
,
A.
Goswami
,
R.
Kappera
,
C.
de Carvalho Castro e Silva
,
D.
Kaplan
,
T.
Fujita
,
M.
Chen
,
T.
Asefa
, and
M.
Chhowalla
, “
Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering
,”
Nat. Chem.
7
,
45
(
2015
).
257.
B.
Zhao
,
F.
Chen
,
Z.
Wang
,
S.
Huang
,
Y.
Jiang
, and
Z.
Chen
, “
Lithiation-assisted exfoliation and reduction of SnS2 to SnS decorated on lithium-integrated graphene for efficient energy storage
,”
Nanoscale
9
,
17922
(
2017
).
258.
X.
Chia
,
A.
Ambrosi
,
Z.
Sofer
,
J.
Luxa
, and
M.
Pumera
, “
Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment
,”
ACS Nano
9
,
5164
(
2015
).
259.
S.
Jeong
,
D.
Yoo
,
M.
Ahn
,
P.
Miró
,
T.
Heine
, and
J.
Cheon
, “
Tandem intercalation strategy for single-layer nanosheets as an effective alternative to conventional exfoliation processes
,”
Nat. Commun.
6
,
5763
(
2015
).
260.
X.
Zhu
,
Z.
Su
,
C.
Wu
,
H.
Cong
,
X.
Ai
,
H.
Yang
, and
J.
Qian
, “
Exfoliation of MoS2 nanosheets enabled by a redox-potential-matched chemical lithiation reaction
,”
Nano Lett.
22
,
2956
(
2022
).
261.
M. B.
Dines
, “
Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides
,”
Mater. Res. Bull.
10
,
287
(
1975
).
262.
D. W.
Murphy
,
F. J.
Di Salvo
,
G. W.
Hull
, Jr.
, and
J. V.
Waszczak
, “
Convenient preparation and physical properties of lithium intercalation compounds of Group 4B and 5B layered transition metal dichalcogenides
,”
Inorg. Chem.
15
,
17
(
1976
).
263.
Y.
Liang
,
H. D.
Yoo
,
Y.
Li
,
J.
Shuai
,
H. A.
Calderon
,
F. C.
Robles Hernandez
,
L. C.
Grabow
, and
Y.
Yao
, “
Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage
,”
Nano Lett.
15
,
2194
(
2015
).
264.
J. P.
Lemmon
and
M. M.
Lerner
, “
Preparation and characterization of nanocomposites of polyethers and molybdenum disulfide
,”
Chem. Mater.
6
,
207
(
1994
).
265.
K.
Kubota
,
M.
Dahbi
,
T.
Hosaka
,
S.
Kumakura
, and
S.
Komaba
, “
Towards K-ion and Na-ion batteries as “beyond Li-ion
,”
Chem. Rec.
18
,
459
(
2018
).
266.
J.
Zhang
,
A.
Yang
,
X.
Wu
,
J.
van de Groep
,
P.
Tang
,
S.
Li
,
B.
Liu
,
F.
Shi
,
J.
Wan
,
Q.
Li
,
Y.
Sun
,
Z.
Lu
,
X.
Zheng
,
G.
Zhou
,
C.-L.
Wu
,
S.-C.
Zhang
,
M. L.
Brongersma
,
J.
Li
, and
Y.
Cui
, “
Reversible and selective ion intercalation through the top surface of few-layer MoS2
,”
Nat. Commun.
9
,
5289
(
2018
).
267.
S.
Basu
,
C.
Zeller
,
P. J.
Flanders
,
C. D.
Fuerst
,
W. D.
Johnson
, and
J. E.
Fischer
, “
Synthesis and properties of lithium-graphite intercalation compounds
,”
Mater. Sci. Eng.
38
,
275
(
1979
).
268.
L.
Antoine
,
J. C.
Gachon
, and
D.
Guerard
, “
Intercalation of sodium-potassium alloys into graphite
,”
MRS Online Proc. Libr.
548
,
49
(
1998
).
269.
N.
Bartlett
and
B. W.
McQuillan
,
Intercalation Chemistry
(
Academic Press
,
New York
,
1982
).
270.
L. M.
Viculis
,
J. J.
Mack
,
O. M.
Mayer
,
H. T.
Hahn
, and
R. B.
Kaner
, “
Intercalation and exfoliation routes to graphite nanoplatelets
,”
J. Mater. Chem.
15
,
974
(
2005
).
271.
D. M.
Ottmers
and
H. F.
Rase
, “
Potassium graphites prepared by mixed-reaction technique
,”
Carbon
4
,
125
(
1966
).
272.
Y.
Kuga
,
S.
Endoh
,
H.
Chiyoda
, and
K.
Takeuchi
, “
Production of fine flaky ground particles of potassium graphite intercalation compounds and potassium exfoliated graphite
,”
Powder Technol.
66
,
85
(
1991
).
273.
G.
Bepete
,
F.
Hof
,
K.
Huang
,
K.
Kampioti
,
E.
Anglaret
,
C.
Drummond
, and
A.
Pénicaud
, ““
Eau de graphene” from a KC8 graphite intercalation compound prepared by a simple mixing of graphite and molten potassium
,”
Phys. Status Solidi RRL
10
,
895
(
2016
).
274.
G.
Bepete
,
E.
Anglaret
,
L.
Ortolani
,
V.
Morandi
,
K.
Huang
,
A.
Pénicaud
, and
C.
Drummond
, “
Surfactant-free single-layer graphene in water
,”
Nat. Chem.
9
,
347
(
2017
).
275.
K. H.
Park
,
B. G.
Kim
, and
S. H.
Song
, “
Synergistic effect of a defect-free graphene nanostructure as an anode material for lithium ion batteries
,”
Nanomaterials
10
,
9
(
2020
).
276.
M.
Naguib
,
M.
Kurtoglu
,
V.
Presser
,
J.
Lu
,
J.
Niu
,
M.
Heon
,
L.
Hultman