Phase control in Hf1-xZrxO2 (HZO) is crucial for optimizing its electrical properties, such as ferroelectricity and high dielectricity. However, phase optimization in HZO has remained challenging due to limited theoretical understanding. This work devised an atomistic methodology based on density functional theory calculations to predict the phase fractions in HZO. The detailed phase evolution and phase fractions during the sequential processes of crystallization, annealing, and cooling were predicted by calculating the nucleation barrier from amorphous, the transition barrier between polymorphs, and Boltzmann fractions, considering the combined effects of composition (x), grain size (dT), and annealing temperature (Tannealing). The findings revealed that the polar orthorhombic (PO) phase exhibited the highest fraction at Tannealing = 770 K in Hf0.5Zr0.5O2, resulting in maximum ferroelectricity. Meanwhile, the fractions of PO and tetragonal phases are similar at dT = 7 nm in Hf0.4Zr0.6O2 and dT = 11 nm in Hf0.3Zr0.7O2, both at Tannealing = 770 K, leading to the highest dielectricity. These results are highly consistent with the experimental results. This work demonstrates that the comprehensive interpretations of both thermodynamic and kinetic effects are essential for quantitatively predicting the phase fraction and their corresponding electrical functionality.

1.
J.
Müller
,
T. S.
Böscke
,
U.
Schröder
,
S.
Mueller
,
D.
Bräuhaus
,
U.
Böttger
,
L.
Frey
, and
T.
Mikolajick
, “
Ferroelectricity in simple binary ZrO2 and HfO2
,”
Nano Lett.
12
,
4318
4323
(
2012
).
2.
M. H.
Park
,
H. J.
Kim
,
Y. J.
Kim
,
W.
Lee
,
T.
Moon
, and
C. S.
Hwang
, “
Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature
,”
Appl. Phys. Lett.
102
,
242905
(
2013
).
3.
R.
Materlik
,
C.
Kunneth
, and
A.
Kersch
, “
The origin of ferroelectricity in Hf1-xZrxO2: A computational investigation and a surface energy model
,”
J. Appl. Phys.
117
,
134109
(
2015
).
4.
R.
Batra
,
H. D.
Tran
, and
R.
Ramprasad
, “
Stabilization of metastable phases in hafnia owing to surface energy effects
,”
Appl. Phys. Lett.
108
,
172902
(
2016
).
5.
M. H.
Park
,
Y. H.
Lee
,
H. J.
Kim
,
T.
Schenk
,
W.
Lee
,
K.
Do Kim
,
F. P. G.
Fengler
,
T.
Mikolajick
,
U.
Schroeder
, and
C. S.
Hwang
, “
Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: A comparison of model and experiment
,”
Nanoscale
9
,
9973
9986
(
2017
).
6.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
7.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
8.
D. M.
Ceperley
and
B. J.
Alder
, “
Ground state of the electron gas by a stochastic method
,”
Phys. Rev. Lett.
45
,
566
569
(
1980
).
9.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
5079
(
1981
).
10.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
11.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
12.
A.
Togo
and
I.
Tanaka
, “
First principles phonon calculations in materials science
,”
Scr. Mater.
108
,
1
5
(
2015
).
13.
J.
Rahm
and
P.
Erhart
, “
WulffPack: A Python package for Wulff constructions
,”
J. Open Source Software
5
,
1944
(
2020
).
14.
H. J.
Lee
,
M.
Lee
,
K.
Lee
,
J.
Jo
,
H.
Yang
,
Y.
Kim
,
S. C.
Chae
,
U.
Waghmare
, and
J. H.
Lee
, “
Scale-free ferroelectricity induced by flat phonon bands in HfO2
,”
Science
369
,
1343
1347
(
2020
).
15.
S.
Liu
and
B. M.
Hanrahan
, “
Effects of growth orientations and epitaxial strains on phase stability of HfO2 thin films
,”
Phys. Rev. Mater.
3
,
054404
(
2019
).
16.
A.
Kersch
and
M.
Falkowski
, “
New low-energy crystal structures in ZrO2 and HfO2
,”
Phys. Status Solidi RRL.
15
,
2100074
(
2021
).
17.
M.
Falkowski
and
A.
Kersch
, “
Optimizing the piezoelectric strain in ZrO2- And HfO2-based incipient ferroelectrics for thin-film applications: An ab initio dopant screening study
,”
ACS Appl. Mater. Interfaces
12
,
32915
32924
(
2020
).
18.
Y.-W.
Chen
,
S.-T.
Fan
, and
C. W.
Liu
, “
Energy preference of uniform polarization switching for HfO2 by first-principle study
,”
J. Phys. D: Appl. Phys.
54
,
085304
(
2021
).
19.
A. E.
Boutaybi
,
T.
Maroutian
,
L.
Largeau
,
S.
Matzen
, and
P.
Lecoeur
, “
Stabilization of the epitaxial rhombohedral ferroelectric phase in ZrO2 by surface energy
,”
Phys. Rev. Mater.
6
,
074406
(
2021
).
20.
J. H.
Kim
,
T. J.
Park
,
S. K.
Kim
,
D. Y.
Cho
,
H.-S.
Jung
,
S. Y.
Lee
, and
C. S.
Hwang
, “
Chemical structures and electrical properties of atomic layer deposited HfO2 thin films grown at an extremely low temperature (≤100 °C) using O3 as an oxygen source
,”
Appl. Surf. Sci.
292
,
852
856
(
2014
).
21.
X.
Luo
and
A. A.
Demkov
, “
Structure, thermodynamics, and crystallization of amorphous hafnia
,”
J. Appl. Phys.
118
,
124105
(
2015
).
22.
J.
Lee
,
Y.
Kang
,
S.
Han
,
C. S.
Hwang
, and
J.-H.
Choi
, “
Ab initio study on the structural characteristics of amorphous Zn2SnO4
,”
Appl. Phys. Lett.
103
,
252102
(
2013
).
23.
P.
Ondračka
,
D.
Holec
,
D.
Nečas
, and
L.
Zajíčková
, “
Accurate prediction of band gaps and optical properties of HfO2
,”
J. Phys. D: Appl. Phys.
49
,
395301
(
2016
).
24.
M.
Chandran
, “
Multiscale ab initio simulation of Ni-based alloys: Real-space distribution of atoms in γ + γ′ phase
,”
Comput. Mater. Sci.
108
,
192
204
(
2015
).
25.
G.
Han
,
I. W.
Yeu
,
J.
Park
,
K. H.
Ye
,
S. C.
Lee
,
C. S.
Hwang
, and
J.-H.
Choi
, “
Effect of local strain energy to predict accurate phase diagram of III-V pseudobinary systems: Case of Ga(As,Sb) and (In,Ga)As
,”
J. Phys. D: Appl. Phys.
54
,
045104
(
2021
).
26.
A.
Christensen
and
E. A.
Carter
, “
First-principles study of the surfaces of zirconia
,”
Phys. Rev. B
58
,
8050
8064
(
1998
).
27.
J.
Wu
,
F.
Mo
,
T.
Saraya
,
T.
Hiramoto
, and
M.
Kobayashi
, “
A first-principles study on ferroelectric phase formation of Si-doped HfO2 through nucleation and phase transition in thermal process
,”
Appl. Phys. Lett.
117
,
252904
(
2020
).
28.
M. H.
Park
,
Y. H.
Lee
,
H. J.
Kim
,
Y. J.
Kim
,
T.
Moon
,
K. D.
Kim
,
S. D.
Hyun
,
T.
Mikolajick
,
U.
Schroeder
, and
C. S.
Hwang
, “
Understanding the formation of the metastable ferroelectric phase in hafnia-zirconia solid solution thin films
,”
Nanoscale
10
,
716
725
(
2018
).
29.
M. H.
Park
,
Y. H.
Lee
, and
C. S.
Hwang
, “
Understanding ferroelectric phase formation in doped HfO2 thin films based on classical nucleation theory
,”
Nanoscale
11
,
19477
19487
(
2019
).
30.
Y.
Zhou
,
Y. K.
Zhang
,
Q.
Yang
,
J.
Jiang
,
P.
Fan
,
M.
Liao
, and
Y. C.
Zhou
, “
The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle
,”
Comput. Mater. Sci.
167
,
143
150
(
2019
).
31.
M. H.
Park
,
H. J.
Kim
,
G.
Lee
,
J.
Park
,
Y. H.
Lee
,
Y. J.
Kim
,
T.
Moon
,
K.
Do Kim
,
S. D.
Hyun
,
H. W.
Park
,
H. J.
Chang
,
J.-H.
Choi
, and
C. S.
Hwang
, “
A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices
,”
Appl. Phys. Rev.
6
,
041403
(
2019
).
32.
W.
Piskorz
,
J.
Gryboś
,
F.
Zasada
,
S.
Cristol
,
J.-F.
Paul
,
A.
Adamski
, and
Z.
Sojka
, “
Periodic DFT and atomistic thermodynamic modeling of the surface hydration equilibria and morphology of monoclinic ZrO2 nanocrystals
,”
J. Phys. Chem. C
115
,
24274
24286
(
2011
).
33.
W.
Piskorz
,
J.
Gryboś
,
F.
Zasada
,
P.
Zapała
,
S.
Cristol
,
J.-F.
Paul
, and
Z.
Sojka
, “
Periodic DFT study of the tetragonal ZrO2 nanocrystals: Equilibrium morphology modeling and atomistic surface hydration thermodynamics
,”
J. Phys. Chem. C
116
,
19307
19320
(
2012
).
34.
L.
Schimka
,
J.
Harl
,
A.
Stroppa
,
A.
Grüneis
,
M.
Marsman
,
F.
Mittendorfer
, and
G.
Kresse
, “
Accurate surface and adsorption energies from many-body perturbation theory
,”
Nat. Mater.
9
,
741
744
(
2010
).
35.
A.
Patra
,
J. E.
Bates
,
J.
Sun
, and
J. P.
Perdew
, “
Properties of real metallic surfaces: Effects of density functional semilocality and van der Waals nonlocality
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
E9188
E9196
(
2017
).
36.
I. W.
Yeu
,
G.
Han
,
C. S.
Hwang
, and
J.-H.
Choi
, “
An ab initio approach on the asymmetric stacking of GaAs ⟨111⟩ nanowires grown by a vapor-solid method
,”
Nanoscale
12
,
17703
17714
(
2020
).
37.
I. W.
Yeu
,
G.
Han
,
J.
Park
,
C. S.
Hwang
, and
J.-H.
Choi
, “
Theoretical understanding of the catalyst-free growth mechanism of GaAs ⟨111⟩B nanowires
,”
Appl. Surf. Sci.
497
,
143740
(
2019
).
38.
I. W.
Yeu
,
J.
Park
,
G.
Han
,
C. S.
Hwang
, and
J.-H.
Choi
, “
Surface reconstruction of InAs (001) depending on the pressure and temperature examined by density functional thermodynamics
,”
Sci. Rep.
7
,
10691
(
2017
).
39.
I. W.
Yeu
,
G.
Han
,
J.
Park
,
C. S.
Hwang
, and
J.-H.
Choi
, “
Equilibrium crystal shape of GaAs and InAs considering surface vibration and new (111)B reconstruction: Ab initio thermodynamics
,”
Sci. Rep.
9
,
1127
(
2019
).
40.
D. A.
Porter
,
K. E.
Easterling
, and
M. Y.
Sherif
,
Phase Transformations in Metals and Alloys
,
3rd ed.
(
CRC Press
,
2009
).
41.
M.
Falkowski
and
A.
Kersch
, “
Ab initio interphase characteristics in HfO2 and ZrO2 and nucleation of the polar phase
,”
Appl. Phys. Lett.
118
,
032905
(
2021
).
42.
K.
Chae
,
J.
Hwang
,
E.
Chagarov
,
A.
Kummel
, and
K.
Cho
, “
Stability of ferroelectric and antiferroelectric hafnium-zirconium oxide thin films
,”
J. Appl. Phys.
128
,
054101
(
2020
).
43.
S. V.
Barabash
,
D.
Pramanik
,
Y.
Zhai
,
B.
Magyari-Kope
, and
Y.
Nishi
, “
Ferroelectric switching pathways and energetics in (Hf,Zr)O2
,”
ECS Trans.
75
,
107
121
(
2017
).
44.
V. K.
Narasimhan
,
M. E.
McBriarty
,
D.
Passarello
,
V.
Adinolfi
,
M. F.
Toney
,
A.
Mehta
, and
K. A.
Littau
, “
In situ characterization of ferroelectric HfO2 during rapid thermal annealing
,”
Phys. Status Solidi RRL
15
,
2000598
(
2021
).
45.
Y.
Cheng
,
Z.
Gao
,
K. H.
Ye
,
H. W.
Park
,
Y.
Zheng
,
Y.
Zheng
,
J.
Gao
,
M. H.
Park
,
J.-H.
Choi
,
K.-H.
Xue
,
C. S.
Hwang
, and
H.
Lyu
, “
Reversible transition between the polar and antipolar phases and its implications for wake-up and fatigue in HfO2-based ferroelectric thin film
,”
Nat. Commun.
13
,
645
(
2022
).
46.
A.
Pal
,
V. K.
Narasimhan
,
S.
Weeks
,
K.
Littau
,
D.
Pramanik
, and
T.
Chiang
, “
Enhancing ferroelectricity in dopant-free hafnium oxide
,”
Appl. Phys. Lett.
110
,
022903
(
2017
).
47.
M.
Materano
,
T.
Mittmann
,
P. D.
Lomenzo
,
C.
Zhou
,
J. L.
Jones
,
M.
Falkowski
,
A.
Kersch
,
T.
Mikolajick
, and
U.
Schroeder
, “
Influence of oxygen content on the structure and reliability of ferroelectric HfxZr1−xO2 layers
,”
ACS Appl. Electron. Mater.
2
,
3618
(
2020
).
48.
T.
Mittmann
,
M.
Materano
,
P. D.
Lomenzo
,
M. H.
Park
,
I.
Stolichnov
,
M.
Cavalieri
,
C.
Zhou
,
C. C.
Chung
,
J. L.
Jones
,
T.
Szyjka
,
M.
Müller
,
A.
Kersch
,
T.
Mikolajick
, and
U.
Schroeder
, “
Origin of ferroelectric phase in undoped HfO2 films deposited by sputtering
,”
Adv. Mater. Interfaces
6
,
1900042
(
2019
).
49.
B.
Xu
,
L.
Collins
,
K. M.
Holsgrove
,
T.
Mikolajick
,
U.
Schroeder
, and
P. D.
Lomenzo
, “
Influence of the ozone dose time during atomic layer deposition on the ferroelectric and pyroelectric properties of 45 nm-thick ZrO2 films
,”
ACS Appl. Electron. Mater.
5
,
2288
(
2023
).
50.
N.
Tasneem
,
Y. M.
Yousry
,
M.
Tian
,
M.
Dopita
,
S. E.
Reyes-Lillo
,
J.
Kacher
,
N.
Bassiri-Gharb
, and
A. I.
Khan
, “
A Janovec–Kay–Dunn-like behavior at thickness scaling in ultra-thin antiferroelectric ZrO2 films
,”
Adv. Electron. Mater.
7
,
2100485
(
2021
).
51.
U.
Schroeder
,
T.
Mittmann
,
M.
Materano
,
P. D.
Lomenzo
,
P.
Edgington
,
Y. H.
Lee
,
M.
Alotaibi
,
A. R.
West
,
T.
Mikolajick
,
A.
Kersch
, and
J. L.
Jones
, “
Temperature-dependent phase transitions in HfxZr1-xO2 mixed oxides: Indications of a proper ferroelectric material
,”
Adv. Electron. Mater.
8
,
2200265
(
2022
).
52.
M.
Hoffmann
,
U.
Schroeder
,
C.
Künneth
,
A.
Kersch
,
S.
Starschich
,
U.
Böttger
, and
T.
Mikolajick
, “
Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors
,”
Nano Energy
18
,
154
(
2015
).
53.
V.
Gaddam
,
G.
Kim
,
T.
Kim
,
M.
Jung
,
C.
Kim
, and
S.
Jeon
, “
Novel approach to high κ (∼59) and low EOT (∼3.8 Å) near the morphotrophic phase boundary with AFE/FE (ZrO2/HZO) bilayer heterostructures and high-pressure annealing
,”
ACS Appl. Mater. Interfaces
14
,
43463
43473
(
2022
).
54.
M. H.
Park
,
Y. H.
Lee
,
H. J.
Kim
,
Y. J.
Kim
,
T.
Moon
,
K. D.
Kim
,
S. D.
Hyun
, and
C. S.
Hwang
, “
Morphotropic phase boundary of Hf1-xZrxO2 thin films for dynamic Random Access Memories
,”
ACS Appl. Mater. Interfaces
10
,
42666
42673
(
2018
).
55.
S.
Oh
,
H.
Jang
, and
H.
Hwang
, “
Composition optimization of HfxZr1-xO2 thin films to achieve the morphotrophic phase boundary for high-k dielectrics
,”
J. Appl. Phys.
133
,
154102
(
2023
).

Supplementary Material

You do not currently have access to this content.