The conceptual framework of topological states has recently been extended to bosonic systems, particularly phononic systems. In this work, we chose the recently experimentally prepared two-dimensional (2D) Kekulé-order graphene as a target to propose the coexistence of gapless and gapped topological phonon states in its phonon curves. This is the first work to investigate rich gapped and gapless topological phonon states in experimentally feasible 2D materials. For the gapped topological phonons, 2D Kekulé-order graphene hosts phononic real Chern insulator states, i.e., second-order topological states, and corner vibrational modes inside frequency gaps at 27.96 and 37.065 THz. For the gapless topological phonons, 2D Kekulé-order graphene hosts a phononic Weyl pair [comprising two linear Weyl points (LWPs)] and a phononic Weyl complex [comprising one quadratic nodal point (QNP) and two LWPs] around 7.54 and 47.3 THz (39.2 THz), respectively. Moreover, the difference between the phononic Weyl pair and the phononic Weyl complex was investigated in detail. Our study not only promotes 2D Kekulé-order graphene as a concrete material platform for exploring the intriguing physics of phononic second-order topology but also proposes the coexistence of different categories of Weyl phonons, i.e., a Weyl complex that comprises two LWPs and one QNP, in two dimensions. Our work paves the way for new advancements in topological phononics comprising gapless and gapped topological phonons.

1.
J.
Chen
,
X.
Xu
,
J.
Zhou
, and
B.
Li
, “
Interfacial thermal resistance: Past, present, and future
,”
Rev. Mod. Phys.
94
,
025002
(
2022
).
2.
Z.
Zhang
,
Y.
Ouyang
,
Y.
Cheng
,
J.
Chen
,
N.
Li
, and
G.
Zhang
, “
Size-dependent phononic thermal transport in low-dimensional nanomaterials
,”
Phys. Rep.
860
,
1–26
(
2020
).
3.
N.
Li
,
J.
Ren
,
L.
Wang
,
G.
Zhang
,
P.
Hänggi
, and
B.
Li
, “
Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond
,”
Rev. Mod. Phys.
84
,
1045
(
2012
).
4.
G.
Zhang
,
Y.
Cheng
,
J.-P.
Chou
, and
A.
Gali
, “
Material platforms for defect qubits and single-photon emitters
,”
Appl. Phys. Rev.
7
,
031308
(
2020
).
5.
J.
Chen
,
J.
He
,
D.
Pan
,
X.
Wang
,
N.
Yang
,
J.
Zhu
,
S. A.
Yang
, and
G.
Zhang
, “
Emerging theory and phenomena in thermal conduction: A selective review
,”
Sci. China: Phys., Mech. Astron.
65
,
117002
(
2022
).
6.
L.
Zhang
,
J.
Ren
,
J.-S.
Wang
, and
B.
Li
, “
Topological nature of the phonon Hall effect
,”
Phys. Rev. Lett.
105
,
225901
(
2010
).
7.
H.
Zhu
,
J.
Yi
,
M.-Y.
Li
,
J.
Xiao
,
L.
Zhang
,
C.-W.
Yang
,
R. A.
Kaindl
,
L.-J.
Li
,
Y.
Wang
, and
X.
Zhang
, “
Observation of chiral phonons
,”
Science
359
,
579
(
2018
).
8.
H.
Chen
,
W.
Wu
,
J.
Zhu
,
S. A.
Yang
, and
L.
Zhang
, “
Propagating chiral phonons in three-dimensional materials
,”
Nano Lett.
21
,
3060
(
2021
).
9.
T.
Yin
,
K. A.
Ulman
,
S.
Liu
,
A. G.
del Águila
,
Y.
Huang
,
L.
Zhang
,
M.
Serra
,
D.
Sedmidubsky
,
Z.
Sofer
,
S. Y.
Quek
, and
Q.
Xiong
, “
Chiral phonons and giant magneto-optical effect in CrBr3 2D magnet
,”
Adv. Mater.
33
,
2101618
(
2021
).
10.
Y.
Liu
,
X.
Chen
, and
Y.
Xu
, “
Topological phononics: From fundamental models to real materials
,”
Adv. Funct. Mater.
30
,
1904784
(
2020
).
11.
X.
Wang
,
T.
Yang
,
Z.
Cheng
,
G.
Surucu
,
J.
Wang
,
F.
Zhou
,
Z.
Zhang
, and
G.
Zhang
, “
Topological nodal line phonons: Recent advances in materials realization
,”
Appl. Phys. Rev.
9
,
041304
(
2022
).
12.
X.-Q.
Chen
,
J.
Liu
, and
J.
Li
, “
Topological phononic materials: Computation and data
,”
Innovation
2
,
100134
(
2021
).
13.
Y.
Liu
,
Y.
Xu
, and
W.
Duan
, “
Berry phase and topological effects of phonons
,”
Natl. Sci. Rev.
5
,
314
(
2018
).
14.
H.
Miao
,
T. T.
Zhang
,
L.
Wang
,
D.
Meyers
,
A. H.
Said
,
Y. L.
Wang
,
Y. G.
Shi
,
H. M.
Weng
,
Z.
Fang
, and
M. P. M.
Dean
, “
Observation of double Weyl phonons in parity-breaking FeSi
,”
Phys. Rev. Lett.
121
,
035302
(
2018
).
15.
Y.
Liu
,
N.
Zou
,
S.
Zhao
,
X.
Chen
,
Y.
Xu
, and
W.
Duan
, “
Ubiquitous topological states of phonons in solids: Silicon as a model material
,”
Nano Lett.
22
,
2120
(
2022
).
16.
Y.
Liu
,
Y.
Xu
, and
W.
Duan
, “
Three-dimensional topological states of phonons with tunable pseudospin physics
,”
Research
2019
,
5173580
.
17.
B.
Peng
,
Y.
Hu
,
S.
Murakami
,
T.
Zhang
, and
B.
Monserrat
, “
Topological phonons in oxide perovskites controlled by light
,”
Sci. Adv.
6
,
eabd1618
(
2020
).
18.
J. J.
Zhu
,
W. K.
Wu
,
J. Z.
Zhao
,
H.
Chen
,
L. F.
Zhang
, and
S. S. A.
Yang
, “
Symmetry-enforced nodal chain phonons
,”
npj Quantum Mater.
7
,
52
(
2022
).
19.
T. T.
Zhang
,
H.
Miao
,
Q.
Wang
,
J. Q.
Lin
,
Y.
Cao
,
G.
Fabbris
,
A. H.
Said
,
X.
Liu
,
H. C.
Lei
,
Z.
Fang
,
H. M.
Weng
, and
M. P. M.
Dean
, “
Phononic helical nodal lines with P T protection in MoB2
,”
Phys. Rev. Lett.
123
,
245302
(
2019
).
20.
H. H.
Fu
,
Q. B.
Liu
,
Z. Q.
Wang
, and
X. F.
Yang
, “
Multi-fold fan-shape surface state induced by an isolated Weyl phonon beyond no-go theorem
,”
Adv. Sci.
10
,
2207508
(
2023
).
21.
J.
Li
,
J.
Liu
,
S. A.
Baronett
,
M.
Liu
,
L.
Wang
,
R.
Li
,
Y.
Chen
,
D.
Li
,
Q.
Zhu
, and
X.
Chen
, “
Computation and data driven discovery of topological phononic materials
,”
Nat. Commun.
12
,
1204
(
2020
).
22.
Z. J.
Chen
,
R.
Wang
,
B. W.
Xia
,
B. B.
Zheng
,
Y. J.
Jin
,
Y.-J.
Zhao
, and
H.
Xu
, “
Three-dimensional Dirac phonons with inversion symmetry
,”
Phys. Rev. Lett.
126
,
185301
(
2021
).
23.
B. W.
Xia
,
R.
Wang
,
Z. J.
Chen
,
Y. J.
Zhao
, and
H.
Xu
, “
Symmetry-protected ideal type-II Weyl phonons in CdTe
,”
Phys. Rev. Lett.
123
,
065501
(
2019
).
24.
T.
Zhang
,
Z.
Song
,
A.
Alexandradinata
,
H.
Weng
,
C.
Fang
,
L.
Lu
, and
Z.
Fang
, “
Double-Weyl phonons in transition-metal monosilicides
,”
Phys. Rev. Lett.
120
,
016401
(
2018
).
25.
R.
Wang
,
B. W.
Xia
,
Z. J.
Chen
,
B. B.
Zheng
,
Y. J.
Zhao
, and
H.
Xu
, “
Symmetry-protected topological triangular Weyl complex
,”
Phys. Rev. Lett.
124
,
105303
(
2020
).
26.
Z. Y.
Dong
,
S. L.
Yu
, and
J. X.
Li
, “
Projective symmetry group classification of 3 parafermion spin liquids on a honeycomb lattice
,”
Phys. Rev. B
96
,
245114
(
2017
).
27.
W. A.
Benalcazar
,
B. A.
Bernevig
, and
T. L.
Hughes
, “
Quantized electric multipole insulators
,”
Science
357
,
61
(
2017
).
28.
F.
Schindler
,
A. M.
Cook
,
M. G.
Vergniory
,
Z.
Wang
,
S. S.
Parkin
,
B. A.
Bernevig
, and
T.
Neupert
, “
Higher-order topological insulators
,”
Sci. Adv.
4
,
eaat0346
(
2018
).
29.
W. A.
Benalcazar
,
T.
Li
, and
T. L.
Hughes
, “
Quantization of fractional corner charge in Cn-symmetric higher-order topological crystalline insulators
,”
Phys. Rev. B
99
,
245151
(
2019
).
30.
T.
Mizoguchi
,
H.
Araki
, and
Y.
Hatsugai
, “
Higher-order topological phase in a honeycomb-lattice model with anti-Kekulé distortion
,”
J. Phys. Soc. Jpn.
88
,
104703
(
2019
).
31.
E.
Lee
,
A.
Furusaki
, and
B. J.
Yang
, “
Fractional charge bound to a vortex in two-dimensional topological crystalline insulators
,”
Phys. Rev. B
101
,
241109
(
2020
).
32.
X.
Wang
,
X.-P.
Li
,
J.
Li
,
C.
Xie
,
J.
Wang
,
H.
Yuan
,
W.
Wang
,
Z.
Cheng
,
Z.-M.
Yu
, and
G.
Zhang
, “
Magnetic second-order topological insulator: An experimentally feasible 2D CrSiTe3
,”
Adv. Funct. Mater.
(published online 2023).
33.
H.
Mu
,
B.
Liu
,
T.
Hu
, and
Z.
Wang
, “
Kekulé lattice in graphdiyne: Coexistence of phononic and electronic second-order topological insulator
,”
Nano Lett.
22
,
1122
(
2022
).
34.
J.
Zhu
,
W.
Wu
,
J.
Zhao
,
C.
Chen
,
Q.
Wang
,
X.-L.
Sheng
,
L.
Zhang
,
Y. X.
Zhao
, and
S. A.
Yang
, “
Phononic real Chern insulator with protected corner modes in graphynes
,”
Phys. Rev. B
105
,
085123
(
2022
).
35.
F. F.
Huang
,
P.
Zhou
,
W. Q.
Li
,
S. D.
He
,
R.
Tan
,
Z. S.
Ma
, and
L. Z.
Sun
, “
Phononic second-order topological phase in the C3N compound
,”
Phys. Rev. B
107
,
134104
(
2023
).
36.
M.
Pan
and
H.
Huang
, “
Phononic Stiefel-Whitney topology with corner vibrational modes in two-dimensional Xenes and ligand-functionalized derivatives
,”
Phys. Rev. B
106
,
L201406
(
2022
).
37.
Y.
Jin
,
R.
Wang
, and
H.
Xu
, “
Recipe for Dirac phonon states with a quantized valley berry phase in two-dimensional hexagonal lattices
,”
Nano Lett.
18
,
7755
(
2018
).
38.
J.
Gong
,
J.
Wang
,
H.
Yuan
,
Z.
Zhang
,
W.
Wang
, and
X.
Wang
, “
Dirac phonons in two-dimensional materials
,”
Phys. Rev. B
106
,
214317
(
2022
).
39.
J.
Li
,
L.
Wang
,
J.
Liu
,
R.
Li
,
Z.
Zhang
, and
X.-Q.
Chen
, “
Topological phonons in graphene
,”
Phys. Rev. B
101
,
081403(R)
(
2020
).
40.
M.
Zhong
,
H.
Liu
,
J.
Wang
,
C.
Xie
,
H.
Yuan
,
Z.
Zhang
, and
G.
Zhang
, “
Complete list of valley linear Weyl point phonons in two dimensions
,”
Phys. Rev. B
107
,
205406
(
2023
).
41.
W.-W.
Yu
,
Y.
Liu
,
W.
Meng
,
H.
Liu
,
J.
Gao
,
X.
Zhang
, and
G.
Liu
, “
Phononic higher-order nodal point in two dimensions
,”
Phys. Rev. B
105
,
035429
(
2022
).
42.
Z.
Huang
,
Z.
Chen
,
B.
Zheng
, and
H.
Xu
, “
Three-terminal Weyl complex with double surface arcs in a cubic lattice
,”
npj Comput. Mater.
6
,
87
(
2020
).
43.
Y.
Yang
,
J.
Wang
,
Y.
Liu
,
Y.
Cui
,
G.
Ding
, and
X.
Wang
, “
Topological phonons in Cs-Te binary systems
,”
Phys. Rev. B
107
,
024304
(
2023
).
44.
B.
Peng
,
S.
Murakami
,
B.
Monserrat
, and
T.
Zhang
, “
Degenerate topological line surface phonons in quasi-1D double helix crystal SnIP
,”
npj Comput. Mater.
7
,
195
(
2021
).
45.
M.
Zhong
,
Y.
Han
,
J.
Wang
,
Y.
Liu
,
X.
Wang
, and
G.
Zhang
, “
Material realization of double-Weyl phonons and phononic double-helicoid surface arcs with P 2 1 3 space group
,”
Phys. Rev. Mater.
6
,
084201
(
2022
).
46.
M.
Zhong
,
Y.
Liu
,
F.
Zhou
,
M.
Kuang
,
T.
Yang
,
X.
Wang
, and
G.
Zhang
, “
Coexistence of phononic sixfold, fourfold, and threefold excitations in the ternary antimonide Zr3Ni3Sb4
,”
Phys. Rev. B
104
,
085118
(
2021
).
47.
T.
Yang
,
C.
Xie
,
H.
Chen
,
X.
Wang
, and
G.
Zhang
, “
Phononic nodal points with quadratic dispersion and multifold degeneracy in the cubic compound Ta3Sn
,”
Phys. Rev. B
105
,
094310
(
2022
).
48.
C.
Bao
,
H.
Zhang
,
T.
Zhang
,
X.
Wu
,
L.
Luo
,
S.
Zhou
,
Q.
Li
,
Y.
Hou
,
W.
Yao
,
L.
Liu
,
P.
Yu
,
J.
Li
,
W.
Duan
,
H.
Yao
,
Y.
Wang
, and
S.
Zhou
, “
Experimental evidence of chiral symmetry breaking in Kekulé-ordered graphene
,”
Phys. Rev. Lett.
126
,
206804
(
2021
).
49.
H.
Zhang
,
C.
Bao
,
M.
Schuler
,
S.
Zhou
,
Q.
Li
,
L.
Luo
,
W.
Yao
,
Z.
Wang
,
T. P.
Devereaux
, and
S.
Zhou
, “
Self-energy dynamics and the mode-specific phonon threshold effect in Kekulé-ordered graphene
,”
Natl. Sci. Rev.
9
,
nwab175
(
2022
).
50.
H.
Nielsen
and
M.
Ninomiya
, “
Absence of neutrinos on a lattice: (I). Proof by homotopy theory
,”
Nucl. Phys. B
185
,
20
(
1981
).
51.
H.
Nielsen
and
M.
Ninomiya
, “
Absence of neutrinos on a lattice: (II). Intuitive topological proof
,”
Nucl. Phys. B
193
,
173
(
1981
).
52.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
53.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
(
1996
).
54.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
55.
X.
Gonze
and
C.
Lee
, “
Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory
,”
Phys. Rev. B
55
,
10355
(
1997
).
56.
A.
Togo
and
I.
Tanaka
, “
First principles phonon calculations in materials science
,”
Scr. Mater.
108
,
1–5
(
2015
).
57.
D.
Moldovan
,
M.
Andelković
, and
F.
Peeters
(
2020
). “pybinding v0.9.5: A Python package for tight-binding calculations (v0.9.5),”
Zenodo.
https://doi.org/10.5281/zenodo.4010216
58.
M. P. L.
Sancho
,
J. M. L.
Sancho
, and
J.
Rubio
, “
Highly convergent schemes for the calculation of bulk and surface Green functions
,”
J. Phys. F
15
,
851
(
1985
).
59.
Q.
Wu
,
S.
Zhang
,
H.-F.
Song
,
M.
Troyer
, and
A. A.
Soluyanov
, “
WannierTools: An open-source software package for novel topological materials
,”
Phys. Chem. Commun.
224
,
405
(
2018
).
60.
Y.
Zhao
,
Y.
Cai
,
L.
Zhang
,
B.
Li
,
G.
Zhang
, and
J. T.
Thong
, “
Thermal transport in 2D semiconductors—Considerations for device applications
,”
Adv. Funct. Mater.
30
,
1903929
(
2020
).
61.
K.
Ren
,
H.
Qin
,
H.
Liu
,
Y.
Chen
,
X.
Liu
, and
G.
Zhang
, “
Manipulating interfacial thermal conduction of 2D Janus heterostructure via a thermo-mechanical coupling
,”
Adv. Funct. Mater.
32
,
2110846
(
2022
).
62.
Z.
Yu
,
Z. Y.
Ong
,
S.
Li
,
J. B.
Xu
,
G.
Zhang
,
Y. W.
Zhang
, and
X.
Wang
, “
Analyzing the carrier mobility in transition-metal dichalcogenide MoS2 field-effect transistors
,”
Adv. Funct. Mater.
27
,
1604093
(
2017
).
63.
W. X.
Zhou
,
Y.
Cheng
,
K. Q.
Chen
,
G.
Xie
,
T.
Wang
, and
G.
Zhang
, “
Thermal conductivity of amorphous materials
,”
Adv. Funct. Mater.
30
,
1903829
(
2020
).
64.
T.
Wang
,
C.
Zhang
,
H.
Snoussi
, and
G.
Zhang
, “
Machine learning approaches for thermoelectric materials research
,”
Adv. Funct. Mater.
30
,
1906041
(
2020
).
65.
Z.-M.
Yu
,
Z.
Zhang
,
G.-B.
Liu
,
W.
Wu
,
X.-P.
Li
,
R.-W.
Zhang
,
S. A.
Yang
, and
Y.
Yao
, “
Encyclopedia of emergent particles in three-dimensional crystals
,”
Sci. Bull.
67
,
375
(
2022
).
66.
J.
Ahn
,
D.
Kim
,
Y.
Kim
, and
B.-J.
Yang
, “
Band topology and linking structure of nodal line semimetals with Z2 monopole charges
,”
Phys. Rev. Lett.
121
,
106403
(
2018
).
67.
C.
Chen
,
W.
Wu
,
Z.-M.
Yu
,
Z.
Chen
,
Y. X.
Zhao
,
X.-L.
Sheng
, and
S. A.
Yang
, “
Graphyne as a second-order and real Chern topological insulator in two dimensions
,”
Phys. Rev. B
104
,
085205
(
2021
).
68.
S.
Qian
,
C.-C.
Liu
, and
Y.
Yao
, “
Second-order topological insulator state in hexagonal lattices and its abundant material candidates
,”
Phys. Rev. B
104
,
245427
(
2021
).
69.
S.
Qian
,
G.-B.
Liu
,
C.-C.
Liu
, and
Y.
Yao
, “
Cn-symmetric higher-order topological crystalline insulators in atomically thin transition metal dichalcogenides
,”
Phys. Rev. B
105
,
045417
(
2022
).
70.
S.
Zhang
,
W.
Zhou
,
Y.
Ma
,
J.
Ji
,
B.
Cai
,
S. A.
Yang
,
Z.
Zhu
,
Z.
Chen
, and
H.
Zeng
, “
Antimonene oxides: Emerging tunable direct bandgap semiconductor and novel topological insulator
,”
Nano Lett.
17
,
3434
(
2017
).
71.
Q.
Li
,
C. X.
Trang
,
W.
Wu
,
J.
Hwang
,
D.
Cortie
,
N.
Medhekar
,
S.-K.
Mo
,
S. A.
Yang
, and
M. T.
Edmonds
, “
Large magnetic gap in a designer ferromagnet–topological insulator–ferromagnet heterostructure
,”
Adv. Mater.
34
,
2107520
(
2022
).
72.
A. P.
Schnyder
,
S.
Ryu
,
A.
Furusaki
, and
A. W. W.
Ludwig
, “
Classification of topological insulators and superconductors in three spatial dimensions
,”
Phys. Rev. B
78
,
195125
(
2008
).
73.
X.
Wang
,
F.
Zhou
,
Z.
Zhang
,
W.
Wu
,
Z. M.
Yu
, and
S. A.
Yang
, “
Single pair of multi-Weyl points in nonmagnetic crystals
,”
Phys. Rev. B
106
,
195129
(
2022
).
74.
S.
Singh
,
Q. S.
Wu
,
C.
Yue
,
A. H.
Romero
, and
A. A.
Soluyanov
, “
Topological phonons and thermoelectricity in triple-point metals
,”
Phys. Rev. Mater.
2
,
114204
(
2018
).
75.
W.
Meng
,
X.
Zhang
,
Y.
Liu
,
X.
Dai
,
G.
Liu
,
Y.
Gu
,
E. P.
Kenny
, and
L.
Kou
, “
Multifold fermions and fermi arcs boosted catalysis in nanoporous electride 12CaO · 7Al2O3
,”
Adv. Sci.
10
,
2205940
(
2023
).

Supplementary Material

You do not currently have access to this content.