Wireless and long-range energy transmission is an essential technology in the era of the Internet of Things, and currently it still relies on rigid and bulky metal antennas, which is incompatible with future wearable electronics. Here, we report a wearable and long-range MXene (Ti3C2Tx) 5G antenna energy harvester system that functions reliably as a wireless and battery-free power source for uninterrupted sensing and wireless data transmission. The MXene 5G antenna can efficiently harvest radio frequency (RF) electromagnetic energy at a 5G frequency range 1 band of 915 MHz, under a minimum input RF power density of 0.005 mW·cm−2, about 16 times lower than the threshold value for a control copper antenna. The device shows good mechanical bendability as it keeps over 99% power transfer efficiency at a bending angle of 90°. Our results open a new route for developing next-generation wireless powering for wearable electronics.

1.
H. C.
Ates
,
A. K.
Yetisen
,
F.
Güder
, and
C.
Dincer
, “
Wearable devices for the detection of COVID-19
,”
Nat. Electron.
4
,
13
14
(
2021
).
2.
H. C.
Ates
et al, “
End-to-end design of wearable sensors
,”
Nat. Rev. Mater.
7
,
887
(
2022
).
3.
M.
Gao
et al, “
Power generation for wearable systems
,”
Energy Environ. Sci.
14
,
2114
2157
(
2021
).
4.
S.
Mukherjee
,
A.
Albertengo
, and
T.
Djenizian
, “
Beyond flexible-Li-ion battery systems for soft electronics
,”
Energy Storage Mater.
42
,
773
785
(
2021
).
5.
C.-G.
Han
et al, “
Giant thermopower of ionic gelatin near room temperature
,”
Science
368
,
1091
1098
(
2020
).
6.
Y.
Song
et al, “
Wireless battery-free wearable sweat sensor powered by human motion
,”
Sci. Adv.
6
,
eaay9842
(
2020
).
7.
Y.
Liu
et al, “
Piezoelectric energy harvesting for self-powered wearable upper limb applications
,”
Nano Sel.
2
,
1459
1479
(
2021
).
8.
Y. S.
Choi
et al, “
A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy
,”
Science
376
,
1006
1012
(
2022
).
9.
X.
Zhang
et al, “
Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting
,”
Nature
566
,
368
372
(
2019
).
10.
R.
Lin
et al, “
Wireless battery-free body sensor networks using near-field-enabled clothing
,”
Nat. Commun.
11
,
444
(
2020
).
11.
A.
Kurs
et al, “
Wireless power transfer via strongly coupled magnetic resonances
,”
Science
317
,
83
86
(
2007
).
12.
X.
Lu
,
P.
Wang
,
D.
Niyato
,
D. I.
Kim
, and
Z.
Han
, “
Wireless networks with RF energy harvesting: A contemporary survey
,”
IEEE Commun. Surv. Tutorials
17
,
757
789
(
2014
).
13.
J.
Zhang
et al, “
Flexible graphene-assembled film-based antenna for wireless wearable sensor with miniaturized size and high sensitivity
,”
ACS Omega
5
,
12937
12943
(
2020
).
14.
A.
VahidMohammadi
,
J.
Rosen
, and
Y.
Gogotsi
, “
The world of two-dimensional carbides and nitrides (MXenes)
,”
Science
372
,
eabf1581
(
2021
).
15.
M.
Han
et al, “
Solution-processed Ti3C2Tx MXene antennas for radio-frequency communication
,”
Adv. Mater.
33
,
2003225
(
2021
).
16.
L.
Liang
et al, “
Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance
,”
ACS Nano
15
,
6622
6632
(
2021
).
17.
F.
Shahzad
et al, “
Electromagnetic interference shielding with 2D transition metal carbides (MXenes)
,”
Science
353
,
1137
1140
(
2016
).
18.
A.
Sarycheva
et al, “
2D titanium carbide (MXene) for wireless communication
,”
Sci. Adv.
4
,
eaau0920
(
2018
).
19.
Y.
Si
et al, “
Roll-to-roll processable MXene-rGO-PVA composite films with enhanced mechanical properties and environmental stability for electromagnetic interference shielding
,”
Ceram. Int.
48
,
24898
24905
(
2022
).
20.
A.
Yin
et al, “
A highly sensitive and miniaturized wearable antenna based on MXene films for strain sensing
,”
Mater. Adv.
4
,
917
922
(
2023
).
21.
Y.
Wang
et al, “
MXenes for energy harvesting
,”
Adv. Mater.
34
,
2108560
(
2022
).
22.
M.
Shekhirev
,
C. E.
Shuck
,
A.
Sarycheva
, and
Y.
Gogotsi
, “
Characterization of MXenes at every step, from their precursors to single flakes and assembled films
,”
Prog. Mater. Sci.
120
,
100757
(
2021
).
23.
X.
Li
,
J.
Huang
, and
M. J.
Edirisinghe
, “
Novel patterning of nano-bioceramics: Template-assisted electrohydrodynamic atomization spraying
,”
J. R. Soc. Interface
5
,
253
257
(
2008
).
24.
Y.
Xuan
et al, “
Graphene/semiconductor heterostructure wireless energy harvester through hot electron excitation
,”
Research
2020
,
3850389
.
25.
International Commission on Non-Ionizing Radiation Protection (ICNIRP)
, “
Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)
,”
Health Phys.
74
(
4
),
494
522
(
1998
), https://pubmed.ncbi.nlm.nih.gov/9525427/.
26.
D.
Qi
et al, “
Power density case study for 5G mmWave array antennas
,”
Wireless Commun. Mobile Comput.
2021
,
5512957
.
27.
T.
Pisarkiewicz
et al, “
Multilayer structure of reduced graphene oxide and copper oxide as a gas sensor
,”
Coatings
10
,
1015
(
2020
).
28.
A.
Iqbal
,
J.
Kwon
,
M.-K.
Kim
, and
C.
Koo
, “
MXenes for electromagnetic interference shielding: Experimental and theoretical perspectives
,”
Mater. Today Adv.
9
,
100124
(
2021
).
29.
S.
Emaminejad
et al, “
Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
4625
4630
(
2017
).
30.
H.
Lin
et al, “
A programmable epidermal microfluidic valving system for wearable biofluid management and contextual biomarker analysis
,”
Nat. Commun.
11
,
4405
(
2020
).
31.
H.
Li
,
Z.
Tang
,
Z.
Liu
, and
C.
Zhi
, “
Evaluating flexibility and wearability of flexible energy storage devices
,”
Joule
3
,
613
619
(
2019
).
32.
D.-H.
Kim
et al, “
Epidermal electronics
,”
Science
333
,
838
843
(
2011
).
33.
S.
Uzun
et al, “
Knittable and washable multifunctional MXene-coated cellulose yarns
,”
Adv. Funct. Mater.
29
,
1905015
(
2019
).
34.
A. C. Y.
Yuen
et al, “
Study of structure morphology and layer thickness of Ti3C2 MXene with Small-Angle Neutron Scattering (SANS)
,”
Compos., Part C
5
,
100155
(
2021
).
35.
P.
Simon
, “
Two-dimensional MXene with controlled interlayer spacing for electrochemical energy storage
,”
ACS Nano
11
,
2393
2396
(
2017
).
36.
K.
Tsirka
,
A.
Katsiki
,
N.
Chalmpes
,
D.
Gournis
, and
A. S.
Paipetis
, “
Mapping of graphene oxide and single layer graphene flakes—Defects annealing and healing
,”
Front. Mater.
5
,
37
(
2018
).
37.
X.
Li
and
H.
Zhu
, “
Two-dimensional MoS2: Properties, preparation, and applications
,”
J. Materiomics
1
,
33
44
(
2015
).
38.
J.
Feng
et al, “
Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors
,”
J. Am. Chem. Soc.
133
,
17832
17838
(
2011
).
39.
H. A.
Becerril
et al, “
Evaluation of solution-processed reduced graphene oxide films as transparent conductors
,”
ACS Nano
2
,
463
470
(
2008
).
40.
S.
Hong
et al, “
Antioxidant high-conductivity copper paste for low-cost flexible printed electronics
,”
npj Flexible Electron.
6
,
17
(
2022
).
41.
B.
Hohendorff
et al, “
Lengths, girths, and diameters of children's fingers from 3 to 10 years of age
,”
Ann. Anat.
192
,
156
161
(
2010
).

Supplementary Material

You do not currently have access to this content.