The recent successes of superconducting qubits and the demonstration of quantum supremacy over classical bits herald a new era for information processing. Yet, the field is still in its infancy and there exist viable alternative candidates that can also store quantum information. In this review, we will highlight ideas, attempts, and the experimental progress to address nuclear spins in graphene, a readily available Dirac semimetal that consists of a single layer of carbon atoms. Carbon isotopes with a nuclear spin are rare in natural graphene. However, it is possible to enrich the spin-bearing 13C isotopes to produce large-scale graphene sheets, which constitute the testbed to store, transport, and retrieve spin information, or to engineer nanostructures. Here, the hyperfine interaction between the electron spins and the nuclear spins serves as an experimental control knob and mediator to address nuclear polarization and nuclear spin coherence times through electrical measurements. The exploitation of nuclear spins in graphene is thus an alluring perspective. We will discuss methods to synthesize 13C graphene and show experimental approaches and challenges to exploit the relatively weak hyperfine interaction in two-dimensional 13C graphene devices. The ultimate purpose, i.e., the exploitation of nuclear spins in graphene for information processing, is not within reach, but its potential for future applications merits a revisit of the current state-of-the-art.

1.
D. D.
Awschalom
,
D.
Loss
, and
N.
Samarth
,
Semiconductor Spintronics and Quantum Computation
(
Springer
,
Berlin, Heidelberg
,
2002
).
2.
D.
Loss
and
D. P.
DiVincenzo
, “
Quantum computation with quantum dots
,”
Phys. Rev. A
57
,
120
126
(
1998
).
3.
W.
Desrat
,
D. K.
Maude
,
M.
Potemski
,
J. C.
Portal
,
Z. R.
Wasilewski
, and
G.
Hill
, “
Resistively detected nuclear magnetic resonance in the quantum Hall regime: Possible evidence for a Skyrme crystal
,”
Phys. Rev. Lett.
88
,
256807
(
2002
).
4.
M.
Fanciulli
,
Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures
(
Springer
,
Berlin, Heidelberg
,
2009
).
5.
S.
Lloyd
, “
A potentially realizable quantum computer
,”
Science
261
(
5128
),
1569
1571
(
1993
).
6.
D. P.
DiVincenzo
, “
Quantum computation
,”
Science
270
(
5234
),
255
261
(
1995
).
7.
B. E.
Kane
, “
A silicon-based nuclear spin quantum computer
,”
Nature
393
(
6681
),
133
137
(
1998
).
8.
M.
Droth
and
G.
Burkard
, “
Spintronics with graphene quantum dots
,”
Phys. Status Solidi RRL
10
(
1
),
75
90
(
2016
).
9.
A.
Abragam
,
Principles of Nuclear Magnetism
(
Clarendon Press
,
1961
).
10.
C. P.
Slichter
,
Principles of Magnetic Resonance
(
Harper and Row
,
1963
).
11.
S.
Saykin
,
D.
Mozyrsky
, and
V.
Privman
, “
Relaxation of shallow donor electron spin due to interaction with nuclear spin bath
,”
Nano Lett.
2
(
6
),
651
655
(
2002
).
12.
A. M.
Tyryshkin
,
S.
Tojo
,
J. J. L.
Morton
,
H.
Riemann
,
N. V.
Abrosimov
,
P.
Becker
,
H.-J.
Pohl
,
T.
Schenkel
,
M. L. W.
Thewalt
,
K. M.
Itoh
, and
S. A.
Lyon
, “
Electron spin coherence exceeding seconds in high-purity silicon
,”
Nat. Mater.
11
,
143
147
(
2012
).
13.
K. M.
Salikhov
and
N. E.
Zavoiskaya
, “
Zavoisky and the discovery of EPR
,”
Resonance
20
,
963
968
(
2015
).
14.
N.
Bloembergen
,
E. M.
Purcell
, and
R. V.
Pound
, “
Relaxation effects in nuclear magnetic resonance absorption
,”
Phys. Rev.
73
,
679
712
(
1948
).
15.
A. W.
Overhauser
, “
Polarization of nuclei in metals
,”
Phys. Rev.
92
,
411
415
(
1953
).
16.
D.
Stein
,
K. V.
Klitzing
, and
G.
Weimann
, “
Electron spin resonance on GaAs–AlxGa1-xAs heterostructures
,”
Phys. Rev. Lett.
51
,
130
133
(
1983
).
17.
M.
Dobers
,
K. V.
Klitzing
,
J.
Schneider
,
G.
Weimann
, and
K.
Ploog
, “
Electrical detection of nuclear magnetic resonance in GaAs–AlxGa1-xAs heterostructures
,”
Phys. Rev. Lett.
61
,
1650
1653
(
1988
).
18.
A.
Berg
,
M.
Dobers
,
R. R.
Gerhardts
, and
K. V.
Klitzing
, “
Magnetoquantum oscillations of the nuclear-spin-lattice relaxation near a two-dimensional electron gas
,”
Phys. Rev. Lett.
64
,
2563
2566
(
1990
).
19.
D.
Paget
,
G.
Lampel
,
B.
Sapoval
, and
V. I.
Safarov
, “
Low field electron-nuclear spin coupling in gallium arsenide under optical pumping conditions
,”
Phys. Rev. Lett.
15
(
12
),
5780
(
1977
).
20.
S. E.
Barrett
,
G.
Dabbagh
,
L. N.
Pfeiffer
,
K. W.
West
, and
R.
Tycko
, “
Optically pumped NMR evidence for finite-size Skyrmions in GaAs quantum wells near landau level filling
ν = 1,”
Phys. Rev. Lett.
74
,
5112
5115
(
1995
).
21.
R.
Tycko
,
S. E.
Barrett
,
G.
Dabbagh
,
L. N.
Pfeiffer
, and
K. W.
West
, “
Electronic states in gallium arsenide quantum wells probed by optically pumped NMR
,”
Science
268
(
5216
),
1460
1463
(
1995
).
22.
O. V.
Yazyev
, “
Hyperfine interactions in graphene and related carbon nanostructures
,”
Nano Lett.
8
(
4
),
1011
1015
(
2008
).
23.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
(
5696
),
666
669
(
2004
).
24.
A. K.
Geim
and
K. S.
Novoselov
, “
The rise of graphene
,”
Nat. Mater.
6
(
3
),
183
191
(
2007
).
25.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
, “
The electronic properties of graphene
,”
Rev. Mod. Phys.
81
(
1
),
109
(
2009
).
26.
H.
Graven
,
R. F.
Keeling
, and
J.
Rogelj
, “
Changes to carbon isotopes in atmospheric CO2 over the industrial era and into the future
,”
Global Biogeochem. Cycles
34
(
11
),
e2019GB006170
, https://doi.org/10.1029/2019GB006170 (
2020
).
27.
C. L.
Kane
and
E. J.
Mele
, “
Z2 topological order and the quantum spin Hall effect
,”
Phys. Rev. Lett.
95
,
146802
(
2005
).
28.
H.
Min
,
J. E.
Hill
,
N. A.
Sinitsyn
,
B. R.
Sahu
,
L.
Kleinman
, and
A. H.
MacDonald
, “
Intrinsic and Rashba spin-orbit interactions in graphene sheets
,”
Phys. Rev. B
74
,
165310
(
2006
).
29.
Y.
Yao
,
F.
Ye
,
X.-L.
Qi
,
S.-C.
Zhang
, and
Z.
Fang
, “
Spin-orbit gap of graphene: First-principles calculations
,”
Phys. Rev. B
75
,
041401(R)
(
2007
).
30.
J. C.
Boettger
and
S. B.
Trickey
, “
First-principles calculation of the spin-orbit splitting in graphene
,”
Phys. Rev. B
75
(
6
),
121402(R)
(
2007
).
31.
S.
Konschuh
,
M.
Gmitra
, and
J.
Fabian
, “
Tight-binding theory of the spin-orbit coupling in graphene
,”
Phys. Rev. B
82
,
245412
(
2010
).
32.
M.
Gmitra
,
S.
Konschuh
,
C.
Ertler
,
C.
Ambrosch-Draxl
, and
J.
Fabian
, “
Band-structure topologies of graphene: Spin-orbit coupling effects from first principles
,”
Phys. Rev. B
80
,
235431
(
2009
).
33.
J.
Sichau
,
M.
Prada
,
T.
Anlauf
,
T. J.
Lyon
,
B.
Bosnjak
,
L.
Tiemann
, and
R. H.
Blick
, “
Resonance microwave measurements of an intrinsic spin-orbit coupling gap in graphene: A possible indication of a topological state
,”
Phys. Rev. Lett.
122
,
046403
(
2019
).
34.
R.
Mani
,
J.
Hankinson
,
C.
Berger
, and
W. A.
de Heer
, “
Observation of resistively detected hole spin resonance and zero-field pseudo-spin splitting in epitaxial graphene
,”
Nat. Commun.
3
,
996
(
2012
).
35.
K.
Emtsev
,
A.
Bostwick
,
K.
Horn
,
J.
Jobst
,
G. L.
Kellogg
,
L.
Ley
,
J. L.
McChesney
,
T.
Ohta
,
S. A.
Reshanov
,
J.
Röhrl
,
E.
Rotenberg
,
A. K.
Schmid
,
D.
Waldmann
,
H. B.
Weber
, and
T.
Seyller
, “
Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide
,”
Nat. Mater.
8
,
203
207
(
2009
).
36.
X.
Li
,
W.
Cai
,
J.
An
,
S.
Kim
,
J.
Nah
,
D.
Yang
,
R.
Piner
,
A.
Velamakanni
,
I.
Jung
,
E.
Tutuc
,
S. K.
Banerjee
,
L.
Colombo
, and
R. S.
Ruoff
, “
Large-area synthesis of high-quality and uniform graphene films on copper foils
,”
Science
324
(
5932
),
1312
1314
(
2009
).
37.
J.
Zhang
,
X.
Liu
,
M.
Zhang
,
R.
Zhang
,
H. Q.
Ta
,
J.
Sun
,
W.
Wang
,
W.
Zhu
,
T.
Fang
,
K.
Jia
,
X.
Sun
,
X.
Zhang
,
Y.
Zhu
,
J.
Shao
,
Y.
Liu
,
X.
Gao
,
Q.
Yang
,
L.
Sun
,
Q.
Li
,
F.
Liang
,
H.
Chen
,
L.
Zheng
,
F.
Wang
,
W.
Yin
, and
Z.
Liu
, “
Fast synthesis of large-area bilayer graphene film on Cu
,”
Nat. Commun.
14
,
3199
(
2023
).
38.
W.
Cai
,
R. D.
Piner
,
F. J.
Stadermann
,
S.
Park
,
M. A.
Shaibat
,
Y.
Ishii
,
D.
Yang
,
A.
Velamakanni
,
J. S.
An
,
M.
Stoller
,
J.
An
,
D.
Chen
, and
R. S.
Ruoff
, “
Synthesis and solid-state NMR structural characterization of 13 C-labeled graphite oxide
,”
Science
321
(
5897
),
1815
1817
(
2008
).
39.
W.
Cai
,
R. D.
Piner
,
Y.
Zhu
,
X.
Li
,
Z.
Tan
,
H. C.
Floresca
,
C.
Yang
,
L.
Lu
,
M. J.
Kim
, and
R. S.
Ruoff
, “
Synthesis of isotopically-labeled graphite films by cold-wall chemical vapor deposition and electronic properties of graphene obtained from such films
,”
Nano Res.
2
,
851
856
(
2009
).
40.
X.
Li
,
W.
Cai
,
L.
Colombo
, and
R. S.
Ruoff
, “
Evolution of graphene growth on Ni and Cu by carbon isotope labeling
,”
Nano Lett.
9
(
12
),
4268
4272
(
2009
).
41.
Y.
Wu
,
H.
Chou
,
H.
Ji
,
Q.
Wu
,
S.
Chen
,
W.
Jiang
,
Y.
Hao
,
J.
Kang
,
Y.
Ren
,
R. D.
Piner
, and
R. S.
Ruoff
, “
Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu–Ni alloy foils
,”
ACS Nano
6
(
9
),
7731
7738
(
2012
).
42.
J. B.
Hannon
,
M.
Copel
, and
R. M.
Tromp
, “
Direct measurement of the growth mode of graphene on SiC ( 0001 ) and
SiC ( 000 1 ¯ ),”
Phys. Rev. Lett.
107
,
166101
(
2011
).
43.
V.
Strenzke
,
J. M.
Meyer
,
I.
Grandt-Ionita
,
M.
Prada
,
H.
Kim
,
M.
Heilmann
,
J. M. J.
Lopes
,
L.
Tiemann
, and
R. H.
Blick
, “
Nuclear-induced dephasing and signatures of hyperfine effects in isotopically purified 13 C graphene
,”
Phys. Rev. B
105
,
144303
(
2022
).
44.
J. M. J.
Lopes
and
D.
Vignaud
, “
Chapter 21—Molecular beam epitaxy of graphene and hexagonal boron nitride
,” in
Molecular Beam Epitaxy
, 2nd ed. (
Elsevier
,
2018
), pp.
487
513
.
45.
S.
Iwakiri
,
J.
Miller
,
F.
Lang
,
J.
Prettenthaler
,
T.
Taniguchi
,
K.
Watanabe
,
S. S.
Lee
,
P.
Becker
,
D.
Günther
,
T.
Ihn
, and
K.
Ensslin
, “
High mobility transport in isotopically-enriched 12 C and 13 C exfoliated graphene
,”
Phys. Rev. Res.
5
,
043212
(
2023
).
46.
T.
Taniguchi
and
S.
Yamaoka
, “
Spontaneous nucleation of cubic boron nitride single crystal by temperature gradient method under high pressure
,”
J. Cryst. Growth
222
(
3
),
549
557
(
2001
).
47.
V.
González
,
J.
Frontiñan-Rubio
,
M. V.
Gomez
,
T.
Montini
,
M.
Durán-Prado
,
P.
Fornasiero
,
M.
Prato
, and
E.
Vázquez
, “
Easy and versatile synthesis of bulk quantities of highly enriched 13 C-graphene materials for biological and safety applications
,”
ACS Nano
17
(
1
),
606
620
(
2023
).
48.
K. M.
Wyss
,
Z.
Wang
,
L. B.
Alemany
,
C.
Kittrell
, and
J. M.
Tour
, “
Bulk production of any ratio 12 C: 13 C turbostratic flash graphene and its unusual spectroscopic characteristics
,”
ACS Nano
15
(
6
),
10542
10552
(
2021
).
49.
B.
Trauzettel
,
D. V.
Bulaev
,
D.
Loss
, and
G.
Burkard
, “
Spin qubits in graphene quantum dots
,”
Nat. Phys.
3
,
192
(
2007
).
50.
A.
Pályi
and
G.
Burkard
, “
Hyperfine-induced valley mixing and the spin-valley blockade in carbon-based quantum dots
,”
Phys. Rev. B
80
,
201404
(
2009
).
51.
J.
Fischer
,
B.
Trauzettel
, and
D.
Loss
, “
Hyperfine interaction and electron-spin decoherence in graphene and carbon nanotube quantum dots
,”
Phys. Rev. B
80
,
155401
(
2009
).
52.
M.
Fuchs
,
V.
Rychkov
, and
B.
Trauzettel
, “
Spin decoherence in graphene quantum dots due to hyperfine interaction
,”
Phys. Rev. B
86
,
085301
(
2012
).
53.
M.
Eich
,
F.
Herman
,
R.
Pisoni
,
H.
Overweg
,
A.
Kurzmann
,
Y.
Lee
,
P.
Rickhaus
,
K.
Watanabe
,
T.
Taniguchi
,
M.
Sigrist
,
T.
Ihn
, and
K.
Ensslin
, “
Spin and valley states in gate-defined bilayer graphene quantum dots
,”
Phys. Rev. X
8
,
031023
(
2018
).
54.
P. G.
Silvestrov
and
K. B.
Efetov
, “
Quantum dots in graphene
,”
Phys. Rev. Lett.
98
,
016802
(
2007
).
55.
L. A.
Ponomarenko
,
F.
Schedin
,
M. I.
Katsnelson
,
R.
Yang
,
E. W.
Hill
,
K. S.
Novoselov
, and
A. K.
Geim
, “
Chaotic Dirac billiard in graphene quantum dots
,”
Science
320
(
5874
),
356
358
(
2008
).
56.
J. M.
Pereira
,
P.
Vasilopoulos
, and
F. M.
Peeters
, “
Tunable quantum dots in bilayer graphene
,”
Nano Lett.
7
(
4
),
946
949
(
2007
).
57.
G. V.
López
and
J. O.
Vizcaíno G
, “
About the possibility for using graphene layers 12C13C for quantum computation
,”
J. Phys. B
55
(
8
),
085502
(
2022
).
58.
A. C.
Ferrari
,
J. C.
Meyer
,
V.
Scardaci
,
C.
Casiraghi
,
M.
Lazzeri
,
F.
Mauri
et al, “
Raman spectrum of graphene and graphene layers
,”
Phys. Rev. Lett.
97
(
18
),
187401
(
2006
).
59.
A. C.
Ferrari
and
D. M.
Basko
, “
Raman spectroscopy of graphene and related materials
,”
Nat. Nanotechnol.
8
(
4
),
235
246
(
2013
).
60.
J. F.
Rodriguez-Nieva
,
R.
Saito
,
S. D.
Costa
, and
M. S.
Dresselhaus
, “
Effect of 13 C isotope doping on the optical phonon modes in graphene: Localization and Raman spectroscopy
,”
Phys. Rev. B
85
,
245406
(
2012
).
61.
S.
Bernard
,
E.
Whiteway
,
V.
Yu
,
D. G.
Austing
, and
M.
Hilke
, “
Probing the experimental phonon dispersion of graphene using 12 C and 13 C isotopes
,”
Phys. Rev. B
86
,
085409
(
2012
).
62.
B. R.
Carvalho
,
Y.
Hao
,
A.
Righi
,
J. F.
Rodriguez-Nieva
,
L.
Colombo
,
R. S.
Ruoff
,
M. A.
Pimenta
, and
C.
Fantini
, “
Probing carbon isotope effects on the Raman spectra of graphene with different 13 C concentrations
,”
Phys. Rev. B
92
,
125406
(
2015
).
63.
M.
Kalbac
,
H.
Farhat
,
J.
Kong
,
P.
Janda
,
L.
Kavan
, and
M. S.
Dresselhaus
, “
Raman spectroscopy and in situ Raman spectroelectrochemistry of bilayer 12 C/ 13 C graphene
,”
Nano Lett.
11
(
5
),
1957
1963
(
2011
).
64.
M.
Kalbac
,
J.
Kong
, and
M. S.
Dresselhaus
, “
Doping of bi-layer graphene by gradually polarizing a ferroelectric polymer
,”
Phys. Status Solidi B
250
(
12
),
2649
2652
(
2013
).
65.
E.
del Corro
,
M.
Kalbac
,
C.
Fantini
,
O.
Frank
, and
M. A.
Pimenta
, “
Isotopic 13 C/ 12 C effect on the resonant Raman spectrum of twisted bilayer graphene
,”
Phys. Rev. B
88
,
155436
(
2013
).
66.
S.
Kronmüller
,
W.
Dietsche
,
K. V.
Klitzing
,
G.
Denninger
,
W.
Wegscheider
, and
M.
Bichler
, “
New type of electron nuclear-spin interaction from resistively detected NMR in the fractional quantum Hall effect regime
,”
Phys. Rev. Lett.
82
,
4070
4073
(
1999
).
67.
T.
Machida
,
T.
Yamazaki
,
K.
Ikushima
, and
S.
Komiyama
, “
Coherent control of nuclear-spin system in a quantum-Hall device
,”
Appl. Phys. Lett
82
(
3
),
409
411
(
2003
).
68.
O. I.
Stern
, “
Spin phenomena in the fractional quantum hall effect: NMR and magnetotransport studies
,” Ph.D. thesis (
Universität Stuttgart
,
2004
).
69.
O.
Stern
,
N.
Freytag
,
A.
Fay
,
W.
Dietsche
,
J. H.
Smet
,
K.
von Klitzing
,
D.
Schuh
, and
W.
Wegscheider
, “
NMR study of the electron spin polarization in the fractional quantum Hall effect of a single quantum well: Spectroscopic evidence for domain formation
,”
Phys. Rev. B
70
,
075318
(
2004
).
70.
J. C. C.
Freitas
,
W. L.
Scopel
,
W. S.
Paz
,
L. V.
Bernardes
,
F. E.
Cunha-Filho
,
C.
Speglich
,
F. M.
Araújo-Moreira
,
D.
Pelc
,
T.
Cvitanić
, and
M.
Požek
, “
Determination of the hyperfine magnetic field in magnetic carbon-based materials: DFT calculations and NMR experiments
,”
Sci. Rep.
5
,
14761
(
2015
).
71.
F. A. L.
de Souza
,
A. R.
Ambrozio
,
E. S.
Souza
,
D. F.
Cipriano
,
W. L.
Scopel
, and
J. C. C.
Freitas
, “
NMR spectral parameters in graphene, graphite, and related materials: Ab initio calculations and experimental results
,”
J. Phys. Chem. C
120
(
48
),
27707
27716
(
2016
).
72.
A. S.
Mazur
,
M. A.
Vovk
, and
P. M.
Tolstoy
, “
Solid-state 13C NMR of carbon nanostructures (milled graphite, graphene, carbon nanotubes, nanodiamonds, fullerenes) in 2000–2019: A mini-review
,”
Fullerenes, Nanotubes Carbon Nanostruct.
28
(
3
),
202
213
(
2020
).
73.
C. H.
Pennington
and
V. A.
Stenger
, “
Nuclear magnetic resonance of C60 and fulleride superconductors
,”
Rev. Mod. Phys.
68
,
855
(
1996
).
74.
C.
Schorn
,
NMR Spectroscopy: Data Acquisition
(
John Wiley and Sons, Ltd.
,
2001
).
75.
B.
Dóra
and
F.
Simon
, “
Unusual hyperfine interaction of Dirac electrons and NMR spectroscopy in graphene
,”
Phys. Rev. Lett.
102
,
197602
(
2009
).
76.
B.
Dóra
and
F.
Simon
, “
Hyperfine interaction in graphene: The relevance for spintronics
,”
Phys. Status Solidi B
247
(
11–12
),
2935
2940
(
2010
).
77.
M.
Crisan
,
I.
Grosu
, and
I.
Tifrea
, “
NMR parameters in gapped graphene systems
,”
Eur. Phys. J. B
89
,
140
(
2016
).
78.
F.
Simon
,
Ch.
Kramberger
,
R.
Pfeiffer
,
H.
Kuzmany
,
V.
Zólyomi
,
J.
Kürti
,
P. M.
Singer
, and
H.
Alloul
, “
Isotope engineering of carbon nanotube systems
,”
Phys. Rev. Lett.
95
,
017401
(
2005
).
79.
P. M.
Singer
,
P.
Wzietek
,
H.
Alloul
,
F.
Simon
, and
H.
Kuzmany
, “
NMR evidence for gapped spin excitations in metallic carbon nanotubes
,”
Phys. Rev. Lett.
95
,
236403
(
2005
).
80.
R.
Côté
and
J. M.
Parent
, “
Nuclear magnetic resonance line shapes of Wigner crystals in 13 C-enriched graphene
,”
Phys. Rev. B
95
,
235411
(
2017
).
81.
W.
Qiu
,
Z.
Chen
, and
S.
Zheng
, “
A computational study on nuclear magnetic resonance parameters of defects of graphene
,”
Physica E
115
,
113693
(
2020
).
82.
M.
Wojtaszek
,
I. J.
Vera-Marun
,
E.
Whiteway
,
M.
Hilke
, and
B. J.
van Wees
, “
Absence of hyperfine effects in 13 C-graphene spin-valve devices
,”
Phys. Rev. B
89
,
035417
(
2014
).
83.
N.
Tombros
,
C.
Jozsa
,
M.
Popinciuc
,
H. T.
Jonkman
, and
B. J.
van Wees
, “
Electronic spin transport and spin precession in single graphene layers at room temperature
,”
Nature
448
,
571
574
(
2007
).
84.
H. S.
Song
,
S. L.
Li
,
H.
Miyazaki
,
S.
Sato
,
K.
Hayashi
,
A.
Yamada
,
N.
Yokoyama
, and
K.
Tsukagoshi
, “
Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition
,”
Sci. Rep.
2
,
337
(
2012
).
85.
W.
Hanle
, “
Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz
,”
Z. Phys.
30
,
93
(
1924
).
86.
A. V.
Shchepetilnikov
,
D. D.
Frolov
,
Yu. A.
Nefyodov
,
I. V.
Kukushkin
,
D. S.
Smirnov
,
L.
Tiemann
,
C.
Reichl
,
W.
Dietsche
, and
W.
Wegscheider
, “
Nuclear magnetic resonance and nuclear spin relaxation in alas quantum well probed by ESR
,”
Phys. Rev. B
94
,
241302
(
2016
).
87.
T. J.
Lyon
,
J.
Sichau
,
A.
Dorn
,
A.
Zurutuza
,
A.
Pesquera
,
A.
Centeno
, and
R. H.
Blick
, “
Upscaling high-quality CVD graphene devices to 100 micron-scale and beyond
,”
Appl. Phys. Lett.
110
(
11
),
113502(R)
(
2017
).
88.
T. J.
Lyon
,
J.
Sichau
,
A.
Dorn
,
A.
Centeno
,
A.
Pesquera
,
A.
Zurutuza
, and
R. H.
Blick
, “
Probing electron spin resonance in monolayer graphene
,”
Phys. Rev. Lett.
119
,
066802
(
2017
).
89.
U. R.
Singh
,
M.
Prada
,
V.
Strenzke
,
B.
Bosnjak
,
T.
Schmirander
,
L.
Tiemann
, and
R. H.
Blick
, “
Sublattice symmetry breaking and ultralow energy excitations in graphene-on- h BN heterostructures
,”
Phys. Rev. B
102
,
245134
(
2020
).
90.
T.
Anlauf
,
M.
Prada
,
S.
Freercks
,
B.
Bosnjak
,
R.
Frömter
,
J.
Sichau
,
H. P.
Oepen
,
L.
Tiemann
, and
R. H.
Blick
, “
Polarization amplification by spin-doping in nanomagnetic/graphene hybrid systems
,”
Phys. Rev. Mater.
5
,
034006
(
2021
).
91.
E.
Morissette
,
J.
Lin
,
D.
Sun
,
L.
Zhang
,
S.
Liu
,
D.
Rhodes
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Hone
,
J.
Pollanen
,
M.
Scheurer
,
M.
Lilly
,
A.
Mounce
, and
J. I. A.
Li
, “
Dirac revivals drive a resonance response in twisted bilayer graphene
,”
Nat. Phys.
19
,
1156
(
2023
).
92.
M.
Prada
,
L.
Tiemann
,
J.
Sichau
, and
R. H.
Blick
, “
Dirac imprints on the g-factor anisotropy in graphene
,”
Phys. Rev. B
104
,
075401
(
2021
).
93.
B. L.
Altshuler
,
D.
Khmel'nitzkii
,
A. I.
Larkin
, and
P. A.
Lee
, “
Magnetoresistance and Hall effect in a disordered two-dimensional electron gas
,”
Phys. Rev. B
22
,
5142
5153
(
1980
).
94.
E.
McCann
,
K.
Kechedzhi
,
V. I.
Fal'ko
,
H.
Suzuura
,
T.
Ando
, and
B. L.
Altshuler
, “
Weak-localization magnetoresistance and valley symmetry in graphene
,”
Phys. Rev. Lett.
97
,
146805
(
2006
).
You do not currently have access to this content.