Discovering energy storage materials with rationally controlled trapping and de-trapping of electrons and holes upon x-rays, UV-light, or mechanical force stimulation is challenging. Such materials enable promising applications in various fields, for instance in multimode anti-counterfeiting, x-ray imaging, and non-real-time force recording. In this work, photoluminescence spectroscopy, the refined chemical shift model, and thermoluminescence studies will be combined to establish the vacuum referred binding energy (VRBE) diagrams for the LiSc1−xLuxGeO4 family of compounds containing the energy level locations of Bi2+, Bi3+, and the lanthanides. The established VRBE diagrams are used to rationally develop Bi3+ and lanthanides doped LiSc1−xLuxGeO4 storage phosphors and to understand trapping and de-trapping processes of charge carriers with various physical excitation means. The thermoluminescence intensity of x-ray irradiated LiSc0.25Lu0.75GeO4:0.001Bi3+,0.001Eu3+ is about two times higher than that of the state-of-the-art x-ray storage phosphor BaFBr(I):Eu2+. Particularly, a force induced charge carrier storage phenomenon appears in Eu3+ co-doped LiSc1−xLuxGeO4. Proof-of-concept non-real-time force recording, anti-counterfeiting, and x-ray imaging applications will be demonstrated. This work not only deepens our understanding of the capturing and de-trapping processes of electrons and holes with various physical excitation sources, but can also trigger scientists to rationally discover new storage phosphors by exploiting the VRBEs of bismuth and lanthanide levels.

1.
D.
Poelman
,
D.
van der Heggen
,
J.
Du
,
E.
Cosaert
, and
P. F.
Smet
,
J. Appl. Phys.
128
(
24
),
240903
(
2020
);
F.
Kang
,
G.
Sun
,
P.
Boutinaud
,
H.
Wu
,
F.-X.
Ma
,
J.
Lu
,
J.
Gan
,
H.
Bian
,
F.
Gao
, and
S.
Xiao
,
Chem. Eng. J.
403
,
126099
(
2021
);
C.
Liao
,
H.
Wu
,
H.
Wu
,
L.
Zhang
,
G.-H.
Pan
,
Z.
Hao
,
F.
Liu
,
X.-J.
Wang
, and
J.
Zhang
,
Laser Photonics Rev.
17
(
8
),
2300016
(
2023
);
S.
Hirata
,
Appl. Phys. Rev.
9
(
1
),
011304
(
2022
).
2.
L.
Liang
,
J.
Chen
,
K.
Shao
,
X.
Qin
,
Z.
Pan
, and
X.
Liu
,
Nat. Mater.
22
(
3
),
289
(
2023
);
[PubMed]
T.
Shi
,
F.
Chen
,
X.
Zhao
,
J.
Zhang
,
X.-J.
Wang
, and
F.
Liu
,
Appl. Phys. Lett.
121
(
19
),
191902
(
2022
);
S.
Lin
,
H.
Lin
,
C.
Ma
,
Y.
Cheng
,
S.
Ye
,
F.
Lin
,
R.
Li
,
J.
Xu
, and
Y.
Wang
,
Light: Sci. Appl.
9
(
1
),
22
(
2020
);
[PubMed]
E.
Aboelezz
and
B. W.
Pogue
,
Appl. Phys. Rev.
10
(
2
),
021312
(
2023
).
[PubMed]
3.
Y.
Zhuang
,
L.
Wang
,
Y.
Lv
,
T.-L.
Zhou
, and
R.-J.
Xie
,
Adv. Funct. Mater.
28
(
8
),
1705769
(
2018
);
F.
Xie
,
D.
Chen
,
Y.
Zhang
,
X.
Lv
,
X.
Chen
,
K.
Sun
, and
Y.
Liang
,
J. Mater. Chem. C
11
(
47
),
16772
(
2023
);
Q.
Peng
,
T.
Wang
,
H.
Tang
,
T.
Ji
,
W.
Wang
,
J.
Xiao
,
X.
Li
,
Z.
Liu
,
J.
Qiu
,
X.
Yu
, and
X.
Xu
,
Laser Photonics Rev.
16
(
12
),
2200449
(
2022
);
S.
Lin
,
H.
Lin
,
G.
Chen
,
B.
Wang
,
X.
Yue
,
Q.
Huang
,
J.
Xu
,
Y.
Cheng
, and
Y.
Wang
,
Laser Photonics Rev.
15
(
7
),
2100044
(
2021
);
N.
Gan
,
X.
Zou
,
Y.
Zhang
,
L.
Gu
, and
Z.
An
,
Appl. Phys. Rev.
10
(
2
),
021313
(
2023
).
4.
S.
Lin
,
H.
Lin
,
Q.
Huang
,
Y.
Cheng
,
J.
Xu
,
J.
Wang
,
X.
Xiang
,
C.
Wang
,
L.
Zhang
, and
Y.
Wang
,
Laser Photonics Rev.
13
(
4
),
1900006
(
2019
).
5.
A.
Dobrowolska
,
A. J. J.
Bos
, and
P.
Dorenbos
,
Phys. Status Solidi RRL
13
(
3
),
1800502
(
2019
).
6.
P. I. C.
Claro
,
E. P. B. S.
Borges
,
G. R.
Schleder
,
N. L.
Archilha
,
A.
Pinto
,
M.
Carvalho
,
C. E.
Driemeier
,
A.
Fazzio
, and
R. F.
Gouveia
,
Appl. Phys. Rev.
10
(
2
),
021302
(
2023
).
7.
P.
Leblans
,
D.
Vandenbroucke
, and
P.
Willems
,
Materials
4
(
6
),
1034
(
2011
).
8.
Y.
Zhuang
and
R.-J.
Xie
,
Adv. Mater.
33
(
50
),
2005925
(
2021
);
J.-C. G.
Bünzli
and
K.-L.
Wong
,
J. Rare Earths
36
(
1
),
1
(
2018
);
A.
Feng
and
P. F.
Smet
,
Materials
11
(
4
),
484
(
2018
);
[PubMed]
T.
Zheng
,
M.
Runowski
,
I. R.
Martín
,
K.
Soler-Carracedo
,
L.
Peng
,
M.
Skwierczyńska
,
M.
Sójka
,
J.
Barzowska
,
S.
Mahlik
,
H.
Hemmerich
,
F.
Rivera-López
,
P.
Kulpiński
,
V.
Lavín
,
D.
Alonso
, and
D.
Peng
,
Adv. Mater.
35
(
40
),
2304140
(
2023
);
S.
Liu
,
Y.
Zheng
,
D.
Peng
,
J.
Zhao
,
Z.
Song
, and
Q.
Liu
,
Adv. Funct. Mater.
33
(
3
),
2209275
(
2023
);
J.
Xiao
,
Y.
Cai
,
Y.
Song
,
H.
Tang
,
P.
Zhang
,
Q.
Peng
,
X.
Xu
,
Z.
Liu
, and
L.
Zhao
,
Laser Photonics Rev.
2023
,
2301002
.
9.
Z.
Huang
,
B.
Chen
,
B.
Ren
,
D.
Tu
,
Z.
Wang
,
C.
Wang
,
Y.
Zheng
,
X.
Li
,
D.
Wang
,
Z.
Ren
,
S.
Qu
,
Z.
Chen
,
C.
Xu
,
Y.
Fu
, and
D.
Peng
,
Adv. Sci.
10
(
3
),
2204925
(
2023
).
10.
C.
Chen
,
Y.
Zhuang
,
X.
Li
,
F.
Lin
,
D.
Peng
,
D.
Tu
,
A.
Xie
, and
R.-J.
Xie
,
Adv. Funct. Mater.
31
(
25
),
2101567
(
2021
);
S.
Song
,
H.-S.
Choi
,
C.-H.
Cho
,
S. K.
Lim
, and
S. M.
Jeong
,
Appl. Phys. Rev.
9
(
1
),
011423
(
2022
).
11.
S.
Zhou
,
Y.
Cheng
,
J.
Xu
,
H.
Lin
,
W.
Liang
, and
Y.
Wang
,
Laser Photonics Rev.
16
(
5
),
2100666
(
2022
);
X.
Yang
,
Y.
Cheng
,
J.
Xu
,
H.
Lin
, and
Y.
Wang
,
Laser Photonics Rev.
16
(
11
),
2200365
(
2022
).
12.
M.
Zhu
,
J.
Luo
,
T.
Liang
,
Y.
Zheng
,
X.
Li
,
Z.
Huang
,
B.
Ren
,
X.
Zhang
,
J.
Li
,
Z.
Zheng
,
J.
Wu
,
Y.
Zhong
,
Y.
Wang
,
C.
Wang
, and
D.
Peng
,
Laser Photonics Rev.
17
(
12
),
2300517
(
2023
);
P.
Zhang
,
W.
Xie
,
Z.
Lin
,
X.
Huang
,
Y.
Yang
, and
W.
Liu
,
Laser Photonics Rev.
17
(
12
),
2300266
(
2023
).
13.
Y.
Zhuang
,
X.
Li
,
F.
Lin
,
C.
Chen
,
Z.
Wu
,
H.
Luo
,
L.
Jin
, and
R.-J.
Xie
,
Adv. Mater.
34
(
36
),
2202864
(
2022
).
14.
T.
Lyu
,
P.
Dorenbos
, and
Z.
Wei
,
Laser Photonics Rev.
17
(
11
),
2300323
(
2023
).
15.
T.
Lyu
,
P.
Dorenbos
,
P.
Xiong
, and
Z.
Wei
,
Adv. Funct. Mater.
32
(
39
),
2206024
(
2022
).
16.
Y.
Zhuang
,
D.
Tu
,
C.
Chen
,
L.
Wang
,
H.
Zhang
,
H.
Xue
,
C.
Yuan
,
G.
Chen
,
C.
Pan
,
L.
Dai
, and
R.-J.
Xie
,
Light: Sci. Appl.
9
(
1
),
182
(
2020
).
17.
T.
Lyu
and
P.
Dorenbos
,
J. Mater. Chem. C
6
(
2
),
369
(
2018
).
18.
T.
Lyu
,
P.
Dorenbos
, and
Z.
Wei
,
Chem. Eng. J.
461
,
141685
(
2023
);
T.
Lyu
,
P.
Dorenbos
,
C.
Li
,
S.
Li
,
J.
Xu
, and
Z.
Wei
,
Chem. Eng. J.
435
,
135038
(
2022
);
T.
Lyu
and
P.
Dorenbos
,
Chem. Eng. J.
400
,
124776
(
2020
);
T.
Lyu
and
P.
Dorenbos
,
T. Lyu and P. Dorenbos, Chem. Eng. J.
372
,
978
(
2019
).
19.
P.
Dorenbos
,
J. Mater. Chem.
22
(
42
),
22344
(
2012
);
P.
Dorenbos
,
Phys. Rev. B
85
(
16
),
165107
(
2012
);
T.
Lyu
,
Chin. J. Lumin.
43
(
9
),
1413
(
2022
).
20.
J.
Xu
and
S.
Tanabe
,
J. Lumin.
205
,
581
(
2019
).
22.
T.
Lyu
and
P.
Dorenbos
,
J. Mater. Chem. C
6
(
23
),
6240
(
2018
).
23.
T.
Lyu
,
P.
Dorenbos
,
C.
Li
, and
Z.
Wei
,
Laser Photonics Rev.
16
(
9
),
2200055
(
2022
);
T.
Lyu
and
P.
Dorenbos
,
Laser Photonics Rev.
16
(
10
),
2200304
(
2022
).
24.
Z.
Zhou
,
P.
Xiong
,
H.
Liu
, and
M.
Peng
,
Inorg. Chem.
59
(
17
),
12920
(
2020
);
[PubMed]
Y.
Zhang
,
D.
Chen
,
W.
Wang
,
S.
Yan
,
J.
Liu
, and
Y.
Liang
,
Inorg. Chem. Front.
7
(
17
),
3063
(
2020
).
26.
H.
Luo
,
A. J. J.
Bos
,
A.
Dobrowolska
, and
P.
Dorenbos
,
Phys. Chem. Chem. Phys.
17
(
23
),
15419
(
2015
).
27.
W.
Wang
,
Z.
Sun
,
X.
He
,
Y.
Wei
,
Z.
Zou
,
J.
Zhang
,
Z.
Wang
,
Z.
Zhang
, and
Y.
Wang
,
J. Mater. Chem. C
5
(
17
),
4310
(
2017
).
28.
D.
Kulesza
,
A. J. J.
Bos
, and
E.
Zych
,
Acta Mater.
231
,
117852
(
2022
);
H.
Luo
,
A. J. J.
Bos
, and
P.
Dorenbos
,
J. Phys. Chem. C
121
(
16
),
8760
(
2017
);
A. J. J.
Bos
,
P.
Dorenbos
,
A.
Bessière
,
A.
Lecointre
,
M.
Bedu
,
M.
Bettinelli
, and
F.
Piccinelli
,
Radiat. Meas.
46
(
12
),
1410
(
2011
);
F.
You
,
A. J. J.
Bos
,
Q.
Shi
,
S.
Huang
, and
P.
Dorenbos
,
Phys. Rev. B
85
(
11
),
115101
(
2012
);
J.
Ueda
,
P.
Dorenbos
,
A. J. J.
Bos
,
K.
Kuroishi
, and
S.
Tanabe
,
J. Mater. Chem. C
3
(
22
),
5642
(
2015
).
29.
P.
Dorenbos
,
J. Mater. Chem. C
11
(
24
),
8129
(
2023
).
30.
P.
Dorenbos
,
P. Dorenbos, Opt. Mater.
69
,
8
(
2017
).
31.
S.
Zhang
,
Y.
Hu
,
L.
Chen
,
G.
Ju
,
Z.
Wang
, and
J.
Lin
,
Opt. Mater.
47
,
203
(
2015
).
32.
J.
Lin
,
Z.
Zeng
,
Q.
Ma
,
Q.
Wang
, and
Y.
Zhang
,
Energy
64
,
551
(
2014
).
33.
A. H.
Krumpel
,
E.
van der Kolk
,
E.
Cavalli
,
P.
Boutinaud
,
M.
Bettinelli
, and
P.
Dorenbos
,
J. Phys.: Condens. Matter
21
(
11
),
115503
(
2009
);
[PubMed]
P.
Boutinaud
,
R.
Mahiou
,
E.
Cavalli
, and
M.
Bettinelli
,
Chem. Phys. Lett.
418
(
1
),
185
(
2006
).
34.
T.
Lyu
and
P.
Dorenbos
,
Chem. Mater.
32
(
3
),
1192
(
2020
).
35.
L.
Wang
,
Q.
Sun
,
Q.
Liu
, and
J.
Shi
,
J. Solid State Chem.
191
,
142
(
2012
).
36.
R. H. P.
Awater
and
P.
Dorenbos
,
J. Phys. Chem. C
120
(
28
),
15114
(
2016
);
P.
Dorenbos
,
ECS J. Solid State Sci. Technol.
10
(
8
),
086002
(
2021
);
Y.
Wei
,
Z.
Gao
,
X.
Yun
,
H.
Yang
,
Y.
Liu
, and
G.
Li
,
Chem. Mater.
32
(
19
),
8747
(
2020
).
37.
P.
Boutinaud
,
Phys. Chem. Chem. Phys.
25
(
16
),
11027
(
2023
).
38.
R. H. P.
Awater
and
P.
Dorenbos
,
J. Lumin.
184
,
221
(
2017
).
39.
R. H. P.
Awater
and
P.
Dorenbos
,
J. Lumin.
188
,
487
(
2017
).
40.
J.-C.
Zhang
,
X.
Wang
,
G.
Marriott
, and
C.-N.
Xu
,
Prog. Mater. Sci.
103
,
678
(
2019
);
Z.
Ma
,
Y.
Han
,
Y.
Bai
,
B.
Liu
, and
Z.
Wang
,
Chem. Eng. J.
456
,
141122
(
2023
);
Y.
Bai
,
F.
Wang
,
L.
Zhang
,
D.
Wang
,
Y.
Liang
,
S.
Yang
, and
Z.
Wang
,
Nano Energy
96
,
107075
(
2022
).
41.
C.
Wang
,
R.
Ma
,
D.
Peng
,
X.
Liu
,
J.
Li
,
B.
Jin
,
A.
Shan
,
Y.
Fu
,
L.
Dong
,
W.
Gao
,
Z. L.
Wang
, and
C.
Pan
,
InfoMat
3
(
11
),
1272
(
2021
);
D.
Tu
,
C.-N.
Xu
,
S.
Kamimura
,
Y.
Horibe
,
H.
Oshiro
,
L.
Zhang
,
Y.
Ishii
,
K.
Hyodo
,
G.
Marriott
,
N.
Ueno
, and
X.-G.
Zheng
,
Adv. Mater.
32
(
25
),
1908083
(
2020
);
S.
Liu
,
R.
Liu
,
X.
Yang
,
J.
Li
,
M.
Sun
,
C.-N.
Xu
,
B.
Huang
,
Y.
Liang
, and
D.
Tu
,
Nano Energy
93
,
106799
(
2022
);
D.
Tu
,
C.-N.
Xu
,
A.
Yoshida
,
M.
Fujihala
,
J.
Hirotsu
, and
X.-G.
Zheng
,
Adv. Mater.
29
(
22
),
1606914
(
2017
);
C.-N.
Xu
,
T.
Watanabe
,
M.
Akiyama
, and
X.-G.
Zheng
,
Appl. Phys. Lett.
74
(
17
),
2414
(
1999
).

Supplementary Material

You do not currently have access to this content.