Graphene nanoribbons (GNRs), when synthesized with atomic precision by bottom–up chemical approaches, possess tunable electronic structure, and high theoretical mobility, conductivity, and heat dissipation capabilities, which makes them an excellent candidate for channel material in post-silicon transistors. Despite their immense potential, achieving highly transparent contacts for efficient charge transport—which requires proper contact selection and a deep understanding of the complex one-dimensional GNR channel-three-dimensional metal contact interface—remains a challenge. In this study, we investigated the impact of different electron-beam deposited contact metals—the commonly used palladium (Pd) and softer metal indium (In)—on the structural properties and field-effect transistor performance of semiconducting nine-atom wide armchair GNRs. The performance and integrity of the GNR channel material were studied by means of a comprehensive Raman spectroscopy analysis, scanning tunneling microscopy (STM) imaging, optical absorption calculations, and transport measurements. We found that, compared to Pd, In contacts facilitate favorable Ohmic-like transport because of the reduction of interface defects, while the edge structure quality of GNR channel plays a more dominant role in determining the overall device performance. Our study provides a blueprint for improving device performance through contact engineering and material quality enhancements in emerging GNR-based technology.

1.
G.
Moore
,
The Future of Integrated Electronics
(
Fairchild Semiconductor Internal Publication
,
1964
).
2.
A. D.
Franklin
,
M. C.
Hersam
, and
H.-S. P.
Wong
, “
Carbon nanotube transistors: Making electronics from molecules
,”
Science
378
,
726
732
(
2022
).
3.
J.
Cai
,
P.
Ruffieux
,
R.
Jaafar
,
M.
Bieri
,
T.
Braun
,
S.
Blankenburg
,
M.
Muoth
,
A. P.
Seitsonen
,
M.
Saleh
,
X.
Feng
et al, “
Atomically precise bottom-up fabrication of graphene nanoribbons
,”
Nature
466
,
470
473
(
2010
).
4.
L.
Chen
,
L.
Wang
, and
D.
Beljonne
, “
Designing coved graphene nanoribbons with charge carrier mobility approaching that of graphene
,”
Carbon
77
,
868
879
(
2014
).
5.
Z.
Mutlu
,
Y.
Lin
,
G.
Barin
,
Z.
Zhang
,
G.
Pitner
,
S.
Wang
,
R.
Darawish
,
M.
Di Giovannantonio
,
H.
Wang
,
J.
Cai
et al, “
Short-channel double-gate fets with atomically precise graphene nanoribbons
,” in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2021
).
6.
Y.-W.
Son
,
M. L.
Cohen
, and
S. G.
Louie
, “
Energy gaps in graphene nanoribbons
,”
Phys. Rev. Lett.
97
,
216803
(
2006
).
7.
L.
Yang
,
C.-H.
Park
,
Y.-W.
Son
,
M. L.
Cohen
, and
S. G.
Louie
, “
Quasiparticle energies and band gaps in graphene nanoribbons
,”
Phys. Rev. Lett.
99
,
186801
(
2007
).
8.
P. B.
Bennett
,
Z.
Pedramrazi
,
A.
Madani
,
Y.-C.
Chen
,
D. G.
de Oteyza
,
C.
Chen
,
F. R.
Fischer
,
M. F.
Crommie
, and
J.
Bokor
, “
Bottom-up graphene nanoribbon field-effect transistors
,”
Appl. Phys. Lett.
103
,
253114
(
2013
).
9.
J. P.
Llinas
,
A.
Fairbrother
,
G.
Borin Barin
,
W.
Shi
,
K.
Lee
,
S.
Wu
,
B.
Yong Choi
,
R.
Braganza
,
J.
Lear
,
N.
Kau
et al, “
Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons
,”
Nat. Commun.
8
,
633
(
2017
).
10.
C.
Hsu
,
M.
Rohde
,
G.
Borin Barin
,
G.
Gandus
,
D.
Passerone
,
M.
Luisier
,
P.
Ruffieux
,
R.
Fasel
,
H. S.
van der Zant
, and
M. E.
Abbassi
, “
Platinum contacts for 9-atom-wide armchair graphene nanoribbons
,”
Appl. Phys. Lett.
122
,
173104
(
2023
).
11.
D.
Bouwmeester
,
T. S.
Ghiasi
,
G. B.
Barin
,
K.
Müllen
,
P.
Ruffieux
,
R.
Fasel
, and
H. S.
van der Zant
, “
More electrodes with 10-nm nanogaps for electrical contact to atomically precise graphene nanoribbons
,” arXiv:2306.16070 (
2023
).
12.
O.
Braun
,
J.
Overbeck
,
M.
El Abbassi
,
S.
Käser
,
R.
Furrer
,
A.
Olziersky
,
A.
Flasby
,
G. B.
Barin
,
Q.
Sun
,
R.
Darawish
et al, “
Optimized graphene electrodes for contacting graphene nanoribbons
,”
Carbon
184
,
331
339
(
2021
).
13.
L.
Martini
,
Z.
Chen
,
N.
Mishra
,
G. B.
Barin
,
P.
Fantuzzi
,
P.
Ruffieux
,
R.
Fasel
,
X.
Feng
,
A.
Narita
,
C.
Coletti
et al, “
Structure-dependent electrical properties of graphene nanoribbon devices with graphene electrodes
,”
Carbon
146
,
36
43
(
2019
).
14.
Z.
Mutlu
and
J.
Bokor
, “
Bottom-up synthesized graphene nanoribbon transistors
,” in
6th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)
(
IEEE
,
2022
), pp.
157
159
.
15.
V.
Passi
,
A.
Gahoi
,
B. V.
Senkovskiy
,
D.
Haberer
,
F. R.
Fischer
,
A.
Gruuneis
, and
M. C.
Lemme
, “
Field-effect transistors based on networks of highly aligned, chemically synthesized N = 7 armchair graphene nanoribbons
,”
ACS Appl. Mater. Interfaces
10
,
9900
9903
(
2018
).
16.
M.
Ohtomo
,
Y.
Sekine
,
H.
Hibino
, and
H.
Yamamoto
, “
Graphene nanoribbon field-effect transistors fabricated by etchant-free transfer from Au (788)
,”
Appl. Phys. Lett.
112
,
021602
(
2018
).
17.
Z.
Mutlu
,
P. H.
Jacobse
,
R. D.
McCurdy
,
J. P.
Llinas
,
Y.
Lin
,
G. C.
Veber
,
F. R.
Fischer
,
M. F.
Crommie
, and
J.
Bokor
, “
Bottom-up synthesized nanoporous graphene transistors
,”
Adv. Funct. Mater.
31
,
2103798
(
2021
).
18.
Y. C.
Lin
,
Z.
Mutlu
,
G. B.
Barin
,
Y.
Hong
,
J. P.
Llinas
,
A.
Narita
,
H.
Singh
,
K.
Müllen
,
P.
Ruffieux
,
R.
Fasel
et al, “
Scaling and statistics of bottom-up synthesized armchair graphene nanoribbon transistors
,”
Carbon
205
,
519
526
(
2023
).
19.
G.
Borin Barin
,
Q.
Sun
,
M.
Di Giovannantonio
,
C.-Z.
Du
,
X.-Y.
Wang
,
J. P.
Llinas
,
Z.
Mutlu
,
Y.
Lin
,
J.
Wilhelm
,
J.
Overbeck
et al, “
Growth optimization and device integration of narrow-bandgap graphene nanoribbons
,”
Small
18
,
2202301
(
2022
).
20.
G.
Pitner
,
G.
Hills
,
J. P.
Llinas
,
K.-M.
Persson
,
R.
Park
,
J.
Bokor
,
S.
Mitra
, and
H.-S. P.
Wong
, “
Low-temperature side contact to carbon nanotube transistors: Resistance distributions down to 10 nm contact length
,”
Nano Lett.
19
,
1083
1089
(
2019
).
21.
A.
Javey
,
J.
Guo
,
M.
Paulsson
,
Q.
Wang
,
D.
Mann
,
M.
Lundstrom
, and
H.
Dai
, “
High-field quasiballistic transport in short carbon nanotubes
,”
Phys. Rev. Lett.
92
,
106804
(
2004
).
22.
B.-K.
Kim
,
T.-H.
Kim
,
D.-H.
Choi
,
H.
Kim
,
K.
Watanabe
,
T.
Taniguchi
,
H.
Rho
,
J.-J.
Kim
,
Y.-H.
Kim
, and
M.-H.
Bae
, “
Origins of genuine ohmic van der Waals contact between indium and MoS2
,”
npj 2D Mater. Appl.
5
,
9
(
2021
).
23.
A.
Kumar
,
K.
Schauble
,
K. M.
Neilson
,
A.
Tang
,
P.
Ramesh
,
H.-S. P.
Wong
,
E.
Pop
, and
K.
Saraswat
, “
Sub-200 Ω·μm alloyed contacts to synthetic monolayer MoS2
,” in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2021
).
24.
Y.
Wang
,
J. C.
Kim
,
R. J.
Wu
,
J.
Martinez
,
X.
Song
,
J.
Yang
,
F.
Zhao
,
A.
Mkhoyan
,
H. Y.
Jeong
, and
M.
Chhowalla
, “
Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors
,”
Nature
568
,
70
74
(
2019
).
25.
L.
Talirz
,
H.
Sode
,
T.
Dumslaff
,
S.
Wang
,
J. R.
Sanchez-Valencia
,
J.
Liu
,
P.
Shinde
,
C. A.
Pignedoli
,
L.
Liang
,
V.
Meunier
et al, “
On-surface synthesis and characterization of 9-atom wide armchair graphene nanoribbons
,”
ACS Nano
11
,
1380
1388
(
2017
).
26.
M.
Di Giovannantonio
,
O.
Deniz
,
J. I.
Urgel
,
R.
Widmer
,
T.
Dienel
,
S.
Stolz
,
C.
Sánchez-Sánchez
,
M.
Muntwiler
,
T.
Dumslaff
,
R.
Berger
et al, “
On-surface growth dynamics of graphene nanoribbons: The role of halogen functionalization
,”
ACS Nano
12
,
74
81
(
2018
).
27.
L.
Talirz
,
P.
Ruffieux
, and
R.
Fasel
, “
On-surface synthesis of atomically precise graphene nanoribbons
,”
Adv. Mater.
28
,
6222
6231
(
2016
).
28.
Z.
Chen
,
A.
Narita
, and
K.
Müllen
, “
Graphene nanoribbons: On-surface synthesis and integration into electronic devices
,”
Adv. Mater.
32
,
2001893
(
2020
).
29.
Y.
Gu
,
Z.
Qiu
, and
K.
Mullen
, “
Nanographenes and graphene nanoribbons as multitalents of present and future materials science
,”
J. Am. Chem. Soc.
144
,
11499
11524
(
2022
).
30.
R. K.
Houtsma
,
J.
de la Rie
, and
M.
Stöhr
, “
Atomically precise graphene nanoribbons: Interplay of structural and electronic properties
,”
Chem. Soc. Rev.
50
,
6541
6568
(
2021
).
31.
F.
Schulz
,
P. H.
Jacobse
,
F. F.
Canova
,
J.
Van Der Lit
,
D. Z.
Gao
,
A.
Van Den Hoogenband
,
P.
Han
,
R. J.
Klein Gebbink
,
M.-E.
Moret
,
P. M.
Joensuu
et al, “
Precursor geometry determines the growth mechanism in graphene nanoribbons
,”
J. Phys. Chem. C
121
,
2896
2904
(
2017
).
32.
P. H.
Jacobse
,
R. D.
McCurdy
,
J.
Jiang
,
D. J.
Rizzo
,
G.
Veber
,
P.
Butler
,
R.
Zuzak
,
S. G.
Louie
,
F. R.
Fischer
, and
M. F.
Crommie
, “
Bottom-up assembly of nanoporous graphene with emergent electronic states
,”
J. Am. Chem. Soc.
142
,
13507
13514
(
2020
).
33.
P. H.
Jacobse
,
K. A.
Simonov
,
M. J.
Mangnus
,
G. I.
Svirskiy
,
A. V.
Generalov
,
A. S.
Vinogradov
,
A.
Sandell
,
N.
Mårtensson
,
A. B.
Preobrajenski
, and
I.
Swart
, “
One precursor but two types of graphene nanoribbons: On-surface transformations of 10,10′-dichloro-9, 9′-bianthryl on Ag (111
),”
J. Phys. Chem. C
123
,
8892
8901
(
2019
).
34.
D. J.
Rizzo
,
J.
Jiang
,
D.
Joshi
,
G.
Veber
,
C.
Bronner
,
R. A.
Durr
,
P. H.
Jacobse
,
T.
Cao
,
A.
Kalayjian
,
H.
Rodriguez
et al, “
Rationally designed topological quantum dots in bottom-up graphene nanoribbons
,”
ACS Nano
15
,
20633
20642
(
2021
).
35.
P. H.
Jacobse
,
Z.
Jin
,
J.
Jiang
,
S.
Peurifoy
,
Z.
Yue
,
Z.
Wang
,
D. J.
Rizzo
,
S. G.
Louie
,
C.
Nuckolls
, and
M. F.
Crommie
, “
Pseudo-atomic orbital behavior in graphene nanoribbons with four-membered rings
,”
Sci. Adv.
7
,
eabl5892
(
2021
).
36.
E. C. H.
Wen
,
P. H.
Jacobse
,
J.
Jiang
,
Z.
Wang
,
R. D.
McCurdy
,
S. G.
Louie
,
M. F.
Crommie
, and
F. R.
Fischer
, “
Magnetic interactions in substitutional core-doped graphene nanoribbons
,”
J. Am. Chem. Soc.
144
,
13696
13703
(
2022
).
37.
J.
Yin
,
P. H.
Jacobse
,
D.
Pyle
,
Z.
Wang
,
M. F.
Crommie
, and
G.
Dong
, “
Programmable fabrication of monodisperse graphene nanoribbons via deterministic iterative synthesis
,”
J. Am. Chem. Soc.
144
,
16012
16019
(
2022
).
38.
G.
Borin Barin
,
A.
Fairbrother
,
L.
Rotach
,
M.
Bayle
,
M.
Paillet
,
L.
Liang
,
V.
Meunier
,
R.
Hauert
,
T.
Dumslaff
,
A.
Narita
et al, “
Surface-synthesized graphene nanoribbons for room temperature switching devices: Substrate transfer and ex situ characterization
,”
ACS Appl. Nano Mater.
2
,
2184
2192
(
2019
).
39.
O.
Deniz
,
C.
Sánchez-Sánchez
,
T.
Dumslaff
,
X.
Feng
,
A.
Narita
,
K.
Mullen
,
N.
Kharche
,
V.
Meunier
,
R.
Fasel
, and
P.
Ruffieux
, “
Revealing the electronic structure of silicon intercalated armchair graphene nanoribbons by scanning tunneling spectroscopy
,”
Nano Lett.
17
,
2197
2203
(
2017
).
40.
J.
Overbeck
,
G.
Borin Barin
,
C.
Daniels
,
M. L.
Perrin
,
L.
Liang
,
O.
Braun
,
R.
Darawish
,
B.
Burkhardt
,
T.
Dumslaff
,
X.-Y.
Wang
et al, “
Optimized substrates and measurement approaches for Raman spectroscopy of graphene nanoribbons
,”
Phys. Status Solidi B
256
,
1900343
(
2019
).
41.
S.
Zhao
,
G. B.
Barin
,
T.
Cao
,
J.
Overbeck
,
R.
Darawish
,
T.
Lyu
,
S.
Drapcho
,
S.
Wang
,
T.
Dumslaff
,
A.
Narita
et al, “
Optical imaging and spectroscopy of atomically precise armchair graphene nanoribbons
,”
Nano Lett.
20
,
1124
1130
(
2020
).
42.
B.
Senkovskiy
,
M.
Pfeiffer
,
S.
Alavi
,
A.
Bliesener
,
J.
Zhu
,
S.
Michel
,
A.
Fedorov
,
R.
German
,
D.
Hertel
,
D.
Haberer
et al, “
Making graphene nanoribbons photoluminescent
,”
Nano Lett.
17
,
4029
4037
(
2017
).
43.
H.
Huang
,
D.
Wei
,
J.
Sun
,
S. L.
Wong
,
Y. P.
Feng
,
A. C.
Neto
, and
A. T. S.
Wee
, “
Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons
,”
Sci. Rep.
2
,
983
(
2012
).
44.
B. V.
Senkovskiy
,
A. V.
Fedorov
,
D.
Haberer
,
M.
Farjam
,
K. A.
Simonov
,
A. B.
Preobrajenski
,
N.
Mårtensson
,
N.
Atodiresei
,
V.
Caciuc
,
S.
Blügel
et al, “
Semiconductor-to-metal transition and quasiparticle renormalization in doped graphene nanoribbons
,”
Adv. Electron. Mater.
3
,
1600490
(
2017
).
45.
A. C.
Ferrari
and
D. M.
Basko
, “
Raman spectroscopy as a versatile tool for studying the properties of graphene
,”
Nat. Nanotechnol.
8
,
235
246
(
2013
).
46.
M.
Yamada
,
Y.
Yamakita
, and
K.
Ohno
, “
Phonon dispersions of hydrogenated and dehydrogenated carbon nanoribbons
,”
Phys. Rev. B
77
,
054302
(
2008
).
47.
R.
Gillen
,
M.
Mohr
,
C.
Thomsen
, and
J.
Maultzsch
, “
Vibrational properties of graphene nanoribbons by first-principles calculations
,”
Phys. Rev. B
80
,
155418
(
2009
).
48.
M. S.
Dresselhaus
,
G.
Dresselhaus
,
R.
Saito
, and
A.
Jorio
, “
Raman spectroscopy of carbon nanotubes
,”
Phys. Rep.
409
,
47
99
(
2005
).
49.
C.
Ma
,
L.
Liang
,
Z.
Xiao
,
A. A.
Puretzky
,
K.
Hong
,
W.
Lu
,
V.
Meunier
,
J.
Bernholc
, and
A.-P.
Li
, “
Seamless staircase electrical contact to semiconducting graphene nanoribbons
,”
Nano Lett.
17
,
6241
6247
(
2017
).
50.
J.
Zhou
and
J.
Dong
, “
Vibrational property and raman spectrum of carbon nanoribbon
,”
Appl. Phys. Lett.
91
,
173108
(
2007
).
51.
A.
Fairbrother
,
J.-R.
Sanchez-Valencia
,
B.
Lauber
,
I.
Shorubalko
,
P.
Ruffieux
,
T.
Hintermann
, and
R.
Fasel
, “
High vacuum synthesis and ambient stability of bottom-up graphene nanoribbons
,”
Nanoscale
9
,
2785
2792
(
2017
).
52.
C.
Ma
,
Z.
Xiao
,
A. A.
Puretzky
,
A. P.
Baddorf
,
W.
Lu
,
K.
Hong
,
J.
Bernholc
, and
A.-P.
Li
, “
Oxidization stability of atomically precise graphene nanoribbons
,”
Phys. Rev. Mater.
2
,
014006
(
2018
).
53.
R.
Honig
and
D.
Kramer
,
Vapor Pressure Data for the Solid and Liquid Elements
(
RCA Laboratories
,
1969
).
54.
C.
Archambault
and
A.
Rochefort
, “
States modulation in graphene nanoribbons through metal contacts
,”
ACS Nano
7
,
5414
5420
(
2013
).
55.
T.
Nikitin
,
S.
Novikov
, and
L.
Khriachtchev
, “
Giant raman gain in annealed silicon-rich silicon oxide films: Measurements at 785 nm
,”
Appl. Phys. Lett.
103
,
151110
(
2013
).
56.
L.
Alber
,
V.
Scalera
,
V.
Unikandanunni
,
D.
Schick
, and
S.
Bonetti
, “
Ntmpy: An open source package for solving coupled parabolic differential equations in the framework of the three-temperature model
,”
Comput. Phys. Commun.
265
,
107990
(
2021
).
57.
J.
Chatterjee
,
D.
Polley
,
A.
Pattabi
,
H.
Jang
,
S.
Salahuddin
, and
J.
Bokor
, “
RKKY exchange bias mediated ultrafast all-optical switching of a ferromagnet
,”
Adv. Funct. Mater.
32
,
2107490
(
2022
).
58.
F. R.
Fischer
,
J.
Bokor
,
Z.
Mutlu
,
J. P.
Llinas
,
R. D.
Mccurdy
,
G. C.
Veber
, and
D. J.
Koenigs
, “
Low band gap graphene nanoribbon electronic devices
,” US patent 17/608,355 (
2022
).
59.
I. M.
Datye
,
A. J.
Gabourie
,
C. D.
English
,
K. K.
Smithe
,
C. J.
McClellan
,
N. C.
Wang
, and
E.
Pop
, “
Reduction of hysteresis in MoS2 transistors using pulsed voltage measurements
,”
2D Mater.
6
,
011004
(
2018
).
60.
K. K.
Smithe
,
S. V.
Suryavanshi
,
M.
Muñoz Rojo
,
A. D.
Tedjarati
, and
E.
Pop
, “
Low variability in synthetic monolayer MoS2 devices
,”
ACS Nano
11
,
8456
8463
(
2017
).
61.
Y. Y.
Illarionov
,
K. K.
Smithe
,
M.
Waltl
,
T.
Knobloch
,
E.
Pop
, and
T.
Grasser
, “
Improved hysteresis and reliability of MoS2 transistors with high-quality CVD growth and Al2O3 encapsulation
,”
IEEE Electron Device Lett.
38
,
1763
1766
(
2017
).
62.
M.
Pizzochero
,
K.
Čerņevičs
,
G. B.
Barin
,
S.
Wang
,
P.
Ruffieux
,
R.
Fasel
, and
O. V.
Yazyev
, “
Quantum electronic transport across ‘bite’ defects in graphene nanoribbons
,”
2D Mater.
8
,
035025
(
2021
).
63.
M.
Pizzochero
,
G. B.
Barin
,
K.
Cernevics
,
S.
Wang
,
P.
Ruffieux
,
R.
Fasel
, and
O. V.
Yazyev
, “
Edge disorder in bottom-up zigzag graphene nanoribbons: Implications for magnetism and quantum electronic transport
,”
J. Phys. Chem. Lett.
12
,
4692
4696
(
2021
).
64.
S.
Jiang
,
F.
Scheurer
,
Q.
Sun
,
P.
Ruffieux
,
X.
Yao
,
A.
Narita
,
K.
Mullen
,
R.
Fasel
,
T.
Frederiksen
, and
G.
Schull
, “
Length-independent quantum transport through topological band states of graphene nanoribbons
,” arXiv:2208.03145 (
2022
).
65.
Q.
Sun
,
O.
Gröning
,
J.
Overbeck
,
O.
Braun
,
M. L.
Perrin
,
G.
Borin Barin
,
M.
El Abbassi
,
K.
Eimre
,
E.
Ditler
,
C.
Daniels
et al, “
Massive Dirac fermion behavior in a low bandgap graphene nanoribbon near a topological phase boundary
,”
Adv. Mater.
32
,
1906054
(
2020
).
66.
J.
Yamaguchi
,
H.
Hayashi
,
H.
Jippo
,
A.
Shiotari
,
M.
Ohtomo
,
M.
Sakakura
,
N.
Hieda
,
N.
Aratani
,
M.
Ohfuchi
,
Y.
Sugimoto
et al, “
Small bandgap in atomically precise 17-atom-wide armchair-edged graphene nanoribbons
,”
Commun. Mater.
1
,
36
(
2020
).
67.
C.
Backes
,
A. M.
Abdelkader
,
C.
Alonso
,
A.
Andrieux-Ledier
,
R.
Arenal
,
J.
Azpeitia
,
N.
Balakrishnan
,
L.
Banszerus
,
J.
Barjon
,
R.
Bartali
et al, “
Production and processing of graphene and related materials
,”
2D Mater.
7
,
022001
(
2020
).
68.
I.
Horcas
,
R.
Fernández
,
J.
Gomez-Rodriguez
,
J.
Colchero
,
J.
Gómez-Herrero
, and
A.
Baro
, “
Wsxm: A software for scanning probe microscopy and a tool for nanotechnology
,”
Rev. Sci. Instrum.
78
,
013705
(
2007
).
69.
P. H.
Jacobse
, “
MathemaTB: A Mathematica package for tight-binding calculations
,”
Comput. Phys. Commun.
244
,
392
408
(
2019
).
70.
Z.
Mutlu
,
J. P.
Llinas
,
P. H.
Jacobse
,
I.
Piskun
,
R.
Blackwell
,
M. F.
Crommie
,
F. R.
Fischer
, and
J.
Bokor
, “
Transfer-free synthesis of atomically precise graphene nanoribbons on insulating substrates
,”
ACS Nano
15
,
2635
2642
(
2021
).
You do not currently have access to this content.