Flexible thin-film transistors (f-TFTs) not only attract research attention but also possess significant application potential in various fields, such as consumer electronics, human–machine interfaces, healthcare, multipurpose sensors, and logic circuits. Printing is one of the most appealing technologies for fabricating f-TFTs owing to its low cost, suitability for large-scale fabrication, and possibility to be customized under non-vacuum conditions. Significant advancements have been achieved in the printing of f-TFTs regarding several aspects, including printing techniques, printable materials, device performance, and applications, which are summarized and discussed here. Specifically, this review focuses on the recent developments achieved regarding four typical materials commonly used in printed f-TFTs: low-dimensional materials, carbon-based materials, organic materials, and metal-oxide materials. Furthermore, the actual applications of printed f-TFTs are discussed to highlight the issues in contemporary research, and future outlook and prospects regarding the development of printed f-TFTs are provided.

1.
S.
Chung
,
K.
Cho
, and
T.
Lee
, “
Recent progress in inkjet‐printed thin‐film transistors
,”
Adv. Sci.
6
(
6
),
1801445
(
2019
).
2.
S.-W.
Hwang
,
H.
Tao
,
D.-H.
Kim
,
H.
Cheng
,
J.-K.
Song
,
E.
Rill
,
M. A.
Brenckle
,
B.
Panilaitis
,
S. M.
Won
, and
Y.-S.
Kim
, “
A physically transient form of silicon electronics
,”
Science
337
(
6102
),
1640
1644
(
2012
).
3.
P. K.
Weimer
, “
The TFT a new thin-film transistor
,”
Proc. IRE
50
(
6
),
1462
1469
(
1962
).
4.
J. W.
Park
,
B. H.
Kang
, and
H. J.
Kim
, “
A review of low‐temperature solution‐processed metal oxide thin‐film transistors for flexible electronics
,”
Adv. Funct. Mater.
30
(
20
),
1904632
(
2020
).
5.
D. M.
Drotlef
,
M.
Amjadi
,
M.
Yunusa
, and
M.
Sitti
, “
Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors
,”
Adv. Mater.
29
(
28
),
1701353
(
2017
).
6.
W.
Gao
,
S.
Emaminejad
,
H. Y. Y.
Nyein
,
S.
Challa
,
K.
Chen
,
A.
Peck
,
H. M.
Fahad
,
H.
Ota
,
H.
Shiraki
, and
D.
Kiriya
, “
Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
,”
Nature
529
(
7587
),
509
514
(
2016
).
7.
A.
Koh
,
D.
Kang
,
Y.
Xue
,
S.
Lee
,
R. M.
Pielak
,
J.
Kim
,
T.
Hwang
,
S.
Min
,
A.
Banks
, and
P.
Bastien
, “
A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat
,”
Sci. Transl. Med.
8
(
366
),
366ra165
(
2016
).
8.
Y.
Khan
,
F. J.
Pavinatto
,
M. C.
Lin
,
A.
Liao
,
S. L.
Swisher
,
K.
Mann
,
V.
Subramanian
,
M. M.
Maharbiz
, and
A. C.
Arias
, “
Inkjet‐printed flexible gold electrode arrays for bioelectronic interfaces
,”
Adv. Funct. Mater.
26
(
7
),
1004
1013
(
2016
).
9.
J.
Smith
,
S.
Chung
,
J.
Jang
,
C.
Biaou
, and
V.
Subramanian
, “
Solution-processed complementary resistive switching arrays for associative memory
,”
IEEE Trans. Electron Devices
64
(
10
),
4310
4316
(
2017
).
10.
W. J.
Hyun
,
E. B.
Secor
,
M. C.
Hersam
,
C. D.
Frisbie
, and
L. F.
Francis
, “
High‐resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics
,”
Adv. Mater.
27
(
1
),
109
115
(
2015
).
11.
R.
Parashkov
,
E.
Becker
,
T.
Riedl
,
H.-H.
Johannes
, and
W.
Kowalsky
, “
Large area electronics using printing methods
,”
Proc. IEEE
93
(
7
),
1321
1329
(
2005
).
12.
V.
Subramanian
,
J. M.
Fréchet
,
P. C.
Chang
,
D. C.
Huang
,
J. B.
Lee
,
S. E.
Molesa
,
A. R.
Murphy
,
D. R.
Redinger
, and
S. K.
Volkman
, “
Progress toward development of all-printed RFID tags: Materials, processes, and devices
,”
Proc. IEEE
93
(
7
),
1330
1338
(
2005
).
13.
S.
Tong
,
J.
Sun
, and
J.
Yang
, “
Printed thin-film transistors: Research from China
,”
ACS Appl. Mater. Interfaces
10
(
31
),
25902
25924
(
2018
).
14.
N.
Palavesam
,
S.
Marin
,
D.
Hemmetzberger
,
C.
Landesberger
,
K.
Bock
, and
C.
Kutter
, “
Roll-to-roll processing of film substrates for hybrid integrated flexible electronics
,”
Flexible Printed Electron.
3
(
1
),
014002
(
2018
).
15.
G.
Grau
,
J.
Cen
,
H.
Kang
,
R.
Kitsomboonloha
,
W. J.
Scheideler
, and
V.
Subramanian
, “
Gravure-printed electronics: Recent progress in tooling development, understanding of printing physics, and realization of printed devices
,”
Flexible Printed Electron.
1
(
2
),
023002
(
2016
).
16.
Y. Y.
Chen
,
Y.
Sun
,
Q. B.
Zhu
,
B. W.
Wang
,
X.
Yan
,
S.
Qiu
,
Q. W.
Li
,
P. X.
Hou
,
C.
Liu
, and
D. M.
Sun
, “
High‐throughput fabrication of flexible and transparent all‐carbon nanotube electronics
,”
Adv. Sci.
5
(
5
),
1700965
(
2018
).
17.
J.
Tang
,
Q.
Cao
,
G.
Tulevski
,
K. A.
Jenkins
,
L.
Nela
,
D. B.
Farmer
, and
S.-J.
Han
, “
Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays
,”
Nat. Electron.
1
(
3
),
191
196
(
2018
).
18.
D.
Lee
,
J.
Yoon
,
J.
Lee
,
B.-H.
Lee
,
M.-L.
Seol
,
H.
Bae
,
S.-B.
Jeon
,
H.
Seong
,
S. G.
Im
, and
S.-J.
Choi
, “
Logic circuits composed of flexible carbon nanotube thin-film transistor and ultra-thin polymer gate dielectric
,”
Sci. Rep.
6
(
1
),
26121
(
2016
).
19.
D. M.
Sun
,
C.
Liu
,
W. C.
Ren
, and
H. M.
Cheng
, “
All‐carbon thin‐film transistors as a step towards flexible and transparent electronics
,”
Adv. Electron. Mater.
2
(
11
),
1600229
(
2016
).
20.
T.
Sekine
,
K.
Fukuda
,
D.
Kumaki
, and
S.
Tokito
, “
Highly stable flexible printed organic thin-film transistor devices under high strain conditions using semiconducting polymers
,”
Jpn. J. Appl. Phys., Part 1
54
(
4S
),
04DK10
(
2015
).
21.
K.
Nakayama
,
Y.
Hirose
,
J.
Soeda
,
M.
Yoshizumi
,
T.
Uemura
,
M.
Uno
,
W.
Li
,
M. J.
Kang
,
M.
Yamagishi
, and
Y.
Okada
, “
Patternable solution‐crystallized organic transistors with high charge carrier mobility
,”
Adv. Mater.
23
(
14
),
1626
1629
(
2011
).
22.
L.-L.
Chua
,
J.
Zaumseil
,
J.-F.
Chang
,
E. C.-W.
Ou
,
P. K.-H.
Ho
,
H.
Sirringhaus
, and
R. H.
Friend
, “
General observation of n-type field-effect behaviour in organic semiconductors
,”
Nature
434
(
7030
),
194
199
(
2005
).
23.
S.
Park
,
K. H.
Kim
,
J. W.
Jo
,
S.
Sung
,
K. T.
Kim
,
W. J.
Lee
,
J.
Kim
,
H. J.
Kim
,
G. R.
Yi
, and
Y. H.
Kim
, “
In‐depth studies on rapid photochemical activation of various sol–gel metal oxide films for flexible transparent electronics
,”
Adv. Funct. Mater.
25
(
19
),
2807
2815
(
2015
).
24.
W. J.
Scheideler
,
J.
Smith
,
I.
Deckman
,
S.
Chung
,
A. C.
Arias
, and
V.
Subramanian
, “
A robust, gravure-printed, silver nanowire/metal oxide hybrid electrode for high-throughput patterned transparent conductors
,”
J. Mater. Chem. C
4
(
15
),
3248
3255
(
2016
).
25.
J. K.
Jeong
, “
The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays
,”
Semicond. Sci. Technol.
26
(
3
),
034008
(
2011
).
26.
K.
Fukuda
,
Y.
Takeda
,
Y.
Kobayashi
,
M.
Shimizu
,
T.
Sekine
,
D.
Kumaki
,
M.
Kurihara
,
M.
Sakamoto
, and
S.
Tokito
, “
Patterning method for silver nanoparticle electrodes in fully solution-processed organic thin-film transistors using selectively treated hydrophilic and hydrophobic surfaces
,”
Jpn. J. Appl. Phys., Part 1
52
(
5S1
),
05DB05
(
2013
).
27.
S.
Norita
,
D.
Kumaki
,
Y.
Kobayashi
,
T.
Sato
,
K.
Fukuda
, and
S.
Tokito
, “
Inkjet-printed copper electrodes using photonic sintering and their application to organic thin-film transistors
,”
Org. Electron.
25
,
131
134
(
2015
).
28.
Q.
Liu
,
Y.
Liu
,
J.
Li
,
C.
Lau
,
F.
Wu
,
A.
Zhang
,
Z.
Li
,
M.
Chen
,
H.
Fu
, and
J.
Draper
, “
Fully printed all-solid-state organic flexible artificial synapse for neuromorphic computing
,”
ACS Appl. Mater. Interfaces
11
(
18
),
16749
16757
(
2019
).
29.
Y.
Xie
,
S.
Cai
,
Q.
Shi
,
S.
Ouyang
,
W.-Y.
Lee
,
Z.
Bao
,
J. R.
Matthews
,
R. A.
Bellman
,
M.
He
, and
H. H.
Fong
, “
High performance organic thin film transistors using chemically modified bottom contacts and dielectric surfaces
,”
Org. Electron.
15
(
9
),
2073
2078
(
2014
).
30.
C.
Ji
,
Z.
Sun
,
S.-Q.
Zhang
,
T.
Chen
,
P.
Zhou
, and
J.
Luo
, “
N-isopropylbenzylammonium tetrafluoroborate: An organic dielectric relaxor with a tunable transition between high and low dielectric states
,”
J. Mater. Chem. C
2
(
3
),
567
572
(
2014
).
31.
C.
Qian
,
J.
Sun
,
J.
Yang
, and
Y.
Gao
, “
Flexible organic field-effect transistors on biodegradable cellulose paper with efficient reusable ion gel dielectrics
,”
RSC Adv.
5
(
19
),
14567
14574
(
2015
).
32.
W. A.
MacDonald
,
M.
Looney
,
D.
MacKerron
,
R.
Eveson
,
R.
Adam
,
K.
Hashimoto
, and
K.
Rakos
, “
Latest advances in substrates for flexible electronics
,”
J. Soc. Inf. Disp.
15
(
12
),
1075
1083
(
2007
).
33.
S.
Park
,
S.
Thanakkasaranee
,
H.
Shin
,
K.
Ahn
,
K.
Sadeghi
,
Y.
Lee
,
G.
Tak
, and
J.
Seo
, “
Preparation and characterization of heat-resistant PET/bio-based polyester blends for hot-filled bottles
,”
Polym. Test.
91
,
106823
(
2020
).
34.
S.
Yu
,
J.
Zhang
,
X.
Zhu
,
Y.
Yin
,
J.
Xue
,
F.
Xia
,
Y.
Li
, and
Q.
Xue
, “
Plate-barrier architecture of rGO-TiO2 derived from MXene for constructing well-aligned polymer nanocomposites with excellent dielectric performance
,”
Compos. Sci. Technol.
218
,
109191
(
2021
).
35.
U.
Eduok
,
O.
Faye
, and
J.
Szpunar
, “
Recent developments and applications of protective silicone coatings: A review of PDMS functional materials
,”
Prog. Org. Coat.
111
,
124
163
(
2017
).
36.
M. P.
Wolf
,
G. B.
Salieb-Beugelaar
, and
P.
Hunziker
, “
PDMS with designer functionalities—Properties, modifications strategies, and applications
,”
Prog. Polym. Sci.
83
,
97
134
(
2018
).
37.
D.
Qi
,
K.
Zhang
,
G.
Tian
,
B.
Jiang
, and
Y.
Huang
, “
Stretchable electronics based on PDMS substrates
,”
Adv. Mater.
33
(
6
),
2003155
(
2021
).
38.
S.-M.
Kim
,
S.-A.
Park
,
S. Y.
Hwang
,
E. S.
Kim
,
J.
Jegal
,
C.
Im
,
H.
Jeon
,
D. X.
Oh
, and
J.
Park
, “
Environmentally-friendly synthesis of carbonate-type macrodiols and preparation of transparent self-healable thermoplastic polyurethanes
,”
Polymers
9
(
12
),
663
(
2017
).
39.
R.
Wang
,
W.
Xu
,
W.
Shen
,
X.
Shi
,
J.
Huang
, and
W.
Song
, “
A highly stretchable and transparent silver nanowire/thermoplastic polyurethane film strain sensor for human motion monitoring
,”
Inorg. Chem. Front.
6
(
11
),
3119
3124
(
2019
).
40.
S.
Fuchs
,
K.
Shariati
, and
M.
Ma
, “
Specialty tough hydrogels and their biomedical applications
,”
Adv. Healthcare Mater.
9
(
2
),
1901396
(
2020
).
41.
G.
Sharma
,
B.
Thakur
,
M.
Naushad
,
A.
Kumar
,
F. J.
Stadler
,
S. M.
Alfadul
, and
G. T.
Mola
, “
Applications of nanocomposite hydrogels for biomedical engineering and environmental protection
,”
Environ. Chem. Lett.
16
,
113
146
(
2018
).
42.
L.
Hu
,
P. L.
Chee
,
S.
Sugiarto
,
Y.
Yu
,
C.
Shi
,
R.
Yan
,
Z.
Yao
,
X.
Shi
,
J.
Zhi
, and
D.
Kai
, “
Hydrogel‐based flexible electronics
,”
Adv. Mater.
35
(
14
),
2205326
(
2023
).
43.
B.
Xue
,
H.
Sheng
,
Y.
Li
,
L.
Li
,
W.
Di
,
Z.
Xu
,
L.
Ma
,
X.
Wang
,
H.
Jiang
, and
M.
Qin
, “
Stretchable and self-healable hydrogel artificial skin
,”
Nat. Sci. Rev.
9
(
7
),
nwab147
(
2022
).
44.
J. C.
Yang
,
J.
Mun
,
S. Y.
Kwon
,
S.
Park
,
Z.
Bao
, and
S.
Park
, “
Electronic skin: Recent progress and future prospects for skin‐attachable devices for health monitoring, robotics, and prosthetics
,”
Adv. Mater.
31
(
48
),
1904765
(
2019
).
45.
J.-C.
Ho
,
Y.-C.
Lin
,
C.-K.
Chen
,
L.-C.
Hsu
, and
W.-C.
Chen
, “
Hydrogel-based sustainable and stretchable field-effect transistors
,”
Org. Electron.
100
,
106358
(
2022
).
46.
G.
Tang
and
F.
Yan
, “
Recent progress of flexible perovskite solar cells
,”
Nano Today
39
,
101155
(
2021
).
47.
L.
Zhu
,
S. S.
Babu
,
Q.
Yu
,
Y.
Long
,
Z.
Zheng
,
H.
Wu
,
S.
Liu
,
Z.
Chi
,
Y.
Zhang
, and
J.
Xu
, “
Transparent flexible ultra‐low permeability encapsulation film: Fusible glass fired on heat‐resistant polyimide membrane
,”
Adv. Mater. Interfaces
7
(
23
),
2001170
(
2020
).
48.
A.
Barhoum
,
P.
Samyn
,
T.
Öhlund
, and
A.
Dufresne
, “
Review of recent research on flexible multifunctional nanopapers
,”
Nanoscale
9
(
40
),
15181
15205
(
2017
).
49.
Y.
Zheng
,
Z.
He
,
Y.
Gao
, and
J.
Liu
, “
Direct desktop printed-circuits-on-paper flexible electronics
,”
Sci. Rep.
3
(
1
),
1786
(
2013
).
50.
W.
Zeng
,
L.
Shu
,
Q.
Li
,
S.
Chen
,
F.
Wang
, and
X. M.
Tao
, “
Fiber‐based wearable electronics: A review of materials, fabrication, devices, and applications
,”
Adv. Mater.
26
(
31
),
5310
5336
(
2014
).
51.
Y. L.
Tai
,
Y. X.
Wang
,
Z. G.
Yang
, and
Z. Q.
Chai
, “
Green approach to prepare silver nanoink with potentially high conductivity for printed electronics
,”
Surf. Interface Anal.
43
(
12
),
1480
1485
(
2011
).
52.
Q.
Lu
,
Y.
Zhao
,
L.
Huang
,
J.
An
,
Y.
Zheng
, and
E. H.
Yap
, “
Low-dimensional-materials-based flexible artificial synapse: Materials, devices, and systems
,”
Nanomaterials
13
(
3
),
373
(
2023
).
53.
T. T.
Trinh
,
K.
Ryu
,
K.
Jang
,
W.
Lee
,
S.
Baek
,
J.
Raja
, and
J.
Yi
, “
Improvement in the performance of an InGaZnO thin-film transistor by controlling interface trap densities between the insulator and active layer
,”
Semicond. Sci. Technol.
26
(
8
),
085012
(
2011
).
54.
D.
Bhatt
,
S.
Kumar
, and
S.
Panda
, “
Amorphous IGZO field effect transistor based flexible chemical and biosensors for label free detection
,”
Flexible Printed Electron.
5
(
1
),
014010
(
2020
).
55.
H.
Frenzel
,
A.
Lajn
,
H.
von Wenckstern
,
G.
Biehne
,
H.
Hochmuth
, and
M.
Grundmann
, “
ZnO-based metal-semiconductor field-effect transistors with Ag-, Pt-, Pd-, and Au-Schottky gates
,”
Thin Solid Films
518
(
4
),
1119
1123
(
2009
).
56.
J.-X.
Wang
,
G. W.
Hyung
,
Z.-H.
Li
,
S.-Y.
Son
,
S. J.
Kwon
,
Y. K.
Kim
, and
E. S.
Cho
, “
Effect of organic buffer layer in the electrical properties of amorphous-indium gallium zinc oxide thin film transistor
,”
J. Nanosci. Nanotechnol.
12
(
7
),
5644
5647
(
2012
).
57.
S.
Hu
,
H.
Ning
,
K.
Lu
,
Z.
Fang
,
R.
Tao
,
R.
Yao
,
J.
Zou
,
M.
Xu
,
L.
Wang
, and
J.
Peng
, “
Effect of Al2O3 Passivation layer and Cu electrodes on high mobility of amorphous IZO TFT
,”
IEEE J. Electron Devices Soc.
6
,
733
737
(
2018
).
58.
X.
Zeng
,
P.
He
,
M.
Hu
,
W.
Zhao
,
H.
Chen
,
L.
Liu
,
J.
Sun
, and
J.
Yang
, “
Copper inks for printed electronics: A review
,”
Nanoscale
14
,
16003
(
2022
).
59.
M. S.
Rager
,
T.
Aytug
,
G. M.
Veith
, and
P.
Joshi
, “
Low-thermal-budget photonic processing of highly conductive cu interconnects based on CuO nanoinks: Potential for flexible printed electronics
,”
ACS Appl. Mater. Interfaces
8
(
3
),
2441
2448
(
2016
).
60.
R.
Schefflan
,
S.
Kovenklioglu
,
D.
Kalyon
,
M.
Mezger
, and
M.
Leng
, “
Formation of aluminum nanoparticles upon condensation from vapor phase for energetic applications
,”
J. Energy Mater.
24
(
2
),
141
156
(
2006
).
61.
Y.-H.
Son
,
J.-Y.
Jang
,
M. K.
Kang
,
S.
Ahn
, and
C. S.
Lee
, “
Application of flash-light sintering method to flexible inkjet printing using anti-oxidant copper nanoparticles
,”
Thin Solid Films
656
,
61
67
(
2018
).
62.
L.
Hu
,
H. S.
Kim
,
J.-Y.
Lee
,
P.
Peumans
, and
Y.
Cui
, “
Scalable coating and properties of transparent, flexible, silver nanowire electrodes
,”
ACS Nano
4
(
5
),
2955
2963
(
2010
).
63.
L.
Yang
,
T.
Zhang
,
H.
Zhou
,
S. C.
Price
,
B. J.
Wiley
, and
W.
You
, “
Solution-processed flexible polymer solar cells with silver nanowire electrodes
,”
ACS Appl. Mater. Interfaces
3
(
10
),
4075
4084
(
2011
).
64.
D.
Li
,
W. Y.
Lai
,
Y. Z.
Zhang
, and
W.
Huang
, “
Printable transparent conductive films for flexible electronics
,”
Adv. Mater.
30
(
10
),
1704738
(
2018
).
65.
A.
Kamyshny
and
S.
Magdassi
, “
Conductive nanomaterials for printed electronics
,”
Small
10
(
17
),
3515
3535
(
2014
).
66.
V. B.
Nam
and
D.
Lee
, “
Copper nanowires and their applications for flexible, transparent conducting films: A review
,”
Nanomaterials
6
(
3
),
47
(
2016
).
67.
J.
Zhao
,
H.
Sun
,
S.
Dai
,
Y.
Wang
, and
J.
Zhu
, “
Electrical breakdown of nanowires
,”
Nano Lett.
11
(
11
),
4647
4651
(
2011
).
68.
M.
Xu
,
T.
Liang
,
M.
Shi
, and
H.
Chen
, “
Graphene-like two-dimensional materials
,”
Chem. Rev.
113
(
5
),
3766
3798
(
2013
).
69.
E.
Marseglia
, “
Transition metal dichalcogenides and their intercalates
,”
Int. Rev. Phys. Chem.
3
(
2
),
177
216
(
1983
).
70.
S.
Bertolazzi
,
J.
Brivio
, and
A.
Kis
, “
Stretching and breaking of ultrathin MoS2
,”
ACS Nano
5
(
12
),
9703
9709
(
2011
).
71.
V.
Nicolosi
,
M.
Chhowalla
,
M. G.
Kanatzidis
,
M. S.
Strano
, and
J. N.
Coleman
, “
Liquid exfoliation of layered materials
,”
Science
340
(
6139
),
1226419
(
2013
).
72.
M. N.
Abdelmalak
,
MXenes: A New Family of Two-Dimensional Materials and Its Application as Electrodes for Li-ion Batteries
(
Drexel University
,
2014
).
73.
X.-F.
Jiang
,
Q.
Weng
,
X.-B.
Wang
,
X.
Li
,
J.
Zhang
,
D.
Golberg
, and
Y.
Bando
, “
Recent progress on fabrications and applications of boron nitride nanomaterials: A review
,”
J. Mater. Sci. Technol.
31
(
6
),
589
598
(
2015
).
74.
Q.
Li
,
L.
Chen
,
M. R.
Gadinski
,
S.
Zhang
,
G.
Zhang
,
H. U.
Li
,
E.
Iagodkine
,
A.
Haque
,
L.-Q.
Chen
, and
T. N.
Jackson
, “
Flexible high-temperature dielectric materials from polymer nanocomposites
,”
Nature
523
(
7562
),
576
579
(
2015
).
75.
I.
Jo
,
M. T.
Pettes
,
J.
Kim
,
K.
Watanabe
,
T.
Taniguchi
,
Z.
Yao
, and
L.
Shi
, “
Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride
,”
Nano Lett.
13
(
2
),
550
554
(
2013
).
76.
M.
Naguib
,
M.
Kurtoglu
,
V.
Presser
,
J.
Lu
,
J.
Niu
,
M.
Heon
,
L.
Hultman
,
Y.
Gogotsi
, and
M. W.
Barsoum
, “
Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2
,”
Adv. Mater.
23
(
37
),
4248
4253
(
2011
).
77.
M. A.
Green
,
A.
Ho-Baillie
, and
H. J.
Snaith
, “
The emergence of perovskite solar cells
,”
Nat. Photonics
8
(
7
),
506
514
(
2014
).
78.
D.
Wang
,
M.
Wright
,
N. K.
Elumalai
, and
A.
Uddin
, “
Stability of perovskite solar cells
,”
Sol. Energy Mater. Sol. Cells
147
,
255
275
(
2016
).
79.
Y.
Abate
,
D.
Akinwande
,
S.
Gamage
,
H.
Wang
,
M.
Snure
,
N.
Poudel
, and
S. B.
Cronin
, “
Recent progress on stability and passivation of black phosphorus
,”
Adv. Mater.
30
(
29
),
1704749
(
2018
).
80.
D. K.
Sang
,
H.
Wang
,
Z.
Guo
,
N.
Xie
, and
H.
Zhang
, “
Recent developments in stability and passivation techniques of phosphorene toward next‐generation device applications
,”
Adv. Funct. Mater.
29
(
45
),
1903419
(
2019
).
81.
S.
Hu
,
K.
Lu
,
H.
Ning
,
Z.
Fang
,
X.
Liu
,
W.
Xie
,
R.
Yao
,
J.
Zou
,
M.
Xu
, and
J.
Peng
, “
Effect of ITO serving as a barrier layer for Cu electrodes on performance of a-IGZO TFT
,”
IEEE Electron Device Lett.
39
(
4
),
504
507
(
2018
).
82.
J.
Choi
,
S.
Kang
,
H.
Oh
,
T.
Yu
, and
I.
Sohn
, “
Design and characterization of Ga-doped indium tin oxide films for pixel electrode in liquid crystal display
,”
Thin Solid Films
527
,
141
146
(
2013
).
83.
Y.-J.
Lee
,
J.-H.
Kim
,
J.-C.
Park
,
Y.-H.
Kim
,
D.
Jung
, and
T.-W.
Kim
, “
Characteristics of AZO electrode with high transmittance in near infrared range
,”
J. Nanosci. Nanotechnol.
14
(
12
),
9285
9288
(
2014
).
84.
R. E.
Triambulo
,
H.-G.
Cheong
,
G.-H.
Lee
,
I.-S.
Yi
, and
J.-W.
Park
, “
A transparent conductive oxide electrode with highly enhanced flexibility achieved by controlled crystallinity by incorporating Ag nanoparticles on substrates
,”
J. Alloys Compd.
620
,
340
349
(
2015
).
85.
J.-A.
Jeong
,
J.
Kim
, and
H.-K.
Kim
, “
Ag grid/ITO hybrid transparent electrodes prepared by inkjet printing
,”
Sol. Energy Mater. Sol. Cells
95
(
7
),
1974
1978
(
2011
).
86.
J.
Yang
,
D.
Yan
, and
T. S.
Jones
, “
Molecular template growth and its applications in organic electronics and optoelectronics
,”
Chem. Rev.
115
(
11
),
5570
5603
(
2015
).
87.
D. V.
Bax
,
R. S.
Tipa
,
A.
Kondyurin
,
M. J.
Higgins
,
K.
Tsoutas
,
A.
Gelmi
,
G. G.
Wallace
,
D. R.
McKenzie
,
A. S.
Weiss
, and
M. M.
Bilek
, “
Cell patterning via linker-free protein functionalization of an organic conducting polymer (polypyrrole) electrode
,”
Acta Biomater.
8
(
7
),
2538
2548
(
2012
).
88.
W.-T.
Park
and
W. S.
Wong
, “
Effects of fluid behavior on the electrical characteristics of inkjet-printed thin-film transistors
,”
ACS Appl. Electron. Mater.
4
(
2
),
614
621
(
2022
).
89.
D.
Blasi
,
F.
Viola
,
F.
Modena
,
A.
Luukkonen
,
E.
Macchia
,
R. A.
Picca
,
Z.
Gounani
,
A.
Tewari
,
R.
Österbacka
, and
M.
Caironi
, “
Printed, cost-effective and stable poly (3-hexylthiophene) electrolyte-gated field-effect transistors
,”
J. Mater. Chem. C
8
(
43
),
15312
15321
(
2020
).
90.
E. M.
Jung
,
S. W.
Lee
, and
S. H.
Kim
, “
Printed ion-gel transistor using electrohydrodynamic (EHD) jet printing process
,”
Org. Electron
52
,
123
129
(
2018
).
91.
J. E. E.
Izquierdo
,
J. D.
da Silva Oliveira
,
V. A. M.
Nogueira
,
D. C.
García
,
M. R.
Cavallari
,
I.
Kymissis
, and
F. J.
Fonseca
, “
Bias stress in organic thin-film transistors towards low-cost flexible gas sensors
,”
J. Integr. Circuits Syst.
16
(
2
),
1
11
(
2021
).
92.
S.
Khademi
,
B.
Pourabbas
, and
K.
Foroutani
, “
Synthesis and characterization of poly (thiophene-co-pyrrole) conducting copolymer nanoparticles via chemical oxidative polymerization
,”
Polym. Bull.
75
(
9
),
4291
4309
(
2018
).
93.
J.
Mahashabde
,
S.
Patel
, and
P.
Baviskar
, “
Physical properties of poly [(thiophene-2, 5-diyl)-co-para-chloro benzylidene] doped with cobalt sulphate: Synthesis and characterization
,”
Polym. Bull.
75
(
1
),
255
265
(
2018
).
94.
R.
Morais
,
D. H.
Vieira
,
C.
Gaspar
,
L.
Pereira
,
R.
Martins
, and
E. N.
Alves
, “
Influence of paper surface characteristics on fully inkjet printed PEDOT: PSS-based electrochemical transistors
,”
Semicond. Sci. Technol.
36
(
12
),
125005
(
2021
).
95.
B.
Schmatz
,
A. W.
Lang
, and
J. R.
Reynolds
, “
Fully printed organic electrochemical transistors from green solvents
,”
Adv. Funct. Mater.
29
(
44
),
1905266
(
2019
).
96.
G.
Tarabella
,
D.
Vurro
,
S.
Lai
,
P.
D'Angelo
,
L.
Ascari
, and
S.
Iannotta
, “
Aerosol jet printing of PEDOT: PSS for large area flexible electronics
,”
Flexible Printed Electron.
5
(
1
),
014005
(
2020
).
97.
X.
Zhang
,
Y.
Wang
,
D.
Fu
,
G.
Wang
,
H.
Wei
, and
N.
Ma
, “
Photo-thermal converting polyaniline/ionic liquid inks for screen printing highly-sensitive flexible uncontacted thermal sensors
,”
Eur. Polym. J.
147
,
110305
(
2021
).
98.
R.
Mallikarjun
,
S.
Singh
,
R.
Sengupta
,
K.
Vaibhavi
, and
R.
Joshi
, “
Fabrication and characterization of polyaniline based water gated field effect transistor
,”
AIP Conf. Proc.
2220
,
020118
(
2020
).
99.
A.
Imgharn
,
A.
Hsini
,
Y.
Naciri
,
M.
Laabd
,
H.
Kabli
,
M.
Elamine
,
R.
Lakhmiri
,
B.
Souhail
, and
A.
Albourine
, “
Synthesis and characterization of polyaniline-based biocomposites and their application for effective removal of Orange G dye using adsorption in dynamic regime
,”
Chem. Phys. Lett.
778
,
138811
(
2021
).
100.
D.
Bhat
,
S.
Jena
,
A.
Babusenan
,
J.
Bhattacharyya
, and
D.
Ray
, “
Organic field effect transistors (OFETs) of poly (p-phenylenevinylene) fabricated by chemical vapor deposition (CVD) with improved hole mobility
,”
Synth. Met.
255
,
116108
(
2019
).
101.
Y.
Wang
,
T.
Hasegawa
,
H.
Matsumoto
, and
T.
Michinobu
, “
Significant improvement of unipolar n-type transistor performances by manipulating the coplanar backbone conformation of electron-deficient polymers via hydrogen bonding
,”
J. Am. Chem. Soc.
141
(
8
),
3566
3575
(
2019
).
102.
T. P.
Nguyen
,
V. H.
Tran
, and
V.
Massardier
, “
Electrical conduction in poly(phenylenevinylene) thin films
,”
J. Phys.: Condens. Matter
5
,
6243
(
1993
).
103.
H. M.
Yang
,
Y. K.
Kwon
,
S. B.
Lee
,
S.
Kim
,
K.
Hong
, and
K. H.
Lee
, “
Physically cross-linked homopolymer ion gels for high performance electrolyte-gated transistors
,”
ACS Appl. Mater. Interfaces
9
(
10
),
8813
8818
(
2017
).
104.
K. G.
Cho
,
H. J.
Kim
,
H. M.
Yang
,
K. H.
Seol
,
S. J.
Lee
, and
K. H.
Lee
, “
Sub-2 V, transfer-stamped organic/inorganic complementary inverters based on electrolyte-gated transistors
,”
ACS Appl. Mater. Interfaces
10
(
47
),
40672
40680
(
2018
).
105.
W.
Kim
,
J.
Kwon
,
Y.
Takeda
,
T.
Sekine
,
S.
Tokito
, and
S.
Jung
, “
Flexible and printed organic nonvolatile memory transistor with bilayer polymer dielectrics
,”
Adv. Mater. Technol.
6
(
7
),
2100141
(
2021
).
106.
B.
Nketia‐Yawson
,
G. D.
Tabi
,
J. W.
Jo
, and
Y. Y.
Noh
, “
Solid‐state electrolyte dielectrics based on exceptional high‐k P (VDF‐TrFE‐CTFE) terpolymer for high‐performance field‐effect transistors
,”
Adv. Mater. Interfaces
7
(
17
),
2000842
(
2020
).
107.
M.
Xu
,
W.
Qi
,
S.
Li
, and
W.
Wang
, “
High-mobility, low-voltage programmable/erasable ferroelectric polymer transistor nonvolatile memory based on a P (VDF-TrFE)/PMMA bilayer gate insulator
,”
IEEE Trans. Electron Devices
68
(
7
),
3359
3364
(
2021
).
108.
S.
Lai
,
F. A.
Viola
,
P.
Cosseddu
, and
A.
Bonfiglio
, “
Floating gate, organic field-effect transistor-based sensors towards biomedical applications fabricated with large-area processes over flexible substrates
,”
Sensors
18
(
3
),
688
(
2018
).
109.
Q.
Li
,
J.
Lin
,
T.
Liu
,
H.
Zheng
, and
J.
Liu
, “
Printed flexible thin-film transistors based on different types of modified liquid metal with good mobility
,”
Sci. China Inf. Sci.
62
(
10
),
1
12
(
2019
).
110.
B.
Nketia-Yawson
,
G. D.
Tabi
, and
Y.-Y.
Noh
, “
Polymer electrolyte blend gate dielectrics for high-performance ultrathin organic transistors: Toward favorable polymer blend miscibility and reliability
,”
ACS Appl. Mater. Interfaces
11
(
19
),
17610
17616
(
2019
).
111.
H. J.
Lee
,
S.
Lee
,
Y.
Ji
,
K. G.
Cho
,
K. S.
Choi
,
C.
Jeon
,
K. H.
Lee
, and
K.
Hong
, “
Ultrahigh-mobility and solution-processed inorganic P-channel thin-film transistors based on a transition-metal halide semiconductor
,”
ACS Appl. Mater. Interfaces
11
(
43
),
40243
40251
(
2019
).
112.
J.
Sun
,
S.
Oh
,
Y.
Choi
,
S.
Seo
,
M. J.
Oh
,
M.
Lee
,
W. B.
Lee
,
P. J.
Yoo
,
J. H.
Cho
, and
J. H.
Park
, “
Optoelectronic synapse based on IGZO‐alkylated graphene oxide hybrid structure
,”
Adv. Funct. Mater.
28
(
47
),
1804397
(
2018
).
113.
W.
Huang
,
J.
Chen
,
G.
Wang
,
Y.
Yao
,
X.
Zhuang
,
R. M.
Pankow
,
Y.
Cheng
,
T. J.
Marks
, and
A.
Facchetti
, “
Dielectric materials for electrolyte gated transistor applications
,”
J. Mater. Chem. C
9
(
30
),
9348
9376
(
2021
).
114.
J.
Lee
,
J. W.
Chung
,
G. B.
Yoon
,
M. H.
Lee
,
D. H.
Kim
,
J.
Park
,
J.-K.
Lee
, and
M. S.
Kang
, “
Influence of dielectric layers on charge transport through diketopyrrolopyrrole-containing polymer films: Dielectric polarizability vs capacitance
,”
ACS Appl. Mater. Interfaces
8
(
44
),
30344
30350
(
2016
).
115.
J. H.
Cho
,
J.
Lee
,
Y.
Xia
,
B.
Kim
,
Y.
He
,
M. J.
Renn
,
T. P.
Lodge
, and
C.
Daniel Frisbie
, “
Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic
,”
Nat. Mater.
7
(
11
),
900
906
(
2008
).
116.
Z.
Dang
,
F.
Guo
,
Z.
Wu
,
K.
Jin
, and
J.
Hao
, “
Interface engineering and device applications of 2D ultrathin film/ferroelectric copolymer P (VDF‐TrFE)
,”
Adv. Phys. Res.
2
,
2200038
(
2023
).
117.
K.
Asadi
, “
Resistance switching in two-terminal ferroelectric-semiconductor lateral heterostructures
,”
Appl. Phys. Rev.
7
(
2
),
021307
(
2020
).
118.
X.
Hu
,
Y.
Che
,
Z.
Zhang
,
Q.-D.
Shen
, and
B.
Chu
, “
BiFeO3–BaTiO3/P (VDF-TrFE) multifunctional polymer nanocomposites
,”
ACS Appl. Electron. Mater.
3
(
2
),
743
751
(
2021
).
119.
D.
Kufer
and
G.
Konstantatos
, “
Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed
,”
Nano Lett.
15
(
11
),
7307
7313
(
2015
).
120.
Z.
Xiao
,
J.
Song
,
D. K.
Ferry
,
S.
Ducharme
, and
X.
Hong
, “
Ferroelectric-domain-patterning-controlled Schottky junction state in monolayer MoS2
,”
Phys. Rev. Lett.
118
(
23
),
236801
(
2017
).
121.
D.-H.
Lee
,
H.-S.
Cho
,
D.
Han
,
R.
Chand
,
T.-J.
Yoon
, and
Y.-S.
Kim
, “
Highly selective organic transistor biosensor with inkjet printed graphene oxide support system
,”
J. Mater. Chem. B
5
(
19
),
3580
3585
(
2017
).
122.
S.
Yang
,
S.
Park
,
J.
Bintinger
,
Y.
Bonnassieux
,
J.
Anthony
, and
I.
Kymissis
, “
Employing pneumatic nozzle printing for controlling the crystal growth of small molecule organic semiconductor for field‐effect transistors
,”
Adv. Electron. Mater.
4
(
6
),
1700534
(
2018
).
123.
X.
Li
,
K.
Kim
,
H.
Oh
,
H. C.
Moon
,
S.
Nam
, and
S. H.
Kim
, “
Cone-jet printing of aligned silver nanowire/poly(ethylene oxide) composite electrodes for organic thin-film transistors
,”
Org. Electron.
69
,
190
199
(
2019
).
124.
S.
Duan
,
X.
Gao
,
Y.
Wang
,
F.
Yang
,
M.
Chen
,
X.
Zhang
,
X.
Ren
, and
W.
Hu
, “
Scalable fabrication of highly crystalline organic semiconductor thin film by channel‐restricted screen printing toward the low‐cost fabrication of high‐performance transistor arrays
,”
Adv. Mater.
31
(
16
),
1807975
(
2019
).
125.
X.
Fang
,
J.
Shi
,
X.
Zhang
,
X.
Ren
,
B.
Lu
,
W.
Deng
,
J.
Jie
, and
X.
Zhang
, “
Patterning liquid crystalline organic semiconductors via inkjet printing for high‐performance transistor arrays and circuits
,”
Adv. Funct. Mater.
31
(
21
),
2100237
(
2021
).
126.
S.
Duan
,
T.
Wang
,
B.
Geng
,
X.
Gao
,
C.
Li
,
J.
Zhang
,
Y.
Xi
,
X.
Zhang
,
X.
Ren
, and
W.
Hu
, “
Solution‐processed centimeter‐scale highly aligned organic crystalline arrays for high‐performance organic field‐effect transistors
,”
Adv. Mater.
32
(
12
),
1908388
(
2020
).
127.
Z.
Hu
,
Z.
Lin
,
J.
Su
,
J.
Zhang
,
Y.
Hao
,
J.
Chang
, and
J.
Wu
, “
Controllable self-assembly of PTCDI-C8 for high mobility low-dimensional organic field-effect transistors
,”
ACS Appl. Electron. Mater.
1
(
10
),
2030
2036
(
2019
).
128.
G. A.
Abbas
,
Z.
Ding
,
H. E.
Assender
,
J. J.
Morrison
,
S. G.
Yeates
,
E. R.
Patchett
, and
D. M.
Taylor
, “
A high-yielding evaporation-based process for organic transistors based on the semiconductor DNTT
,”
Org. Electron.
15
(
9
),
1998
2006
(
2014
).
129.
N.
Karim
,
S.
Afroj
,
S.
Tan
,
K. S.
Novoselov
, and
S. G.
Yeates
, “
All inkjet-printed graphene-silver composite ink on textiles for highly conductive wearable electronics applications
,”
Sci. Rep.
9
(
1
),
8035
(
2019
).
130.
N.
Karim
,
S.
Afroj
,
A.
Malandraki
,
S.
Butterworth
,
C.
Beach
,
M.
Rigout
,
K. S.
Novoselov
,
A. J.
Casson
, and
S. G.
Yeates
, “
All inkjet-printed graphene-based conductive patterns for wearable e-textile applications
,”
J. Mater. Chem. C
5
(
44
),
11640
11648
(
2017
).
131.
S.
Santra
,
G.
Hu
,
R.
Howe
,
A.
De Luca
,
S.
Ali
,
F.
Udrea
,
J.
Gardner
,
S.
Ray
,
P.
Guha
, and
T.
Hasan
, “
CMOS integration of inkjet-printed graphene for humidity sensing
,”
Sci. Rep.
5
(
1
),
17374
(
2015
).
132.
X.
Xu
,
M.
Luo
,
P.
He
, and
J.
Yang
, “
Washable and flexible screen printed graphene electrode on textiles for wearable healthcare monitoring
,”
J. Phys. D: Appl. Phys.
53
(
12
),
125402
(
2020
).
133.
A.
Geim
and
K. S.
Novoselov
, “
The rise of graphene
,”
Nat. Mater.
6
(
3
),
183
191
(
2007
).
134.
L.
Liao
,
Y.-C.
Lin
,
M.
Bao
,
R.
Cheng
,
J.
Bai
,
Y.
Liu
,
Y.
Qu
,
K. L.
Wang
,
Y.
Huang
, and
X.
Duan
, “
High-speed graphene transistors with a self-aligned nanowire gate
,”
Nature
467
(
7313
),
305
308
(
2010
).
135.
A.
Peigney
,
C.
Laurent
,
E.
Flahaut
,
R.
Bacsa
, and
A.
Rousset
, “
Specific surface area of carbon nanotubes and bundles of carbon nanotubes
,”
Carbon
39
(
4
),
507
514
(
2001
).
136.
F.
Yavari
and
N.
Koratkar
, “
Graphene-based chemical sensors
,”
J. Phys. Chem. Lett.
3
(
13
),
1746
1753
(
2012
).
137.
Y.
Shao
,
M. F.
El-Kady
,
L. J.
Wang
,
Q.
Zhang
,
Y.
Li
,
H.
Wang
,
M. F.
Mousavi
, and
R. B.
Kaner
, “
Graphene-based materials for flexible supercapacitors
,”
Chem. Soc. Rev.
44
(
11
),
3639
3665
(
2015
).
138.
M. F.
El-Kady
,
V.
Strong
,
S.
Dubin
, and
R. B.
Kaner
, “
Laser scribing of high-performance and flexible graphene-based electrochemical capacitors
,”
Science
335
(
6074
),
1326
1330
(
2012
).
139.
Y.
Xie
,
Y.
Liu
,
Y.
Zhao
,
Y. H.
Tsang
,
S. P.
Lau
,
H.
Huang
, and
Y.
Chai
, “
Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode
,”
J. Mater. Chem. A
2
(
24
),
9142
9149
(
2014
).
140.
A. T.
Dideikin
and
A. Y.
Vul'
, “
Graphene oxide and derivatives: The place in graphene family
,”
Front. Phys.
6
,
149
(
2019
).
141.
A.
Jiříčková
,
O.
Jankovský
,
Z.
Sofer
, and
D.
Sedmidubský
, “
Synthesis and applications of graphene oxide
,”
Materials
15
(
3
),
920
(
2022
).
142.
C.
Mattevi
,
G.
Eda
,
S.
Agnoli
,
S.
Miller
,
K. A.
Mkhoyan
,
O.
Celik
,
D.
Mastrogiovanni
,
G.
Granozzi
,
E.
Garfunkel
, and
M.
Chhowalla
, “
Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films
,”
Adv. Funct. Mater.
19
(
16
),
2577
2583
(
2009
).
143.
S.
Park
and
R. S.
Ruoff
, “
Chemical methods for the production of graphenes
,”
Nat. Nanotechnol.
4
(
4
),
217
224
(
2009
).
144.
G.
Eda
and
M.
Chhowalla
, “
Chemically derived graphene oxide: Towards large‐area thin‐film electronics and optoelectronics
,”
Adv. Mater.
22
(
22
),
2392
2415
(
2010
).
145.
X.
Zeng
,
L.
Deng
,
Y.
Yao
,
R.
Sun
,
J.
Xu
, and
C.-P.
Wong
, “
Flexible dielectric papers based on biodegradable cellulose nanofibers and carbon nanotubes for dielectric energy storage
,”
J. Mater. Chem. C
4
(
25
),
6037
6044
(
2016
).
146.
S.
Rajala
,
T.
Siponkoski
,
E.
Sarlin
,
M.
Mettanen
,
M.
Vuoriluoto
,
A.
Pammo
,
J.
Juuti
,
O. J.
Rojas
,
S.
Franssila
, and
S.
Tuukkanen
, “
Cellulose nanofibril film as a piezoelectric sensor material
,”
ACS Appl. Mater. Interfaces
8
(
24
),
15607
15614
(
2016
).
147.
A. M.
Abdel‐karim
,
A.
Salama
, and
M. L.
Hassan
, “
Electrical conductivity and dielectric properties of nanofibrillated cellulose thin films from bagasse
,”
J. Phys. Org. Chem.
31
(
9
),
e3851
(
2018
).
148.
S.
Agate
,
M.
Joyce
,
L.
Lucia
, and
L.
Pal
, “
Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites–A review
,”
Carbohydr. Polym.
198
,
249
260
(
2018
).
149.
D.
Gaspar
,
S.
Fernandes
,
A. G.
De Oliveira
,
J.
Fernandes
,
P.
Grey
,
R.
Pontes
,
L.
Pereira
,
R.
Martins
,
M.
Godinho
, and
E.
Fortunato
, “
Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors
,”
Nanotechnology
25
(
9
),
094008
(
2014
).
150.
S.
Milovidova
,
O.
Rogazinskaya
,
A.
Sidorkin
,
N. H.
Thuong
,
E.
Grohotova
, and
N.
Popravko
, “
Dielectric properties of composites based on nanocrystalline cellulose and triglycine sulfate
,”
Ferroelectrics
469
(
1
),
116
119
(
2014
).
151.
N.
Lavoine
and
L.
Bergström
, “
Nanocellulose-based foams and aerogels: Processing, properties, and applications
,”
J. Mater. Chem. A
5
(
31
),
16105
16117
(
2017
).
152.
L.
Valentini
,
S. B.
Bon
,
M.
Cardinali
,
E.
Fortunati
, and
J. M.
Kenny
, “
Cellulose nanocrystals thin films as gate dielectric for flexible organic field-effect transistors
,”
Mater. Lett.
126
,
55
58
(
2014
).
153.
E.
Bencurova
,
S.
Shityakov
,
D.
Schaack
,
M.
Kaltdorf
,
E.
Sarukhanyan
,
A.
Hilgarth
,
C.
Rath
,
S.
Montenegro
,
G.
Roth
, and
D.
Lopez
, “
Nanocellulose composites as smart devices with chassis, light-directed DNA storage, engineered electronic properties, and chip integration
,”
Front. Bioeng. Biotechnol.
10
,
869111
(
2022
).
154.
M. L.
Hassan
,
A. F.
Ali
,
A. H.
Salama
, and
A. M.
Abdel‐Karim
, “
Novel cellulose nanofibers/barium titanate nanoparticles nanocomposites and their electrical properties
,”
J. Phys. Org. Chem.
32
(
2
),
e3897
(
2019
).
155.
B.
Poyraz
,
A.
Tozluoğlu
,
Z.
Candan
, and
A.
Demir
, “
Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites
,”
J. Polym. Eng.
37
(
9
),
921
931
(
2017
).
156.
D.
Klemm
,
F.
Kramer
,
S.
Moritz
,
T.
Lindström
,
M.
Ankerfors
,
D.
Gray
, and
A.
Dorris
, “
Nanocelluloses: A new family of nature‐based materials
,”
Angew. Chem. Int. Ed.
50
(
24
),
5438
5466
(
2011
).
157.
B.
Feng
,
X.
Jiang
,
G.
Zou
,
W.
Wang
,
T.
Sun
,
H.
Yang
,
G.
Zhao
,
M.
Dong
,
Y.
Xiao
,
H.
Zhu
, and
I.
Nacre
, “
Liquid metal‐based ultrasensitive electronic skin by spatially regulated cracking strategy
,”
Adv. Funct. Mater.
31
(
29
),
2102359
(
2021
).
158.
S.
Liu
,
M. C.
Yuen
,
E. L.
White
,
J. W.
Boley
,
B.
Deng
,
G. J.
Cheng
, and
R.
Kramer-Bottiglio
, “
Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics
,”
ACS Appl. Mater. Interfaces
10
(
33
),
28232
28241
(
2018
).
159.
B.
Zhang
,
L.
Zhang
,
W.
Deng
,
L.
Jin
,
F.
Chun
,
H.
Pan
,
B.
Gu
,
H.
Zhang
,
Z.
Lv
, and
W.
Yang
, “
Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring
,”
ACS Nano
11
(
7
),
7440
7446
(
2017
).
160.
R.
Chen
, “
Liquid metal based flexible pressure sensor for tactile sensing of robots
,”
J. Phys.: Conf. Ser.
1885
,
052025
(
2021
).
161.
Q.
Gong
,
P.
Ding
,
M.
Xu
,
X.
Zhu
,
M.
Wang
,
J.
Deng
,
Q.
Ma
,
N.
Han
,
Y.
Zhu
, and
J.
Lu
, “
Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction
,”
Nat. Commun.
10
(
1
),
2807
(
2019
).
162.
G.
Li
,
F.
Sun
,
H.
Chen
,
Y.
Jin
,
A.
Zhang
, and
J.
Du
, “
High-efficiency large-area printed multilayer liquid metal wires for stretchable biomedical sensors with recyclability
,”
ACS Appl. Mater. Interfaces
13
(
48
),
56961
56971
(
2021
).
163.
J.
Cheng
,
J.
Shang
,
S.
Yang
,
J.
Dou
,
X.
Shi
, and
X.
Jiang
, “
Wet‐adhesive elastomer for liquid metal‐based conformal epidermal electronics
,”
Adv. Funct. Mater.
32
(
25
),
2200444
(
2022
).
164.
R.
Søndergaard
,
M.
Hösel
,
D.
Angmo
,
T. T.
Larsen-Olsen
, and
F. C.
Krebs
, “
Roll-to-roll fabrication of polymer solar cells
,”
Mater. Today
15
(
1–2
),
36
49
(
2012
).
165.
L. Y.
Zhou
,
J. Z.
Fu
,
Q.
Gao
,
P.
Zhao
, and
Y.
He
, “
All‐printed flexible and stretchable electronics with pressing or freezing activatable liquid‐metal–silicone inks
,”
Adv. Funct. Mater.
30
(
3
),
1906683
(
2020
).
166.
S.
Zhang
,
B.
Wang
,
J.
Jiang
,
K.
Wu
,
C. F.
Guo
, and
Z.
Wu
, “
High-fidelity conformal printing of 3D liquid alloy circuits for soft electronics
,”
ACS Appl. Mater. Interfaces
11
(
7
),
7148
7156
(
2019
).
167.
H.
Chang
,
R.
Guo
,
Z.
Sun
,
H.
Wang
,
Y.
Hou
,
Q.
Wang
,
W.
Rao
, and
J.
Liu
, “
Direct writing and repairable paper flexible electronics using nickel–liquid metal ink
,”
Adv. Mater. Interfaces
5
(
20
),
1800571
(
2018
).
168.
M.
Sang
,
K.
Kim
,
J.
Shin
, and
K. J.
Yu
, “
Ultra‐thin flexible encapsulating materials for soft bio‐integrated electronics
,”
Adv. Sci.
9
(
30
),
2202980
(
2022
).
169.
P. G.
Collins
,
K.
Bradley
,
M.
Ishigami
, and
d A.
Zettl
, “
Extreme oxygen sensitivity of electronic properties of carbon nanotubes
,”
Science
287
(
5459
),
1801
1804
(
2000
).
170.
P. L.
Levesque
,
C. M.
Aguirre
,
M.
Paillet
,
F.
Lapointe
,
B. C.
St-Antoine
,
P.
Desjardins
, and
R.
Martel
, “
The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors
,” in
APS March Meeting Abstracts
(APS,
2009
), p.
D18.011
.
171.
G.
Cantarella
,
J.
Costa
,
T.
Meister
,
K.
Ishida
,
C.
Carta
,
F.
Ellinger
,
P.
Lugli
,
N.
Münzenrieder
, and
L.
Petti
, “
Review of recent trends in flexible metal oxide thin-film transistors for analog applications
,”
Flexible Printed Electron.
5
(
3
),
033001
(
2020
).
172.
H.
Yoo
,
J.
Ha
,
H.
Kim
,
J.
Seo
,
S.-Y.
Lee
, and
Y.
Hong
, “
Tunable stability of all-inkjet-printed double-gate carbon nanotube thin film transistors
,”
IEEE Electron Device Lett.
41
(
6
),
860
863
(
2020
).
173.
S.
Shrestha
,
S.
Parajuli
,
J.
Park
,
H.
Yang
,
T.-Y.
Cho
,
J.-H.
Eom
,
S.-K.
Cho
,
J.
Lim
,
G.
Cho
, and
Y.
Jung
, “
Improving stability of roll-to-roll (R2R) gravure-printed carbon nanotube-based thin film transistors via R2R plasma-enhanced chemical vapor-deposited silicon nitride
,”
Nanomaterials
13
(
3
),
559
(
2023
).
174.
S.
Hong
,
J. W.
Na
,
I. S.
Lee
,
H. T.
Kim
,
B. H.
Kang
,
J.
Chung
, and
H. J.
Kim
, “
Simultaneously defined semiconducting channel layer using electrohydrodynamic jet printing of a passivation layer for oxide thin-film transistors
,”
ACS Appl. Mater. Interfaces
12
(
35
),
39705
39712
(
2020
).
175.
R. G.
Larson
,
The Structure and Rheology of Complex Fluids
(
Oxford University Press
,
New York
,
1999
).
176.
J.
Mewis
and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University Press
,
2012
).
177.
A.
Kamyshny
,
J.
Steinke
, and
S.
Magdassi
, “
Metal-based inkjet inks for printed electronics
,”
Open Appl. Phys. J.
4
(
1
),
19
(
2011
).
178.
N.
Reis
,
C.
Ainsley
, and
B.
Derby
, “
Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors
,”
J. Appl. Phys.
97
(
9
),
094903
(
2005
).
179.
D.
Jang
,
D.
Kim
, and
J.
Moon
, “
Influence of fluid physical properties on ink-jet printability
,”
Langmuir
25
(
5
),
2629
2635
(
2009
).
180.
V.
Bergeron
,
D.
Bonn
,
J. Y.
Martin
, and
L.
Vovelle
, “
Controlling droplet deposition with polymer additives
,”
Nature
405
(
6788
),
772
775
(
2000
).
181.
Q. V.
Thi
,
J.
Ko
,
Y.
Jo
, and
Y.
Joo
, “
Ion-incorporative, degradable nanocellulose crystal substrate for sustainable carbon-based electronics
,”
ACS Appl. Mater. Interfaces
14
(
38
),
43538
43546
(
2022
).
182.
H.
Matsui
,
Y.
Takeda
, and
S.
Tokito
, “
Flexible and printed organic transistors: From materials to integrated circuits
,”
Org. Electron.
75
,
105432
(
2019
).
183.
M.
Parente
,
M.
Van Helvert
,
R. F.
Hamans
,
R.
Verbroekken
,
R.
Sinha
,
A.
Bieberle-Hütter
, and
A.
Baldi
, “
Simple and fast high-yield synthesis of silver nanowires
,”
Nano Lett.
20
(
8
),
5759
5764
(
2020
).
184.
B.
Sapkota
,
W.
Liang
,
A.
VahidMohammadi
,
R.
Karnik
,
A.
Noy
, and
M.
Wanunu
, “
High permeability sub-nanometre sieve composite MoS2 membranes
,”
Nat. Commun.
11
(
1
),
2747
(
2020
).
185.
G.-H.
Shen
,
A. R.
Tandio
, and
F. C.-N.
Hong
, “
Hydrothermally synthesized ultrathin zinc oxide nanowires based field-effect transistors
,”
Thin Solid Films
618
,
100
106
(
2016
).
186.
Q.
Huang
and
Y.
Zhu
, “
Printing conductive nanomaterials for flexible and stretchable electronics: A review of materials, processes, and applications
,”
Adv. Mater. Technol.
4
(
5
),
1800546
(
2019
).
187.
B.
Derby
, “
Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution
,”
Annu. Rev. Mater. Res.
40
,
395
414
(
2010
).
188.
Z.
Yin
,
Y.
Huang
,
N.
Bu
,
X.
Wang
, and
Y.
Xiong
, “
Inkjet printing for flexible electronics: Materials, processes and equipments
,”
Chin. Sci. Bull.
55
(
30
),
3383
3407
(
2010
).
189.
G.
Mattana
,
A.
Loi
,
M.
Woytasik
,
M.
Barbaro
,
V.
Noël
, and
B.
Piro
, “
Inkjet‐printing: A new fabrication technology for organic transistors
,”
Adv. Mater. Technol.
2
(
10
),
1700063
(
2017
).
190.
J. A.
Lim
,
J. H.
Kim
,
L.
Qiu
,
W. H.
Lee
,
H. S.
Lee
,
D.
Kwak
, and
K.
Cho
, “
Inkjet‐printed single‐droplet organic transistors based on semiconductor nanowires embedded in insulating polymers
,”
Adv. Funct. Mater.
20
(
19
),
3292
3297
(
2010
).
191.
T. T. T.
Can
,
Y.-J.
Kwack
, and
W.-S.
Choi
, “
Drop-on-demand patterning of MoS2 using electrohydrodynamic jet printing for thin-film transistors
,”
Mater. Des.
199
,
109408
(
2021
).
192.
K.
Yan
,
J.
Li
,
L.
Pan
, and
Y.
Shi
, “
Inkjet printing for flexible and wearable electronics
,”
APL Mater.
8
(
12
),
120705
(
2020
).
193.
G.
Zhang
,
J.
Pomeroy
,
M.
Navarro
,
H.
Cao
,
M.
Kuball
, and
Y.
Ding
, “
3-D printed microjet impingement cooling for thermal management of ultrahigh-power GaN transistors
,”
IEEE Trans. Compon., Packag., Manuf. Technol
11
(
5
),
748
754
(
2021
).
194.
N. F.
Morrison
and
O. G.
Harlen
, “
Viscoelasticity in inkjet printing
,”
Rheol. Acta
49
(
6
),
619
632
(
2010
).
195.
K.
Li
,
J.-K.
Liu
,
W.-S.
Chen
, and
L.
Zhang
, “
Controllable printing droplets on demand by piezoelectric inkjet: Applications and methods
,”
Microsyst. Technol.
24
(
2
),
879
889
(
2018
).
196.
J.
Sun
,
B.
Bao
,
M.
He
,
H.
Zhou
, and
Y.
Song
, “
Recent advances in controlling the depositing morphologies of inkjet droplets
,”
ACS Appl. Mater. Interfaces
7
(
51
),
28086
28099
(
2015
).
197.
A.
Friederich
,
J. R.
Binder
, and
W.
Bauer
, “
Rheological control of the coffee stain effect for inkjet printing of ceramics
,”
J. Am. Ceram. Soc.
96
(
7
),
2093
2099
(
2013
).
198.
Z.
Zhang
,
X.
Zhang
,
Z.
Xin
,
M.
Deng
,
Y.
Wen
, and
Y.
Song
, “
Controlled inkjetting of a conductive pattern of silver nanoparticles based on the coffee‐ring effect
,”
Adv. Mater.
25
(
46
),
6714
6718
(
2013
).
199.
Z.
Zhang
and
W.
Zhu
, “
Controllable fabrication of a flexible transparent metallic grid conductor based on the coffee ring effect
,”
J. Mater. Chem. C
2
(
45
),
9587
9591
(
2014
).
200.
M. S.
Onses
,
E.
Sutanto
,
P. M.
Ferreira
,
A. G.
Alleyne
, and
J. A.
Rogers
, “
Mechanisms, capabilities, and applications of high‐resolution electrohydrodynamic jet printing
,”
Small
11
(
34
),
4237
4266
(
2015
).
201.
K.-H.
Lee
,
S.-S.
Lee
,
D. B.
Ahn
,
J.
Lee
,
D.
Byun
, and
S.-Y.
Lee
, “
Ultrahigh areal number density solid-state on-chip microsupercapacitors via electrohydrodynamic jet printing
,”
Sci. Adv.
6
(
10
),
eaaz1692
(
2020
).
202.
B. H.
Kim
,
M. S.
Onses
,
J. B.
Lim
,
S.
Nam
,
N.
Oh
,
H.
Kim
,
K. J.
Yu
,
J. W.
Lee
,
J.-H.
Kim
, and
S.-K.
Kang
, “
High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes
,”
Nano Lett.
15
(
2
),
969
973
(
2015
).
203.
L.
Hirt
,
A.
Reiser
,
R.
Spolenak
, and
T.
Zambelli
, “
Additive manufacturing of metal structures at the micrometer scale
,”
Adv. Mater.
29
(
17
),
1604211
(
2017
).
204.
Y.
Han
and
J.
Dong
, “
Electrohydrodynamic (EHD) printing of molten metal ink for flexible and stretchable conductor with self‐healing capability
,”
Adv. Mater. Technol.
3
(
3
),
1700268
(
2018
).
205.
E.
Sutanto
,
K.
Shigeta
,
Y.
Kim
,
P.
Graf
,
D.
Hoelzle
,
K.
Barton
,
A.
Alleyne
,
P.
Ferreira
, and
J. A.
Rogers
, “
A multimaterial electrohydrodynamic jet (E-jet) printing system
,”
J. Micromech. Microeng.
22
(
4
),
045008
(
2012
).
206.
S.
Lu
,
J.
Zheng
,
J. A.
Cardenas
,
N. X.
Williams
,
Y.-C.
Lin
, and
A. D.
Franklin
, “
Uniform and stable aerosol jet printing of carbon nanotube thin-film transistors by ink temperature control
,”
ACS Appl. Mater. Interfaces
12
(
38
),
43083
43089
(
2020
).
207.
S.
Lu
,
J. A.
Cardenas
,
R.
Worsley
,
N. X.
Williams
,
J. B.
Andrews
,
C.
Casiraghi
, and
A. D.
Franklin
, “
Flexible, print-in-place 1D–2D thin-film transistors using aerosol jet printing
,”
ACS Nano
13
(
10
),
11263
11272
(
2019
).
208.
M.
Rother
,
M.
Brohmann
,
S.
Yang
,
S. B.
Grimm
,
S. P.
Schießl
,
A.
Graf
, and
J.
Zaumseil
, “
Aerosol‐jet printing of polymer‐sorted (6, 5) carbon nanotubes for field‐effect transistors with high reproducibility
,”
Adv. Electron. Mater.
3
(
8
),
1700080
(
2017
).
209.
J. B.
Preinfalk
,
T.
Eiselt
,
T.
Wehlus
,
V.
Rohnacher
,
T.
Hanemann
,
G.
Gomard
, and
U.
Lemmer
, “
Large-area screen-printed internal extraction layers for organic light-emitting diodes
,”
ACS Photonics
4
(
4
),
928
933
(
2017
).
210.
X.
Cao
,
C.
Lau
,
Y.
Liu
,
F.
Wu
,
H.
Gui
,
Q.
Liu
,
Y.
Ma
,
H.
Wan
,
M. R.
Amer
, and
C.
Zhou
, “
Fully screen-printed, large-area, and flexible active-matrix electrochromic displays using carbon nanotube thin-film transistors
,”
ACS Nano
10
(
11
),
9816
9822
(
2016
).
211.
P. A.
Ersman
,
D.
Westerberg
,
D.
Tu
,
M.
Nilsson
,
J.
Åhlin
,
A.
Eveborn
,
A.
Lagerlöf
,
D.
Nilsson
,
M.
Sandberg
, and
P.
Norberg
, “
Screen printed digital circuits based on vertical organic electrochemical transistors
,”
Flexible Printed Electron.
2
(
4
),
045008
(
2017
).
212.
M.
Saeidi‐Javash
,
W.
Kuang
,
C.
Dun
, and
Y.
Zhang
, “
3D conformal printing and photonic sintering of high‐performance flexible thermoelectric films using 2D nanoplates
,”
Adv. Funct. Mater.
29
(
35
),
1901930
(
2019
).
213.
Y.-T.
Kwon
,
S.-J.
Yune
,
Y.
Song
,
W.-H.
Yeo
, and
Y.-H.
Choa
, “
Green manufacturing of highly conductive Cu2O and Cu nanoparticles for photonic-sintered printed electronics
,”
ACS Appl. Electron. Mater.
1
(
10
),
2069
2075
(
2019
).
214.
Z.
Zhong
,
P.
Ko
,
J. Y.
Seok
,
H.
Kim
,
S.
Kwon
,
H.
Youn
, and
K.
Woo
, “
Roll‐to‐roll reverse‐offset printing combined with photonic sintering process for highly conductive ultrafine patterns
,”
Adv. Eng. Mater
22
(
10
),
2000463
(
2020
).
215.
S.
Tong
,
J.
Yuan
,
C.
Zhang
,
C.
Wang
,
B.
Liu
,
J.
Shen
,
H.
Xia
,
Y.
Zou
,
H.
Xie
, and
J.
Sun
, “
Large-scale roll-to-roll printed, flexible and stable organic bulk heterojunction photodetector
,”
npj Flexible Electron.
2
(
1
),
7
(
2018
).
216.
W. J.
Scheideler
,
J.
Jang
,
M. A. U.
Karim
,
R.
Kitsomboonloha
,
A.
Zeumault
, and
V.
Subramanian
, “
Gravure-printed sol–gels on flexible glass: A scalable route to additively patterned transparent conductors
,”
ACS Appl. Mater. Interfaces
7
(
23
),
12679
12687
(
2015
).
217.
H.
Zhang
,
A.
Ramm
,
S.
Lim
,
W.
Xie
,
B. Y.
Ahn
,
W.
Xu
,
A.
Mahajan
,
W. J.
Suszynski
,
C.
Kim
, and
J. A.
Lewis
, “
Wettability contrast gravure printing
,”
Adv. Mater.
27
(
45
),
7420
7425
(
2015
).
218.
J.
Sun
,
H.
Park
,
Y.
Jung
,
G.
Rajbhandari
,
B. B.
Maskey
,
A.
Sapkota
,
Y.
Azuma
,
Y.
Majima
, and
G.
Cho
, “
Proving scalability of an organic semiconductor to print a TFT-active matrix using a roll-to-roll gravure
,”
ACS Omega
2
(
9
),
5766
5774
(
2017
).
219.
J.
Kim
,
D.
Chae
,
W. H.
Lee
,
J.
Park
,
J.
Shin
,
B.-C.
Kwon
, and
S.
Ko
, “
Enhanced performance and reliability of organic thin film transistors through structural scaling in gravure printing process
,”
Org. Electron.
59
,
84
91
(
2018
).
220.
Y.
Galagan
,
F.
Di Giacomo
,
H.
Gorter
,
G.
Kirchner
,
I.
de Vries
,
R.
Andriessen
, and
P.
Groen
, “
Roll‐to‐roll slot die coated perovskite for efficient flexible solar cells
,”
Adv. Energy Mater.
8
(
32
),
1801935
(
2018
).
221.
C.
Zuo
,
D.
Vak
,
D.
Angmo
,
L.
Ding
, and
M.
Gao
, “
One-step roll-to-roll air processed high efficiency perovskite solar cells
,”
Nano Energy
46
,
185
192
(
2018
).
222.
J.
Kim
,
T.
Hassinen
,
W. H.
Lee
, and
S.
Ko
, “
Fully solution-processed organic thin-film transistors by consecutive roll-to-roll gravure printing
,”
Org. Electron.
42
,
361
366
(
2017
).
223.
C. M.
Homenick
,
R.
James
,
G. P.
Lopinski
,
J.
Dunford
,
J.
Sun
,
H.
Park
,
Y.
Jung
,
G.
Cho
, and
P. R.
Malenfant
, “
Fully printed and encapsulated SWCNT-based thin film transistors via a combination of R2R gravure and inkjet printing
,”
ACS Appl. Mater. Interfaces
8
(
41
),
27900
27910
(
2016
).
224.
M.
Bariya
,
Z.
Shahpar
,
H.
Park
,
J.
Sun
,
Y.
Jung
,
W.
Gao
,
H. Y. Y.
Nyein
,
T. S.
Liaw
,
L.-C.
Tai
, and
Q. P.
Ngo
, “
Roll-to-roll gravure printed electrochemical sensors for wearable and medical devices
,”
ACS Nano
12
(
7
),
6978
6987
(
2018
).
225.
R.
Abbel
,
Y.
Galagan
, and
P.
Groen
, “
Roll‐to‐roll fabrication of solution processed electronics
,”
Adv. Eng. Mater.
20
(
8
),
1701190
(
2018
).
226.
M. L.
Allen
,
M.
Aronniemi
,
T.
Mattila
,
A.
Alastalo
,
K.
Ojanperä
,
M.
Suhonen
, and
H.
Seppä
, “
Electrical sintering of nanoparticle structures
,”
Nanotechnology
19
(
17
),
175201
(
2008
).
227.
S.
Wünscher
,
S.
Stumpf
,
J.
Perelaer
, and
U. S.
Schubert
, “
Towards single-pass plasma sintering: Temperature influence of atmospheric pressure plasma sintering of silver nanoparticle ink
,”
J. Mater. Chem. C
2
(
9
),
1642
1649
(
2014
).
228.
M.
Tsumaki
,
K.
Nitta
,
S.
Jeon
,
K.
Terashima
, and
T.
Ito
, “
Development of plasma-assisted inkjet printing and demonstration for direct printing of conductive silver line
,”
J. Phys. D: Appl. Phys.
51
(
30
),
30LT01
(
2018
).
229.
E.
Balliu
,
H.
Andersson
,
M.
Engholm
,
T.
Öhlund
,
H.-E.
Nilsson
, and
H.
Olin
, “
Selective laser sintering of inkjet-printed silver nanoparticle inks on paper substrates to achieve highly conductive patterns
,”
Sci. Rep.
8
(
1
),
10408
(
2018
).
230.
Z.
Hui
,
Y.
Liu
,
W.
Guo
,
L.
Li
,
N.
Mu
,
C.
Jin
,
Y.
Zhu
, and
P.
Peng
, “
Chemical sintering of direct-written silver nanowire flexible electrodes under room temperature
,”
Nanotechnology
28
(
28
),
285703
(
2017
).
231.
Y.
Khan
,
A.
Thielens
,
S.
Muin
,
J.
Ting
,
C.
Baumbauer
, and
A. C.
Arias
, “
A new frontier of printed electronics: Flexible hybrid electronics
,”
Adv. Mater.
32
(
15
),
1905279
(
2020
).
232.
H.
Zhang
,
S. K.
Moon
, and
T. H.
Ngo
, “
3D printed electronics of non-contact ink writing techniques: Status and promise
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
7
,
511
524
(
2020
).
233.
H.
Shichman
and
D. A.
Hodges
, “
Modeling and simulation of insulated-gate field-effect transistor switching circuits
,”
IEEE J. Solid-State Circuits
3
(
3
),
285
289
(
1968
).
234.
Y.
Gao
,
K.
Huang
,
C.
Long
,
Y.
Ding
,
J.
Chang
,
D.
Zhang
,
L.
Etgar
,
M.
Liu
,
J.
Zhang
, and
J.
Yang
, “
Flexible perovskite solar cells: From materials and device architectures to applications
,”
ACS Energy Lett.
7
(
4
),
1412
1445
(
2022
).
235.
H.
Xia
,
S.
Tong
,
C.
Zhang
,
C.
Wang
,
J.
Sun
,
J.
He
,
J.
Zhang
,
Y.
Gao
, and
J.
Yang
, “
Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction
,”
Appl. Phys. Lett.
112
(
23
),
233301
(
2018
).
236.
T.
Liu
,
J.
Zhao
,
W.
Xu
,
J.
Dou
,
X.
Zhao
,
W.
Deng
,
C.
Wei
,
W.
Xu
,
W.
Guo
, and
W.
Su
, “
Flexible integrated diode-transistor logic (DTL) driving circuits based on printed carbon nanotube thin film transistors with low operation voltage
,”
Nanoscale
10
(
2
),
614
622
(
2018
).
237.
Y.
Geng
,
Y.
Ren
,
X.
Wang
,
J.
Li
,
L.
Portilla
,
Y.
Fang
, and
J.
Zhao
, “
Highly sensitive and selective H2S sensors with ultra-low power consumption based on flexible printed carbon-nanotube-thin-film-transistors
,”
Sens. Actuators, B
360
,
131633
(
2022
).
238.
J.
Liang
,
K.
Tong
, and
Q.
Pei
, “
A water‐based silver‐nanowire screen‐print ink for the fabrication of stretchable conductors and wearable thin‐film transistors
,”
Adv. Mater.
28
(
28
),
5986
5996
(
2016
).
239.
P.
Xie
,
T.
Liu
,
J.
Sun
,
J.
Jiang
,
Y.
Yuan
,
Y.
Gao
,
J.
Zhou
, and
J.
Yang
, “
Solution-processed ultra-flexible C8-BTBT organic thin-film transistors with the corrected mobility over 18 cm2/(V s)
,”
Sci. Bull.
65
(
10
),
791
795
(
2020
).
240.
J. A.
Cardenas
,
S.
Lu
,
N. X.
Williams
,
J. L.
Doherty
, and
A. D.
Franklin
, “
In-place printing of flexible electrolyte-gated carbon nanotube transistors with enhanced stability
,”
IEEE Electron Device Lett.
42
(
3
),
367
370
(
2021
).
241.
K.-Y.
Chun
,
Y.
Oh
,
J.
Rho
,
J.-H.
Ahn
,
Y.-J.
Kim
,
H. R.
Choi
, and
S.
Baik
, “
Highly conductive, printable and stretchable composite films of carbon nanotubes and silver
,”
Nat. Nanotechnol.
5
(
12
),
853
857
(
2010
).
242.
X.
Tang
,
K.
Wu
,
X.
Qi
,
H-j
Kwon
,
R.
Wang
,
Z.
Li
,
H.
Ye
,
J.
Hong
,
H. H.
Choi
, and
H.
Kong
, “
Screen printing of silver and carbon nanotube composite inks for flexible and reliable organic integrated devices
,”
ACS Appl. Nano Mater.
5
(
4
),
4801
4811
(
2022
).
243.
Q.
Sun
,
T.
Gao
,
X.
Li
,
W.
Li
,
X.
Li
,
K.
Sakamoto
,
Y.
Wang
,
L.
Li
,
M.
Kanehara
, and
C.
Liu
, “
Layer‐by‐layer printing strategy for high‐performance flexible electronic devices with low‐temperature catalyzed solution‐processed SiO2
,”
Small Methods
5
(
8
),
2100263
(
2021
).
244.
Q.
Sun
,
W.
Li
,
X.
Liu
,
M.
Kanehara
,
J.
Zhao
, and
T.
Minari
, “
Room-temperature printing of CNTs-based flexible TFTs with high performance
,” in
2019 International Conference on Electronics Packaging (ICEP)
(
IEEE
,
2019
), pp.
307
310
.
245.
Y.
Yu
,
X.
Xiao
,
Y.
Zhang
,
K.
Li
,
C.
Yan
,
X.
Wei
,
L.
Chen
,
H.
Zhen
,
H.
Zhou
, and
S.
Zhang
, “
Photoreactive and metal‐platable copolymer inks for high‐throughput, room‐temperature printing of flexible metal electrodes for thin‐film electronics
,”
Adv. Mater.
28
(
24
),
4926
4934
(
2016
).
246.
S.-J.
Oh
,
Y.
Jo
,
E. J.
Lee
,
S. S.
Lee
,
Y. H.
Kang
,
H.-J.
Jeon
,
S. Y.
Cho
,
J.-S.
Park
,
Y.-H.
Seo
, and
B.-H.
Ryu
, “
Ambient atmosphere-processable, printable Cu electrodes for flexible device applications: Structural welding on a millisecond timescale of surface oxide-free Cu nanoparticles
,”
Nanoscale
7
(
9
),
3997
4004
(
2015
).
247.
M.
Chen
,
D.
Cui
,
N.
Wang
,
S.
Weng
,
Z.
Zhao
,
F.
Tian
,
X.
Gao
,
K.
He
,
C.-T.
Chiang
, and
S.
Albawardi
, “
Inkjet-printed MoS2 nanoplates on flexible substrates for high-performance field effect transistors and gas sensing applications
,”
ACS Appl. Nano Mater.
6
(
5
),
3236
3244
(
2023
).
248.
S.
Conti
,
L.
Pimpolari
,
G.
Calabrese
,
R.
Worsley
,
S.
Majee
,
D. K.
Polyushkin
,
M.
Paur
,
S.
Pace
,
D. H.
Keum
, and
F.
Fabbri
, “
Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper
,”
Nat. Commun.
11
(
1
),
3566
(
2020
).
249.
T.-Y.
Kim
,
J.
Ha
,
K.
Cho
,
J.
Pak
,
J.
Seo
,
J.
Park
,
J.-K.
Kim
,
S.
Chung
,
Y.
Hong
, and
T.
Lee
, “
Transparent large-area MoS2 phototransistors with inkjet-printed components on flexible platforms
,”
ACS Nano
11
(
10
),
10273
10280
(
2017
).
250.
A. G.
Kelly
,
V.
Vega-Mayoral
,
J. B.
Boland
, and
J. N.
Coleman
, “
Whiskey-phase exfoliation: Exfoliation and printing of nanosheets using Irish whiskey
,”
2D Mater.
6
(
4
),
045036
(
2019
).
251.
B.
Kim
,
M. L.
Geier
,
M. C.
Hersam
, and
A.
Dodabalapur
, “
Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors
,”
Sci. Rep.
7
(
1
),
39627
(
2017
).
252.
M.
Yu
,
H.
Wan
,
L.
Cai
,
J.
Miao
,
S.
Zhang
, and
C.
Wang
, “
Fully printed flexible dual-gate carbon nanotube thin-film transistors with tunable ambipolar characteristics for complementary logic circuits
,”
ACS Nano
12
(
11
),
11572
11578
(
2018
).
253.
Q.
Qian
,
G.
Li
,
Y.
Jin
,
J.
Liu
,
Y.
Zou
,
K.
Jiang
,
S.
Fan
, and
Q.
Li
, “
Trap-state-dominated suppression of electron conduction in carbon nanotube thin-film transistors
,”
ACS Nano
8
(
9
),
9597
9605
(
2014
).
254.
P. M.
Grubb
,
H.
Subbaraman
,
S.
Park
,
D.
Akinwande
, and
R. T.
Chen
, “
Inkjet printing of high performance transistors with micron order chemically set gaps
,”
Sci. Rep.
7
(
1
),
1202
(
2017
).
255.
Z.
Li
,
J.
Ding
,
F.
Lapointe
, and
P. R.
Malenfant
, “
Efficient charge carrier control on single walled carbon nanotube thin film transistors using water soluble polymer coatings
,”
J. Mater. Sci.: Mater. Electron.
32
(
19
),
23923
23934
(
2021
).
256.
J.
Zaumseil
, “
Recent developments and novel applications of thin film, light‐emitting transistors
,”
Adv. Funct. Mater.
30
(
20
),
1905269
(
2020
).
257.
H.
Ling
,
S.
Liu
,
Z.
Zheng
, and
F.
Yan
, “
Organic flexible electronics
,”
Small Methods
2
(
10
),
1800070
(
2018
).
258.
M.
Li
,
J.
Deng
,
X.
Wang
,
S.
Shao
,
X.
Li
,
W.
Gu
,
H.
Wang
, and
J.
Zhao
, “
Flexible printed single-walled carbon nanotubes olfactory synaptic transistors with crosslinked poly (4-vinylphenol) as dielectrics
,”
Flexible Printed Electron.
6
(
3
),
034001
(
2021
).
259.
M.
Zhu
,
H.
Xiao
,
G.
Yan
,
P.
Sun
,
J.
Jiang
,
Z.
Cui
,
J.
Zhao
,
Z.
Zhang
, and
L.-M.
Peng
, “
Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates
,”
Nat. Electron.
3
(
10
),
622
629
(
2020
).
260.
X.
Wang
,
M.
Wei
,
X.
Li
,
S.
Shao
,
Y.
Ren
,
W.
Xu
,
M.
Li
,
W.
Liu
,
X.
Liu
, and
J.
Zhao
, “
Large-area flexible printed thin-film transistors with semiconducting single-walled carbon nanotubes for NO2 sensors
,”
ACS Appl. Mater. Interfaces
12
(
46
),
51797
51807
(
2020
).
261.
W. J.
Hyun
,
E. B.
Secor
,
F. Z.
Bidoky
,
S. B.
Walker
,
J. A.
Lewis
,
M. C.
Hersam
,
L. F.
Francis
, and
C. D.
Frisbie
, “
Self-aligned capillarity-assisted printing of top-gate thin-film transistors on plastic
,”
Flexible Printed Electron.
3
(
3
),
035004
(
2018
).
262.
N. X.
Williams
,
G.
Bullard
,
N.
Brooke
,
M. J.
Therien
, and
A. D.
Franklin
, “
Printable and recyclable carbon electronics using crystalline nanocellulose dielectrics
,”
Nat. Electron.
4
(
4
),
261
268
(
2021
).
263.
X.
Cao
,
H.
Chen
,
X.
Gu
,
B.
Liu
,
W.
Wang
,
Y.
Cao
,
F.
Wu
, and
C.
Zhou
, “
Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes
,”
ACS Nano
8
(
12
),
12769
12776
(
2014
).
264.
G.
Giri
,
D. M.
DeLongchamp
,
J.
Reinspach
,
D. A.
Fischer
,
L. J.
Richter
,
J.
Xu
,
S.
Benight
,
A.
Ayzner
,
M.
He
, and
L.
Fang
, “
Effect of solution shearing method on packing and disorder of organic semiconductor polymers
,”
Chem. Mater.
27
(
7
),
2350
2359
(
2015
).
265.
X.
Yin
,
J.
Yang
, and
H.
Wang
, “
Vertical phase separation structure for high‐performance organic thin‐film transistors: Mechanism, optimization strategy, and large‐area fabrication toward flexible and stretchable electronics
,”
Adv. Funct. Mater.
32
,
2202071
(
2022
).
266.
Y.
Xu
,
W.
Liu
,
Y.
Huang
,
C.
Jin
,
B.
Zhou
,
J.
Sun
, and
J.
Yang
, “
Recent advances in flexible organic synaptic transistors
,”
Adv. Electron. Mater.
7
(
11
),
2100336
(
2021
).
267.
E.
Kun
and
K.
Marossy
, “
Effect of crystallinity on PLA's microbiological behaviour
,”
Mater. Sci. Forum
752
,
241
247
(
2013
).
268.
C.
Li
,
Y.
Chen
,
Y.
Zhao
,
H.
Wang
,
W.
Zhang
,
Y.
Li
,
X.
Yang
,
C.
Ma
,
L.
Chen
, and
X.
Zhu
, “
Acceptor–donor–acceptor-based small molecules with varied crystallinity: Processing additive-induced nanofibril in blend film for photovoltaic applications
,”
Nanoscale
5
(
20
),
9536
9540
(
2013
).
269.
H. J.
Kwon
,
H.
Ye
,
Y.
Baek
,
J.
Hong
,
R.
Wang
,
Y.
Choi
,
I.
Lee
,
C. E.
Park
,
S.
Nam
, and
J.
Kim
, “
Printable ultra‐flexible fluorinated organic–inorganic nanohybrid sol–gel derived gate dielectrics for highly stable organic thin‐film transistors and other practical applications
,”
Adv. Funct. Mater.
31
(
10
),
2009539
(
2021
).
270.
W.
Kim
,
J.
Kwon
,
Y.
Lee
,
S.
Baek
, and
S.
Jung
, “
Phase‐separated, printed organic thin‐film transistor‐based nonvolatile memory with enhanced data retention
,”
Adv. Mater. Technol.
5
(
7
),
2000228
(
2020
).
271.
W.
Liu
,
G.
Zhang
,
C.
Jin
,
Y.
Xu
,
Y.
Nie
,
X.
Shi
,
J.
Sun
, and
J.
Yang
, “
Low-voltage-operation of flexible organic C8-BTBT thin-film transistors with a reactively sputtered AlOx gate dielectric
,”
Appl. Phys. Lett.
121
(
7
),
073301
(
2022
).
272.
W.
Kim
and
S.
Jung
, “
Static response of three-dimensional and printed complementary organic TFTs-based static random-access memory
,”
IEEE Electron Device Lett.
43
(
3
),
438
441
(
2022
).
273.
G. E.
Bonacchini
,
C.
Bossio
,
F.
Greco
,
V.
Mattoli
,
Y. H.
Kim
,
G.
Lanzani
, and
M.
Caironi
, “
Tattoo‐paper transfer as a versatile platform for all‐printed organic edible electronics
,”
Adv. Mater.
30
(
14
),
1706091
(
2018
).
274.
A. S.
Sharova
and
M.
Caironi
, “
Sweet electronics: Honey‐gated complementary organic transistors and circuits operating in air
,”
Adv. Mater.
33
(
40
),
2103183
(
2021
).
275.
E.
Macchia
,
L.
Sarcina
,
C.
Driescher
,
Z.
Gounani
,
A.
Tewari
,
R.
Osterbacka
,
G.
Palazzo
,
A.
Tricase
,
Z. M.
Kovacs Vajna
, and
F.
Viola
, “
Single‐molecule bioelectronic label‐free assay of both protein and genomic markers of pancreatic mucinous cysts' in whole blood serum
,”
Adv. Electron. Mater.
7
(
9
),
2100304
(
2021
).
276.
L.
Sarcina
,
F.
Viola
,
F.
Modena
,
R. A.
Picca
,
P.
Bollella
,
C.
Di Franco
,
N.
Cioffi
,
M.
Caironi
,
R.
Österbacka
, and
I.
Esposito
, “
A large-area organic transistor with 3D-printed sensing gate for noninvasive single-molecule detection of pancreatic mucinous cyst markers
,”
Anal. Bioanal. Chem.
414
,
5657
(
2022
).
277.
S.
Dai
,
Y.
Chu
,
D.
Liu
,
F.
Cao
,
X.
Wu
,
J.
Zhou
,
B.
Zhou
,
Y.
Chen
, and
J.
Huang
, “
Intrinsically ionic conductive cellulose nanopapers applied as all solid dielectrics for low voltage organic transistors
,”
Nat. Commun.
9
(
1
),
2737
(
2018
).
278.
G.
Casula
,
S.
Lai
,
L.
Matino
,
F.
Santoro
,
A.
Bonfiglio
, and
P.
Cosseddu
, “
Printed, low‐voltage, all‐organic transistors and complementary circuits on paper substrate
,”
Adv. Electron. Mater.
6
(
5
),
1901027
(
2020
).
279.
Y.
Li
,
W.
Cai
,
R.
Tao
,
W.
Shuai
,
J.
Rao
,
C.
Chang
,
S.
Cheng
,
Z.
Fan
,
G.
Zhou
, and
X.
Lu
, “
Flexible and energy-efficient synaptic transistor with quasi-linear weight update protocol by inkjet printing of orientated polar-electret/high-k oxide hybrid dielectric
,”
Res. Square
(published online).
280.
P.
Ueberschlag
, “
PVDF piezoelectric polymer
,”
Sensor Rev.
21
(
2
),
118
126
(
2001
).
281.
N.
Cherukupally
,
M.
Divya
, and
S.
Dasgupta
, “
A comparative study on printable solid electrolytes toward ultrahigh current and environmentally stable thin film transistors
,”
Adv. Electron. Mater.
6
(
12
),
2000788
(
2020
).
282.
Y.-H.
Kim
,
J.-S.
Heo
,
T.-H.
Kim
,
S.
Park
,
M.-H.
Yoon
,
J.
Kim
,
M. S.
Oh
,
G.-R.
Yi
,
Y.-Y.
Noh
, and
S. K.
Park
, “
Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films
,”
Nature
489
(
7414
),
128
132
(
2012
).
283.
S.
Park
,
C.-H.
Kim
,
W.-J.
Lee
,
S.
Sung
, and
M.-H.
Yoon
, “
Sol-gel metal oxide dielectrics for all-solution-processed electronics
,”
Mater. Sci. Eng. R
114
,
1
22
(
2017
).
284.
W.
Xu
,
H.
Li
,
J.-B.
Xu
, and
L.
Wang
, “
Recent advances of solution-processed metal oxide thin-film transistors
,”
ACS Appl. Mater. Interfaces
10
(
31
),
25878
25901
(
2018
).
285.
J. P. S.
Bermundo
,
Y.
Ishikawa
,
M. N.
Fujii
,
H.
Ikenoue
, and
Y.
Uraoka
, “
H and Au diffusion in high mobility a-InGaZnO thin-film transistors via low temperature KrF excimer laser annealing
,”
Appl. Phys. Lett.
110
(
13
),
133503
(
2017
).
286.
H.
Oh
,
S.-M.
Yoon
,
M. K.
Ryu
,
C.-S.
Hwang
,
S.
Yang
, and
S.-H. K.
Park
, “
Transition of dominant instability mechanism depending on negative gate bias under illumination in amorphous In-Ga-Zn-O thin film transistor
,”
Appl. Phys. Lett.
98
(
3
),
033504
(
2011
).
287.
K.
Takechi
,
M.
Nakata
,
T.
Eguchi
,
H.
Yamaguchi
, and
S.
Kaneko
, “
Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors
,”
Jpn. J. Appl. Phys., Part 1
48
(
1R
),
010203
(
2009
).
288.
T. T.
Baby
,
S. K.
Garlapati
,
S.
Dehm
,
M.
Häming
,
R.
Kruk
,
H.
Hahn
, and
S.
Dasgupta
, “
A general route toward complete room temperature processing of printed and high performance oxide electronics
,”
ACS Nano
9
(
3
),
3075
3083
(
2015
).
289.
W. J.
Scheideler
,
R.
Kumar
,
A. R.
Zeumault
, and
V.
Subramanian
, “
Low‐temperature‐processed printed metal oxide transistors based on pure aqueous inks
,”
Adv. Funct. Mater.
27
(
14
),
1606062
(
2017
).
290.
H.
Hagendorfer
,
K.
Lienau
,
S.
Nishiwaki
,
C. M.
Fella
,
L.
Kranz
,
A. R.
Uhl
,
D.
Jaeger
,
L.
Luo
,
C.
Gretener
, and
S.
Buecheler
, “
Highly transparent and conductive ZnO: Al thin films from a low temperature aqueous solution approach
,”
Adv. Mater.
26
(
4
),
632
636
(
2014
).
291.
Y.
Lin
,
H.
Faber
,
K.
Zhao
,
Q.
Wang
,
A.
Amassian
,
M.
McLachlan
, and
T. D.
Anthopoulos
,
Adv. Mater.
25
,
4340
(
2013
).
292.
C.
Chen
,
H.
Yang
,
Q.
Yang
,
G.
Chen
,
H.
Chen
, and
T.
Guo
, “
Low-temperature solution-processed flexible metal oxide thin-film transistors via laser annealing
,”
J. Phys. D: Appl. Phys.
52
(
38
),
385105
(
2019
).
293.
C.-Y.
Tsay
and
T.-T.
Huang
, “
Improvement of physical properties of IGZO thin films prepared by excimer laser annealing of sol–gel derived precursor films
,”
Mater. Chem. Phys.
140
(
1
),
365
372
(
2013
).
294.
P.
Migliorato
,
M.
Delwar Hossain Chowdhury
,
J.
Gwang Um
,
M.
Seok
, and
J.
Jang
, “
Light/negative bias stress instabilities in indium gallium zinc oxide thin film transistors explained by creation of a double donor
,”
Appl. Phys. Lett.
101
(
12
),
123502
(
2012
).
295.
M. N.
Fujii
,
Y.
Ishikawa
,
R.
Ishihara
,
J.
van der Cingel
,
M. R.
Mofrad
,
J. P. S.
Bermundo
,
E.
Kawashima
,
S.
Tomai
,
K.
Yano
, and
Y.
Uraoka
, “
Nano-crystallization in ZnO-doped In2O3 thin films via excimer laser annealing for thin-film transistors
,”
AIP Adv.
6
(
6
),
065216
(
2016
).
296.
S.
Ju
,
A.
Facchetti
,
Y.
Xuan
,
J.
Liu
,
F.
Ishikawa
,
P.
Ye
,
C.
Zhou
,
T. J.
Marks
, and
D. B.
Janes
, “
Fabrication of fully transparent nanowire transistors for transparent and flexible electronics
,”
Nat. Nanotechnol.
2
(
6
),
378
384
(
2007
).
297.
H. T.
Ng
,
J.
Han
,
T.
Yamada
,
P.
Nguyen
,
Y. P.
Chen
, and
M.
Meyyappan
, “
Single crystal nanowire vertical surround-gate field-effect transistor
,”
Nano Lett.
4
(
7
),
1247
1252
(
2004
).
298.
Y.
Dong
,
C.
Bao
, and
W. S.
Kim
, “
Sustainable additive manufacturing of printed circuit boards
,”
Joule
2
(
4
),
579
582
(
2018
).
299.
W.-T.
Park
and
Y.-Y.
Noh
, “
A self-aligned high resolution patterning process for large area printed electronics
,”
J. Mater. Chem. C
5
(
26
),
6467
6470
(
2017
).
300.
J. H.
Song
,
Y. T.
Kim
,
S.
Cho
,
W. J.
Song
,
S.
Moon
,
C. G.
Park
,
S.
Park
,
J. M.
Myoung
, and
U.
Jeong
, “
Surface‐embedded stretchable electrodes by direct printing and their uses to fabricate ultrathin vibration sensors and circuits for 3D structures
,”
Adv. Mater.
29
(
43
),
1702625
(
2017
).
301.
K.-M.
Chiang
,
Z.-Y.
Huang
,
W.-L.
Tsai
, and
H.-W.
Lin
, “
Orthogonally weaved silver nanowire networks for very efficient organic optoelectronic devices
,”
Org. Electron.
43
,
15
20
(
2017
).
302.
T.-S.
Kim
,
Y.
Lee
,
W.
Xu
,
Y. H.
Kim
,
M.
Kim
,
S.-Y.
Min
,
T. H.
Kim
,
H. W.
Jang
, and
T.-W.
Lee
, “
Direct-printed nanoscale metal-oxide-wire electronics
,”
Nano Energy
58
,
437
446
(
2019
).
303.
S.-Y.
Kim
,
K.
Kim
,
Y.
Hwang
,
J.
Park
,
J.
Jang
,
Y.
Nam
,
Y.
Kang
,
M.
Kim
,
H.
Park
, and
Z.
Lee
, “
High-resolution electrohydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance
,”
Nanoscale
8
(
39
),
17113
17121
(
2016
).
304.
J.
Leppäniemi
,
O. H.
Huttunen
,
H.
Majumdar
, and
A.
Alastalo
, “
Flexography‐printed In2O3 semiconductor layers for high‐mobility thin‐film transistors on flexible plastic substrate
,”
Adv. Mater.
27
(
44
),
7168
7175
(
2015
).
305.
N.
Kölpin
,
M.
Wegener
,
E.
Teuber
,
S.
Polster
,
L.
Frey
, and
A.
Roosen
, “
Conceptional design of nano-particulate ITO inks for inkjet printing of electron devices
,”
J. Mater. Sci.
48
(
4
),
1623
1631
(
2013
).
306.
C.
Jung
,
J.
Lee
,
L.
Pu
,
K.
Lee
, and
D.
Yoon
, “
Investigation on indium concentration dependence of solution processed indium tin oxide thin film transistors
,”
Thin Solid Films
520
(
14
),
4726
4729
(
2012
).
307.
G.
Vescio
,
J.
López-Vidrier
,
R.
Leghrib
,
A.
Cornet
, and
A.
Cirera
, “
Flexible inkjet printed high-k HfO2-based MIM capacitors
,”
J. Mater. Chem. C
4
(
9
),
1804
1812
(
2016
).
308.
W. J.
Lee
,
W. T.
Park
,
S.
Park
,
S.
Sung
,
Y. Y.
Noh
, and
M. H.
Yoon
, “
Large‐scale precise printing of ultrathin sol–gel oxide dielectrics for directly patterned solution‐processed metal oxide transistor arrays
,”
Adv. Mater.
27
(
34
),
5043
5048
(
2015
).
309.
H.
Rijckaert
,
P.
Cayado
,
R.
Nast
,
J.
Diez Sierra
,
M.
Erbe
,
P.
López Dominguez
,
J.
Hänisch
,
K.
De Buysser
,
B.
Holzapfel
, and
I.
Van Driessche
, “
Superconducting HfO2-YBa2Cu3O7−δ nanocomposite films deposited using ink-jet printing of colloidal solutions
,”
Coatings
10
(
1
),
17
(
2020
).
310.
G.
Vescio
,
G.
Martín
,
A.
Crespo-Yepes
,
S.
Claramunt
,
D.
Alonso
,
J.
López-Vidrier
,
S.
Estrade
,
M.
Porti
,
R.
Rodríguez
, and
F.
Peiró
, “
Low-power, high-performance, non-volatile inkjet-printed HfO2-based resistive Random Access Memory: From device to nanoscale characterization
,”
ACS Appl. Mater. Interfaces
11
(
26
),
23659
23666
(
2019
).
311.
R.
Dou
,
T.
Wang
,
Y.
Guo
, and
B.
Derby
, “
Ink‐jet printing of zirconia: Coffee staining and line stability
,”
J. Am. Ceram. Soc.
94
(
11
),
3787
3792
(
2011
).
312.
Y.
Li
,
L.
Lan
,
S.
Hu
,
P.
Gao
,
X.
Dai
,
P.
He
,
X.
Li
, and
J.
Peng
, “
Fully printed top-gate metal–oxide thin-film transistors based on scandium-zirconium-oxide dielectric
,”
IEEE Trans. Electron Devices
66
(
1
),
445
450
(
2018
).
313.
Y.
Ju
,
J.
Ha
,
Y.
Song
,
J. S.
Yun
, and
D.
Lee
, “
Optimizing the printability and dispersibility of functionalized zirconium oxide/acrylate composites with various nano-to micro-particle ratios
,”
Ceram. Int.
46
(
17
),
26903
26910
(
2020
).
314.
M. M.
Nauman
,
M. Z.
Esa
,
J. H.
Zaini
,
A.
Iqbal
, and
S. A.
Bakar
, “
Zirconium Oxide based memristors fabrication via Electrohydrodynamic Printing
,” in
2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)
(
IEEE
,
2020
), pp.
167
171
.
315.
C.
Avis
and
J.
Jang
, “
High-performance solution processed oxide TFT with aluminum oxide gate dielectric fabricated by a sol–gel method
,”
J. Mater. Chem.
21
(
29
),
10649
10652
(
2011
).
316.
G.
McKerricher
,
R.
Maller
,
V.
Mohammad
,
M. A.
McLachlan
, and
A.
Shamim
, “
Inkjet-printed thin film radio-frequency capacitors based on sol-gel derived alumina dielectric ink
,”
Ceram. Int.
43
(
13
),
9846
9853
(
2017
).
317.
K.
Zhu
,
D.
Yang
,
Z.
Yu
,
Y.
Ma
,
S.
Zhang
,
R.
Liu
,
J.
Li
,
J.
Cui
, and
H.
Yuan
, “
Additive manufacturing of SiO2–Al2O3 refractory products via direct ink writing
,”
Ceram. Int.
46
(
17
),
27254
27261
(
2020
).
318.
D.
Graf
,
S.
Burchard
,
J.
Crespo
,
C.
Megnin
,
S.
Gutsch
,
M.
Zacharias
, and
T.
Hanemann
, “
Influence of Al2O3 nanoparticle addition on a UV cured polyacrylate for 3D inkjet printing
,”
Polymers
11
(
4
),
633
(
2019
).