The development of coherent terahertz (THz) spin currents with femtosecond temporal resolution has been extensively studied due to its significant implications for advancing high-speed information processing devices. However, the precise spatial resolution of THz spin currents, which is crucial for increasing storage density, is still unknown. In this study, we employ spintronic THz emission nanoscopy (STEN) to achieve efficient injection and accurate detection of femtosecond THz spin currents with nanoscale lateral spatial resolution (∼60 nm). The occurrence of emission signals at the fifth harmonic order indicates a substantial signal-to-noise ratio. Additionally, STEN proves to be an effective method for characterizing and etching nanoscale spintronic heterostructures. The integration of nanophotonics, nanospintronics, and THz-nanotechnology into a unified platform is poised to enable the characterization of spin states at micro-to-nanoscale densities, accelerate the development of high-frequency spintronic optoelectronic nanodevices, and catalyze other revolutionary technical applications.

1.
X.
Lin
,
W.
Yang
,
K. L.
Wang
, and
W.
Zhao
, “
Two-dimensional spintronics for low-power electronics
,”
Nat. Electron.
2
(
7
),
274
283
(
2019
).
2.
A.
Fert
, “
Nobel lecture: Origin, development, and future of spintronics
,”
Rev. Mod. Phys.
80
(
4
),
1517
1530
(
2008
).
3.
S. D.
Bader
and
S. S. P.
Parkin
, “
Spintronics
,”
Annu. Rev. Condens. Matter Phys.
1
(
1
),
71
88
(
2010
).
4.
I.
Žutić
,
J.
Fabian
, and
S.
Das Sarma
, “
Spintronics: Fundamentals and applications
,”
Rev. Mod. Phys.
76
(
2
),
323
410
(
2004
).
5.
M. A.
Huber
,
F.
Mooshammer
,
M.
Plankl
,
L.
Viti
,
F.
Sandner
,
L. Z.
Kastner
,
T.
Frank
,
J.
Fabian
,
M. S.
Vitiello
,
T. L.
Cocker
, and
R.
Huber
, “
Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures
,”
Nat. Nanotechnol.
12
(
3
),
207
211
(
2017
).
6.
S.
Jiang
,
L.
Li
,
Z.
Wang
,
K. F.
Mak
, and
J.
Shan
, “
Controlling magnetism in 2D CrI3 by electrostatic doping
,”
Nat. Nanotechnol.
13
(
7
),
549
553
(
2018
).
7.
D. R.
Klein
,
D.
MacNeill
,
J. L.
Lado
,
D.
Soriano
,
E.
Navarro-Moratalla
,
K.
Watanabe
,
T.
Taniguchi
,
S.
Manni
,
P.
Canfield
,
J.
Fernández-Rossier
, and
P.
Jarillo-Herrero
, “
Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling
,”
Science
360
(
6394
),
1218
1222
(
2018
).
8.
J.-G.
Park
, “
Opportunities and challenges of 2D magnetic van der Waals materials: Magnetic graphene?
,”
J. Phys.: Condens. Matter
28
(
30
),
301001
(
2016
).
9.
G. R.
Bhimanapati
,
Z.
Lin
,
V.
Meunier
,
Y.
Jung
,
J.
Cha
,
S.
Das
,
D.
Xiao
,
Y.
Son
,
M. S.
Strano
,
V. R.
Cooper
,
L.
Liang
,
S. G.
Louie
,
E.
Ringe
,
W.
Zhou
,
S. S.
Kim
,
R. R.
Naik
,
B. G.
Sumpter
,
H.
Terrones
,
F.
Xia
,
Y.
Wang
,
J.
Zhu
,
D.
Akinwande
,
N.
Alem
,
J. A.
Schuller
,
R. E.
Schaak
,
M.
Terrones
, and
J. A.
Robinson
, “
Recent advances in two-dimensional materials beyond graphene
,”
ACS Nano
9
(
12
),
11509
11539
(
2015
).
10.
T.
Kampfrath
,
M.
Battiato
,
P.
Maldonado
,
G.
Eilers
,
J.
Noetzold
,
S.
Maehrlein
,
V.
Zbarsky
,
F.
Freimuth
,
Y.
Mokrousov
,
S.
Bluegel
,
M.
Wolf
,
I.
Radu
,
P. M.
Oppeneer
, and
M.
Muenzenberg
, “
Terahertz spin current pulses controlled by magnetic heterostructures
,”
Nat. Nanotechnol.
8
(
4
),
256
260
(
2013
).
11.
H.
Qiu
,
L.
Zhou
,
C.
Zhang
,
J.
Wu
,
Y.
Tian
,
S.
Cheng
,
S.
Mi
,
H.
Zhao
,
Q.
Zhang
,
D.
Wu
,
B.
Jin
,
J.
Chen
, and
P.
Wu
, “
Ultrafast spin current generated from an antiferromagnet
,”
Nat. Phys.
17
(
3
),
388
394
(
2021
).
12.
X.
Wang
,
L.
Cheng
,
D.
Zhu
,
Y.
Wu
,
M.
Chen
,
Y.
Wang
,
D.
Zhao
,
C. B.
Boothroyd
,
Y. M.
Lam
,
J.
Zhu
,
M.
Battiato
,
J. C. W.
Song
,
H.
Yang
, and
E. E. M.
Chia
, “
Ultrafast spin to charge conversion at the surface of topological insulator thin films
,”
Adv. Mater
30
(
52
),
1802356
(
2018
).
13.
K.
Lee
,
D.-K.
Lee
,
D.
Yang
,
R.
Mishra
,
D.-J.
Kim
,
S.
Liu
,
Q.
Xiong
,
S. K.
Kim
,
K.-J.
Lee
, and
H.
Yang
, “
Superluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances
,”
Nat. Nanotechnol.
16
(
12
),
1337
1341
(
2021
).
14.
X.
Chen
,
H.
Wang
,
H.
Liu
,
C.
Wang
,
G.
Wei
,
C.
Fang
,
H.
Wang
,
C.
Geng
,
S.
Liu
,
P.
Li
,
H.
Yu
,
W.
Zhao
,
J.
Miao
,
Y.
Li
,
L.
Wang
,
T.
Nie
,
J.
Zhao
, and
X.
Wu
, “
Generation and control of terahertz spin currents in topology-induced 2D ferromagnetic Fe3GeTe2|Bi2Te3 heterostructures
,”
Adv. Mater.
34
(
9
),
2106172
(
2022
).
15.
X.
Wu
,
H.
Wang
,
H.
Liu
,
Y.
Wang
,
X.
Chen
,
P.
Chen
,
P.
Li
,
X.
Han
,
J.
Miao
,
H.
Yu
,
C.
Wan
,
J.
Zhao
, and
S.
Chen
, “
Antiferromagnetic–ferromagnetic heterostructure-based field-free terahertz emitters
,”
Adv. Mater.
34
(
42
),
2204373
(
2022
).
16.
T.
Kampfrath
,
K.
Tanaka
, and
K. A.
Nelson
, “
Resonant and nonresonant control over matter and light by intense terahertz transients
,”
Nat. Photonics
7
(
9
),
680
690
(
2013
).
17.
C.
Bull
,
S. M.
Hewett
,
R.
Ji
,
C.-H.
Lin
,
T.
Thomson
,
D. M.
Graham
, and
P. W.
Nutter
, “
Spintronic terahertz emitters: Status and prospects from a materials perspective
,”
APL Mater.
9
(
9
),
090701
(
2021
).
18.
T. H.
Dang
,
J.
Hawecker
,
E.
Rongione
,
G.
Baez Flores
,
D. Q.
To
,
J. C.
Rojas-Sanchez
,
H.
Nong
,
J.
Mangeney
,
J.
Tignon
,
F.
Godel
,
S.
Collin
,
P.
Seneor
,
M.
Bibes
,
A.
Fert
,
M.
Anane
,
J.-M.
George
,
L.
Vila
,
M.
Cosset-Cheneau
,
D.
Dolfi
,
R.
Lebrun
,
P.
Bortolotti
,
K.
Belashchenko
,
S.
Dhillon
, and
H.
Jaffrès
, “
Ultrafast spin-currents and charge conversion at 3D-5D interfaces probed by time-domain terahertz spectroscopy
,”
Appl. Phys. Rev.
7
(
4
),
041409
(
2020
).
19.
X.
Wu
,
D.
Kong
,
S.
Hao
,
Y.
Zeng
,
X.
Yu
,
B.
Zhang
,
M.
Dai
,
S.
Liu
,
J.
Wang
,
Z.
Ren
,
S.
Chen
,
J.
Sang
,
K.
Wang
,
D.
Zhang
,
Z.
Liu
,
J.
Gui
,
X.
Yang
,
Y.
Xu
,
Y.
Leng
,
Y.
Li
,
L.
Song
,
Y.
Tian
, and
R.
Li
, “
Generation of 13.9‐mJ terahertz radiation from lithium niobate materials
,”
Adv. Mater.
35
(
23
),
2208947
(
2023
).
20.
K.
Lengyel
,
Á.
Péter
,
L.
Kovács
,
G.
Corradi
,
L.
Pálfalvi
,
J.
Hebling
,
M.
Unferdorben
,
G.
Dravecz
,
I.
Hajdara
,
Z.
Szaller
, and
K.
Polgár
, “
Growth, defect structure, and THz application of stoichiometric lithium niobate
,”
Appl. Phys. Rev.
2
(
4
),
040601
(
2015
).
21.
X.
Wu
, “
Extreme THz radiation from lithium niobite materials
,”
Chin. Phys. Lett.
40
(
5
),
054001
(
2023
).
22.
R.
Rouzegar
,
A. L.
Chekhov
,
Y.
Behovits
,
B. R.
Serrano
,
M. A.
Syskaki
,
C. H.
Lambert
,
D.
Engel
,
U.
Martens
,
M.
Münzenberg
,
M.
Wolf
,
G.
Jakob
,
M.
Kläui
,
T. S.
Seifert
, and
T.
Kampfrath
, “
Broadband spintronic terahertz source with peak electric fields exceeding 1.5 MV/cm
,”
Phys. Rev. Appl.
19
(
3
),
034018
(
2023
).
23.
R.
Hillenbrand
,
T.
Taubner
, and
F.
Keilmann
, “
Phonon-enhanced light–matter interaction at the nanometre scale
,”
Nature
418
(
6894
),
159
162
(
2002
).
24.
T.
Taubner
,
R.
Hillenbrand
, and
F.
Keilmann
, “
Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy
,”
Appl. Phys. Lett.
85
(
21
),
5064
5066
(
2004
).
25.
M.
Schnell
,
A.
García-Etxarri
,
A. J.
Huber
,
K.
Crozier
,
J.
Aizpurua
, and
R.
Hillenbrand
, “
Controlling the near-field oscillations of loaded plasmonic nanoantennas
,”
Nat. Photonics
3
(
5
),
287
291
(
2009
).
26.
A. A.
Govyadinov
,
S.
Mastel
,
F.
Golmar
,
A.
Chuvilin
,
P. S.
Carney
, and
R.
Hillenbrand
, “
Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography
,”
ACS Nano
8
(
7
),
6911
6921
(
2014
).
27.
W.
Ma
,
G.
Hu
,
D.
Hu
,
R.
Chen
,
T.
Sun
,
X.
Zhang
,
Q.
Dai
,
Y.
Zeng
,
A.
Alù
,
C.-W.
Qiu
, and
P.
Li
, “
Ghost hyperbolic surface polaritons in bulk anisotropic crystals
,”
Nature
596
(
7872
),
362
366
(
2021
).
28.
S. G.
Stanciu
,
D. E.
Tranca
,
L.
Pastorino
,
S.
Boi
,
Y. M.
Song
,
Y. J.
Yoo
,
S.
Ishii
,
R.
Hristu
,
F.
Yang
,
G.
Bussetti
, and
G. A.
Stanciu
, “
Characterization of nanomaterials by locally determining their complex permittivity with scattering-type scanning near-field optical microscopy
,”
ACS Appl. Nano Mater.
3
(
2
),
1250
1262
(
2020
).
29.
A. J.
Sternbach
,
S. H.
Chae
,
S.
Latini
,
A. A.
Rikhter
,
Y.
Shao
,
B.
Li
,
D.
Rhodes
,
B.
Kim
,
P. J.
Schuck
,
X.
Xu
,
X.-Y.
Zhu
,
R. D.
Averitt
,
J.
Hone
,
M. M.
Fogler
,
A.
Rubio
, and
D. N.
Basov
, “
Programmable hyperbolic polaritons in van der Waals semiconductors
,”
Science
371
(
6529
),
617
620
(
2021
).
30.
A.
Pizzuto
,
E.
Castro-Camus
, and
D. M.
Mittleman
, “
Nanoscale-resolved spatial mapping of tip-mediated terahertz emission from semiconductors
,”
J. Infrared, Millimeter, Terahertz Waves
(published online 2023).
31.
M.
Eisele
,
T. L.
Cocker
,
M. A.
Huber
,
M.
Plankl
,
L.
Viti
,
D.
Ercolani
,
L.
Sorba
,
M. S.
Vitiello
, and
R.
Huber
, “
Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution
,”
Nat. Photonics
8
(
11
),
841
845
(
2014
).
32.
E. A. A.
Pogna
,
L.
Viti
,
A.
Politano
,
M.
Brambilla
,
G.
Scamarcio
, and
M. S.
Vitiello
, “
Mapping propagation of collective modes in Bi2Se3 and Bi2Te2.2Se0.8 topological insulators by near-field terahertz nanoscopy
,”
Nat. Commun.
12
(
1
),
6672
(
2021
).
33.
S.
Chen
,
A.
Bylinkin
,
Z.
Wang
,
M.
Schnell
,
G.
Chandan
,
P.
Li
,
A. Y.
Nikitin
,
S.
Law
, and
R.
Hillenbrand
, “
Real-space nanoimaging of THz polaritons in the topological insulator Bi2Se3
,”
Nat. Commun.
13
(
1
),
1374
(
2022
).
34.
R. H. J.
Kim
,
Z.
Liu
,
C.
Huang
,
J.-M.
Park
,
S. J.
Haeuser
,
Z.
Song
,
Y.
Yan
,
Y.
Yao
,
L.
Luo
, and
J.
Wang
, “
Terahertz nanoimaging of perovskite solar cell materials
,”
ACS Photonics
9
(
11
),
3550
3556
(
2022
).
35.
P.
Alonso-González
,
A. Y.
Nikitin
,
Y.
Gao
,
A.
Woessner
,
M. B.
Lundeberg
,
A.
Principi
,
N.
Forcellini
,
W.
Yan
,
S.
Vélez
,
A.
Huber
,
K.
Watanabe
,
T.
Taniguchi
,
F.
Casanova
,
L. E.
Hueso
,
M.
Polini
,
J.
Hone
,
F. H. L.
Koppens
, and
R.
Hillenbrand
, “
Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy
,”
Nat. Nanotechnol.
12
(
1
),
31
35
(
2017
).
36.
F.
Mooshammer
,
F.
Sandner
,
M. A.
Huber
,
M.
Zizlsperger
,
H.
Weigand
,
M.
Plankl
,
C.
Weyrich
,
M.
Lanius
,
J.
Kampmeier
,
G.
Mussler
,
D.
Grützmacher
,
J. L.
Boland
,
T. L.
Cocker
, and
R.
Huber
, “
Nanoscale near-field tomography of surface states on (Bi0.5Sb0.5)2Te3
,”
Nano Lett.
18
(
12
),
7515
7523
(
2018
).
37.
T. L.
Cocker
,
V.
Jelic
,
R.
Hillenbrand
, and
F. A.
Hegmann
, “
Nanoscale terahertz scanning probe microscopy
,”
Nat. Photonics
15
(
8
),
558
569
(
2021
).
38.
T.
Siday
,
F.
Sandner
,
S.
Brem
,
M.
Zizlsperger
,
R.
Perea-Causin
,
F.
Schiegl
,
S.
Nerreter
,
M.
Plankl
,
P.
Merkl
,
F.
Mooshammer
,
M. A.
Huber
,
E.
Malic
, and
R.
Huber
, “
Ultrafast nanoscopy of high-density exciton phases in WSe2
,”
Nano Lett.
22
(
6
),
2561
2568
(
2022
).
39.
X.
Guo
,
K.
Bertling
, and
A. D.
Rakić
, “
Optical constants from scattering-type scanning near-field optical microscope
,”
Appl. Phys. Lett.
118
(
4
),
041103
(
2021
).
40.
S.
Mastel
,
M. B.
Lundeberg
,
P.
Alonso-González
,
Y.
Gao
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Hone
,
F. H. L.
Koppens
,
A. Y.
Nikitin
, and
R.
Hillenbrand
, “
Terahertz nanofocusing with cantilevered terahertz-resonant antenna tips
,”
Nano Lett.
17
(
11
),
6526
6533
(
2017
).
41.
A. J.
Huber
,
F.
Keilmann
,
J.
Wittborn
,
J.
Aizpurua
, and
R.
Hillenbrand
, “
Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices
,”
Nano Lett.
8
(
11
),
3766
3770
(
2008
).
42.
M. B.
Lundeberg
,
Y.
Gao
,
A.
Woessner
,
C.
Tan
,
P.
Alonso-González
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Hone
,
R.
Hillenbrand
, and
F. H. L.
Koppens
, “
Thermoelectric detection and imaging of propagating graphene plasmons
,”
Nat. Mater.
16
(
2
),
204
207
(
2017
).
43.
T.
Dong
,
S.
Li
,
M.
Manjappa
,
P.
Yang
,
J.
Zhou
,
D.
Kong
,
B.
Quan
,
X.
Chen
,
C.
Ouyang
,
F.
Dai
,
J.
Han
,
C.
Ouyang
,
X.
Zhang
,
J.
Li
,
Y.
Li
,
J.
Miao
,
Y.
Li
,
L.
Wang
,
R.
Singh
,
W.
Zhang
, and
X.
Wu
, “
Nonlinear THz-nano metasurfaces
,”
Adv. Funct. Mater.
31
(
24
),
2100463
(
2021
).
44.
P.
Klarskov
,
H.
Kim
,
V. L.
Colvin
, and
D. M.
Mittleman
, “
Nanoscale laser terahertz emission microscopy
,”
ACS Photonics
4
(
11
),
2676
2680
(
2017
).
45.
M.
Plankl
,
P. E.
Faria Junior
,
F.
Mooshammer
,
T.
Siday
,
M.
Zizlsperger
,
F.
Sandner
,
F.
Schiegl
,
S.
Maier
,
M. A.
Huber
,
M.
Gmitra
,
J.
Fabian
,
J. L.
Boland
,
T. L.
Cocker
, and
R.
Huber
, “
Subcycle contact-free nanoscopy of ultrafast interlayer transport in atomically thin heterostructures
,”
Nat. Photonics
15
(
8
),
594
600
(
2021
).
46.
T.
Seifert
,
S.
Jaiswal
,
U.
Martens
,
J.
Hannegan
,
L.
Braun
,
P.
Maldonado
,
F.
Freimuth
,
A.
Kronenberg
,
J.
Henrizi
,
I.
Radu
,
E.
Beaurepaire
,
Y.
Mokrousov
,
P. M.
Oppeneer
,
M.
Jourdan
,
G.
Jakob
,
D.
Turchinovich
,
L. M.
Hayden
,
M.
Wolf
,
M.
Münzenberg
,
M.
Kläui
, and
T.
Kampfrath
, “
Efficient metallic spintronic emitters of ultrabroadband terahertz radiation
,”
Nat. Photonics
10
(
7
),
483
488
(
2016
).
47.
D.
Kong
,
X.
Wu
,
B.
Wang
,
T.
Nie
,
M.
Xiao
,
C.
Pandey
,
Y.
Gao
,
L.
Wen
,
W.
Zhao
,
C.
Ruan
,
J.
Miao
,
Y.
Li
, and
L.
Wang
, “
Broadband spintronic terahertz emitter with magnetic-field manipulated polarizations
,”
Adv. Opt. Mater.
7
(
20
),
1900487
(
2019
).
48.
Attocube
, see https://www.attocube.com/en/products/microscopes/nanoscale-imaging-spectroscopy/THz-neaSCOPE-s for “
Ultrafast pump-probe nanoscopy
,” accessed 01 June 2023.
49.
S.
Chen
,
H.
Wang
,
J.
Liu
,
M.
Zhang
,
P.
Chen
,
P.
Li
,
Z.
Liu
,
X.
Han
,
C.
Wan
,
H.
Yu
,
Y.
Zhang
, and
X.
Wu
, “
Simultaneous terahertz pulse generation and manipulation with spintronic coding surface
,”
Adv. Opt. Mater.
2023
,
2300899
.
50.
A.
Pizzuto
,
P.
Ma
, and
D. M.
Mittleman
, “
Near-field terahertz nonlinear optics with blue light
,”
Light Sci. Appl.
12
(
1
),
96
(
2023
).
51.
F.
Keilmann
and
R.
Hillenbrand
, “
Near-field microscopy by elastic light scattering from a tip
,”
Philos. Trans. R. Soc. London, Ser. A
362
(
1817
),
787
805
(
2004
).
52.
S.
Richard
,
F.
Aniel
, and
G.
Fishman
, “
Energy-band structure of Ge, Si, and GaAs: A thirty-band k·p method
,”
Phys. Rev. B
70
(
23
),
235204
(
2004
).
53.
Menlo Systems
, see https://www.menlosystems.com/products/thz-time-domain-solutions/terasmart-terahertz-spectrometer/ for “
Compact industry-proven terahertz spectrometer
,” accessed 28 May 2023.

Supplementary Material

You do not currently have access to this content.