Micro- and nanoelectromechanical systems have numerous applications in sensing and signal transduction. Many properties benefit from reducing the system size to the nanoscale, such as increased responsivity, enhanced tunability, lower power consumption, and higher spatial density. Two-dimensional (2D) materials represent the ultimate limit of thickness, offering unprecedented new capabilities due to their natural nanoscale dimensions, high stability, high mechanical strength, and easy electronic integration. Here, we review the primary design principles, properties, applications, opportunities, and challenges of 2D materials as the building blocks of NEMS (2D NEMS) with a focus on nanomechanical resonators. First, we review the techniques used to design, fabricate, and transduce the motion of 2D NEMS. Then, we describe the dynamic behavior of 2D NEMS including vibrational eigenmodes, frequency, nonlinear behavior, and dissipation. We highlight the crucial features of 2D NEMS that enhance or expand the functionalities found in conventional NEMS, such as high tunability and rich nonlinear dynamics. Next, we overview the demonstrated applications of 2D NEMS as sensors and actuators, comparing their performance metrics to those of commercial MEMS. Finally, we provide a perspective on the future directions of 2D NEMS, such as hybrid quantum systems, integration of active 2D layers into nanomechanical devices, and low-friction interfaces in micromachines.

1.
H. G.
Craighead
, “
Nanoelectromechanical systems
,”
Science
290
(
5496
),
1532
1535
(
2000
).
2.
K. L.
Ekinci
and
M. L.
Roukes
, “
Nanoelectromechanical systems
,”
Rev. Sci. Instrum.
76
(
6
),
061101
(
2005
).
3.
K. L.
Ekinci
,
X. M. H.
Huang
, and
M. L.
Roukes
, “
Ultrasensitive nanoelectromechanical mass detection
,”
Appl. Phys. Lett.
84
(
22
),
4469
4471
(
2004
).
4.
J. A.
Sidles
,
J. L.
Garbini
,
K. J.
Bruland
,
D.
Rugar
,
O.
Züger
,
S.
Hoen
, and
C. S.
Yannoni
, “
Magnetic resonance force microscopy
,”
Rev. Mod. Phys.
67
,
249
265
(
1995
).
5.
M. D.
LaHaye
,
O.
Buu
,
B.
Camarota
, and
K. C.
Schwab
, “
Approaching the quantum limit of a nanomechanical resonator
,”
Science
304
(
5667
),
74
77
(
2004
).
6.
M.
Morita
,
T.
Ohmi
,
E.
Hasegawa
,
M.
Kawakami
, and
M.
Ohwada
, “
Growth of native oxide on a silicon surface
,”
J. Appl. Phys.
68
(
3
),
1272
1281
(
1990
).
7.
K. I.
Bolotin
,
K. J.
Sikes
,
Z.
Jiang
,
M.
Klima
,
G.
Fudenberg
,
J.
Hone
,
P.
Kim
, and
H. L.
Stormer
, “
Ultrahigh electron mobility in suspended graphene
,”
Solid State Commun.
146
(
9
),
351
355
(
2008
).
8.
L.
Wang
,
I.
Meric
,
P. Y.
Huang
,
Q.
Gao
,
Y.
Gao
,
H.
Tran
,
T.
Taniguchi
,
K.
Watanabe
,
L. M.
Campos
,
D. A.
Muller
,
J.
Guo
,
P.
Kim
,
J.
Hone
,
K. L.
Shepard
, and
C. R.
Dean
, “
One-dimensional electrical contact to a two-dimensional material
,”
Science
342
(
6158
),
614
617
(
2013
).
9.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
, “
Atomically thin mos 2: A new direct-gap semiconductor
,”
Phys. Rev. Lett.
105
,
136805
(
2010
).
10.
J.
Cheng
,
C.
Wang
,
X.
Zou
, and
L.
Liao
, “
Recent advances in optoelectronic devices based on 2D materials and their heterostructures
,”
Adv. Opt. Mater.
7
(
1
),
1800441
(
2019
).
11.
R. R.
Nair
,
P.
Blake
,
A. N.
Grigorenko
,
K. S.
Novoselov
,
T. J.
Booth
,
T.
Stauber
,
N. M. R.
Peres
, and
A. K.
Geim
, “
Fine structure constant defines visual transparency of graphene
,”
Science
320
(
5881
),
1308
1308
(
2008
).
12.
B. L.
Evans
,
P. A.
Young
, and
R. W.
Ditchburn
, “
Optical absorption and dispersion in molybdenum disulphide
,”
Proc. R. Soc. A
284
(
1398
),
402
422
(
1965
).
13.
C.
Lee
,
X.
Wei
,
J. W.
Kysar
, and
J.
Hone
, “
Measurement of the elastic properties and intrinsic strength of monolayer graphene
,”
Science
321
(
5887
),
385
388
(
2008
).
14.
E.
Han
,
J.
Yu
,
E.
Annevelink
,
J.
Son
,
D. A.
Kang
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Ertekin
,
P. Y.
Huang
, and
A. M.
van der Zande
, “
Ultrasoft slip-mediated bending in few-layer graphene
,”
Nat. Mater.
19
,
305
309
(
2019
).
15.
G.
Wang
,
Z.
Dai
,
J.
Xiao
,
S.
Feng
,
C.
Weng
,
L.
Liu
,
Z.
Xu
,
R.
Huang
, and
Z.
Zhang
, “
Bending of multilayer van der Waals materials
,”
Phys. Rev. Lett.
123
,
116101
(
2019
).
16.
J.
Yu
,
E.
Han
,
M. A.
Hossain
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Ertekin
,
A. M.
van der Zande
, and
P. Y.
Huang
, “
Designing the bending stiffness of 2D material heterostructures
,”
Adv. Mater.
33
(
9
),
2007269
(
2021
).
17.
D.
Akinwande
,
C. J.
Brennan
,
J. S.
Bunch
,
P.
Egberts
,
J. R.
Felts
,
H.
Gao
,
R.
Huang
,
J.-S.
Kim
,
T.
Li
,
Y.
Li
,
K. M.
Liechti
,
N.
Lu
,
H. S.
Park
,
E. J.
Reed
,
P.
Wang
,
B. I.
Yakobson
,
T.
Zhang
,
Y.-W.
Zhang
,
Y.
Zhou
, and
Y.
Zhu
, “
A review on mechanics and mechanical properties of 2D materials–Graphene and beyond
,”
Extreme Mech. Lett.
13
,
42
77
(
2017
).
18.
A.
Castellanos-Gomez
,
V.
Singh
,
H. S. J.
van der Zant
, and
G. A.
Steele
, “
Mechanics of freely-suspended ultrathin layered materials
,”
Ann. Phys.
527
(
1–2
),
27
44
(
2015
).
19.
C.
Androulidakis
,
K.
Zhang
,
M.
Robertson
, and
S.
Tawfick
, “
Tailoring the mechanical properties of 2D materials and heterostructures
,”
2D Mater.
5
(
3
),
032005
(
2018
).
20.
R.
Frisenda
,
E.
Navarro-Moratalla
,
P.
Gant
,
D.
Pérez De Lara
,
P.
Jarillo-Herrero
,
R. V.
Gorbachev
, and
A.
Castellanos-Gomez
, “
Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials
,”
Chem. Soc. Rev.
47
,
53
68
(
2018
).
21.
R. A.
Barton
,
J.
Parpia
, and
H. G.
Craighead
, “
Fabrication and performance of graphene nanoelectromechanical systems
,”
J. Vac. Sci. Technol. B
29
(
5
),
050801
(
2011
).
22.
C.
Chen
and
J.
Hone
, “
Graphene nanoelectromechanical systems
,”
Proc. IEEE
101
(
7
),
1766
1779
(
2013
).
23.
Z. H.
Khan
,
A. R.
Kermany
,
A.
Öchsner
, and
F.
Iacopi
, “
Mechanical and electromechanical properties of graphene and their potential application in MEMS
,”
J. Phys. D
50
(
5
),
053003
(
2017
).
24.
J. S.
Bunch
, “
Putting a damper on nanoresonators
,”
Nat. Nanotechnol.
6
(
6
),
331
332
(
2011
).
25.
A. M.
van der Zande
,
R. A.
Barton
,
J. S.
Alden
,
C. S.
Ruiz-Vargas
,
W. S.
Whitney
,
P. H. Q.
Pham
,
J.
Park
,
J. M.
Parpia
,
H. G.
Craighead
, and
P. L.
McEuen
, “
Large-scale arrays of single-layer graphene resonators
,”
Nano Lett.
10
(
12
),
4869
4873
(
2010
).
26.
S.
Kim
,
E.
Annevelink
,
E.
Han
,
J.
Yu
,
P. Y.
Huang
,
E.
Ertekin
, and
A. M.
van der Zande
, “
Stochastic stress jumps due to soliton dynamics in two-dimensional van der Waals interfaces
,”
Nano Lett.
20
(
2
),
1201
1207
(
2020
).
27.
D.
Davidovikj
,
F.
Alijani
,
S. J.
Cartamil-Bueno
,
H. S. J.
van der Zant
,
M.
Amabili
, and
P. G.
Steeneken
, “
Nonlinear dynamic characterization of two-dimensional materials
,”
Nat. Commun.
8
(
1
),
1253
(
2017
).
28.
J. P.
Mathew
,
R. N.
Patel
,
A.
Borah
,
R.
Vijay
, and
M. M.
Deshmukh
, “
Dynamical strong coupling and parametric amplification of mechanical modes of graphene drums
,”
Nat. Nanotechnol.
11
,
747
(
2016
).
29.
X.
Gao
,
Z.-Q.
Yin
, and
T.
Li
, “
High-speed quantum transducer with a single-photon emitter in a 2D resonator
,”
Ann. Phys.
532
(
10
),
2000233
(
2020
).
30.
J. S.
Bunch
,
A. M.
van der Zande
,
S. S.
Verbridge
,
I. W.
Frank
,
D. M.
Tanenbaum
,
J. M.
Parpia
,
H. G.
Craighead
, and
P. L.
McEuen
, “
Electromechanical resonators from graphene sheets
,”
Science
315
(
5811
),
490
493
(
2007
).
31.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
(
5696
),
666
669
(
2004
).
32.
B.
Xu
,
P.
Zhang
,
J.
Zhu
,
Z.
Liu
,
A.
Eichler
,
X.-Q.
Zheng
,
J.
Lee
,
A.
Dash
,
S.
More
,
S.
Wu
,
Y.
Wang
,
H.
Jia
,
A.
Naik
,
A.
Bachtold
,
R.
Yang
,
P. X.-L.
Feng
, and
Z.
Wang
, “
Nanomechanical resonators: Toward atomic scale
,”
ACS Nano
16
(
10
),
15545
15585
(
2022
).
33.
Z.
Wang
and
P. X.-L.
Feng
, “
Design of black phosphorus 2D nanomechanical resonators by exploiting the intrinsic mechanical anisotropy
,”
2D Mater.
2
(
2
),
021001
(
2015
).
34.
Z.
Wang
,
H.
Jia
,
X.-Q.
Zheng
,
R.
Yang
,
G. J.
Ye
,
X. H.
Chen
, and
P. X.-L.
Feng
, “
Resolving and tuning mechanical anisotropy in black phosphorus via nanomechanical multimode resonance spectromicroscopy
,”
Nano Lett.
16
(
9
),
5394
5400
(
2016
).
35.
A.
Islam
,
A.
van den Akker
, and
P. X. L.
Feng
, “
Anisotropic thermal conductivity of suspended black phosphorus probed by opto-thermomechanical resonance spectromicroscopy
,”
Nano Lett.
18
(
12
),
7683
7691
(
2018
).
36.
A.
Raja
,
L.
Waldecker
,
J.
Zipfel
,
Y.
Cho
,
S.
Brem
,
J. D.
Ziegler
,
M.
Kulig
,
T.
Taniguchi
,
K.
Watanabe
,
E.
Malic
,
T. F.
Heinz
,
T. C.
Berkelbach
, and
A.
Chernikov
, “
Dielectric disorder in two-dimensional materials
,”
Nat. Nanotechnol.
14
(
9
),
832
837
(
2019
).
37.
B.
Huang
,
G.
Clark
,
E.
Navarro-Moratalla
,
D. R.
Klein
,
R.
Cheng
,
K. L.
Seyler
,
D.
Zhong
,
E.
Schmidgall
,
M. A.
McGuire
,
D. H.
Cobden
,
W.
Yao
,
D.
Xiao
,
P.
Jarillo-Herrero
, and
X.
Xu
, “
Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
,”
Nature
546
(
7657
),
270
273
(
2017
).
38.
S.
Jiang
,
H.
Xie
,
J.
Shan
, and
K. F.
Mak
, “
Exchange magnetostriction in two-dimensional antiferromagnets
,”
Nat. Mater.
19
(
12
),
1295
1299
(
2020
).
39.
S.
Shivaraman
,
R. A.
Barton
,
X.
Yu
,
J.
Alden
,
L.
Herman
,
M. V. S.
Chandrashekhar
,
J.
Park
,
P. L.
McEuen
,
J. M.
Parpia
,
H. G.
Craighead
, and
M. G.
Spencer
, “
Free-standing epitaxial graphene
,”
Nano Lett.
9
(
9
),
3100
3105
(
2009
).
40.
J. T.
Robinson
,
M.
Zalalutdinov
,
J. W.
Baldwin
,
E. S.
Snow
,
Z.
Wei
,
P.
Sheehan
, and
B. H.
Houston
, “
Wafer-scale reduced graphene oxide films for nanomechanical devices
,”
Nano Lett.
8
(
10
),
3441
3445
(
2008
).
41.
J.
Son
,
J.
Kwon
,
S.
Kim
,
Y.
Lv
,
J.
Yu
,
J.-Y.
Lee
,
H.
Ryu
,
K.
Watanabe
,
T.
Taniguchi
,
R.
Garrido-Menacho
,
N.
Mason
,
E.
Ertekin
,
P. Y.
Huang
,
G.-H.
Lee
, and
A. M.
van der Zande
, “
Atomically precise graphene etch stops for three dimensional integrated systems from two dimensional material heterostructures
,”
Nat. Commun.
9
(
1
),
3988
(
2018
).
42.
J.
Lee
,
Z.
Wang
,
K.
He
,
J.
Shan
, and
P. X. L.
Feng
, “
High frequency MoS2 nanomechanical resonators
,”
ACS Nano
7
(
7
),
6086
6091
(
2013
).
43.
J.
Lee
,
Z.
Wang
,
K.
He
,
R.
Yang
,
J.
Shan
, and
P. X.-L.
Feng
, “
Electrically tunable single- and few-layer MoS2 nanoelectromechanical systems with broad dynamic range
,”
Sci. Adv.
4
(
3
),
eaao6653
(
2018
).
44.
A.
Castellanos-Gomez
,
R.
van Leeuwen
,
M.
Buscema
,
H. S. J.
van der Zant
,
G. A.
Steele
, and
W. J.
Venstra
, “
Single-layer MoS2 mechanical resonators
,”
Adv. Mater.
25
(
46
),
6719
6723
(
2013
).
45.
S.
Manzeli
,
D.
Dumcenco
,
G.
Migliato Marega
, and
A.
Kis
, “
Self-sensing, tunable monolayer MoS2 nanoelectromechanical resonators
,”
Nat. Commun.
10
(
1
),
4831
(
2019
).
46.
C.
Samanta
,
N.
Arora
,
V.
Kranthi Kumar
,
S.
Raghavan
, and
A. K.
Naik
, “
The effect of strain on effective duffing nonlinearity in the CVD-MoS2 resonator
,”
Nanoscale
11
,
8394
8401
(
2019
).
47.
C.
Samanta
,
P. R.
Yasasvi Gangavarapu
, and
A. K.
Naik
, “
Nonlinear mode coupling and internal resonances in MoS2 nanoelectromechanical system
,”
Appl. Phys. Lett.
107
(
17
),
173110
(
2015
).
48.
B. R.
Matis
,
B. H.
Houston
, and
J. W.
Baldwin
, “
Energy dissipation pathways in few-layer MoS2 nanoelectromechanical systems
,”
Sci. Rep.
7
(
1
),
5656
5656
(
2017
).
49.
P.
Prasad
,
N.
Arora
, and
A. K.
Naik
, “
Parametric amplification in MoS2 drum resonator
,”
Nanoscale
9
,
18299
18304
(
2017
).
50.
N.
Morell
,
A.
Reserbat-Plantey
,
I.
Tsioutsios
,
K. G.
Schädler
,
F.
Dubin
,
F. H. L.
Koppens
, and
A.
Bachtold
, “
High quality factor mechanical resonators based on WSe2 monolayers
,”
Nano Lett.
16
(
8
),
5102
5108
(
2016
).
51.
N.
Morell
,
S.
Tepsic
,
A.
Reserbat-Plantey
,
A.
Cepellotti
,
M.
Manca
,
I.
Epstein
,
A.
Isacsson
,
X.
Marie
,
F.
Mauri
, and
A.
Bachtold
, “
Optomechanical measurement of thermal transport in two-dimensional MoSe2 lattices
,”
Nano Lett.
19
(
5
),
3143
3150
(
2019
).
52.
J.
Lee
,
F.
Ye
,
Z.
Wang
,
R.
Yang
,
J.
Hu
,
Z.
Mao
,
J.
Wei
, and
P. X.-L.
Feng
, “
Single- and few-layer WTe2 and their suspended nanostructures: Raman signatures and nanomechanical resonances
,”
Nanoscale
8
,
7854
7860
(
2016
).
53.
M.
Šiškins
,
M.
Lee
,
F.
Alijani
,
M. R.
van Blankenstein
,
D.
Davidovikj
,
H. S. J.
van der Zant
, and
P. G.
Steeneken
, “
Highly anisotropic mechanical and optical properties of 2D layered As2S3 membranes
,”
ACS Nano
13
(
9
),
10845
10851
(
2019
).
54.
X.-Q.
Zheng
,
J.
Lee
, and
P. X. L.
Feng
, “
Hexagonal boron nitride nanomechanical resonators with spatially visualized motion
,”
Microsyst. Nanoeng.
3
(
1
),
17038
(
2017
).
55.
S. J.
Cartamil-Bueno
,
M.
Cavalieri
,
R.
Wang
,
S.
Houri
,
S.
Hofmann
, and
H. S. J.
van der Zant
, “
Mechanical characterization and cleaning of CVD single-layer h-BN resonators
,”
npj 2D Mater. Appl.
1
(
1
),
16
(
2017
).
56.
P. K.
Shandilya
,
J. E.
Fröch
,
M.
Mitchell
,
D. P.
Lake
,
S.
Kim
,
M.
Toth
,
B.
Behera
,
C.
Healey
,
I.
Aharonovich
, and
P. E.
Barclay
, “
Hexagonal boron nitride cavity optomechanics
,”
Nano Lett.
19
(
2
),
1343
1350
(
2019
).
57.
S. J.
Cartamil-Bueno
,
P. G.
Steeneken
,
F. D.
Tichelaar
,
E.
Navarro-Moratalla
,
W. J.
Venstra
,
R.
van Leeuwen
,
E.
Coronado
,
H. S. J.
van der Zant
,
G. A.
Steele
, and
A.
Castellanos-Gomez
, “
High-quality-factor tantalum oxide nanomechanical resonators by laser oxidation of TaSe2
,”
Nano Res.
8
(
9
),
2842
2849
(
2015
).
58.
B.
Xu
,
J.
Zhu
,
F.
Xiao
,
N.
Liu
,
Y.
Liang
,
C.
Jiao
,
J.
Li
,
Q.
Deng
,
S.
Wu
,
T.
Wen
,
S.
Pei
,
H.
Wan
,
X.
Xiao
,
J.
Xia
, and
Z.
Wang
, “
Electrically tunable mxene nanomechanical resonators vibrating at very high frequencies
,”
ACS Nano
16
(
12
),
20229
20237
(
2022
).
59.
M.
Šiškins
,
M.
Lee
,
S.
Mañas-Valero
,
E.
Coronado
,
Y. M.
Blanter
,
H. S. J.
van der Zant
, and
P. G.
Steeneken
, “
Magnetic and electronic phase transitions probed by nanomechanical resonators
,”
Nat. Commun.
11
(
1
),
2698
(
2020
).
60.
M.
Šiškins
,
S.
Kurdi
,
M.
Lee
,
B. J. M.
Slotboom
,
W.
Xing
,
S.
Mañas-Valero
,
E.
Coronado
,
S.
Jia
,
W.
Han
,
T.
van der Sar
,
H. S. J.
van der Zant
, and
P. G.
Steeneken
, “
Nanomechanical probing and strain tuning of the curie temperature in suspended cr2ge2te6-based heterostructures
,”
npj 2D Mater. Appl.
6
(
1
),
41
(
2022
).
61.
S.
Sengupta
,
H. S.
Solanki
,
V.
Singh
,
S.
Dhara
, and
M. M.
Deshmukh
, “
Electromechanical resonators as probes of the charge density wave transition at the nanoscale in
nbse 2,”
Phys. Rev. B
82
,
155432
(
2010
).
62.
M.
Will
,
M.
Hamer
,
M.
Müller
,
A.
Noury
,
P.
Weber
,
A.
Bachtold
,
R. V.
Gorbachev
,
C.
Stampfer
, and
J.
Güttinger
, “
High quality factor graphene-based two-dimensional heterostructure mechanical resonator
,”
Nano Lett.
17
(
10
),
5950
5955
(
2017
).
63.
M.
Lee
,
M.
Šiškins
,
S.
Mañas-Valero
,
E.
Coronado
,
P. G.
Steeneken
, and
H. S. J.
van der Zant
, “
Study of charge density waves in suspended 2H-TaS2 and 2H-TaSe2 by nanomechanical resonance
,”
Appl. Phys. Lett.
118
(
19
),
193105
(
2021
).
64.
S.
Kim
,
J.
Yu
, and
A. M.
van der Zande
, “
Nano-electromechanical drumhead resonators from two-dimensional material bimorphs
,”
Nano Lett.
18
(
11
),
6686
6695
(
2018
).
65.
F.
Ye
,
J.
Lee
, and
P. X.-L.
Feng
, “
Atomic layer MoS2-graphene van der Waals heterostructure nanomechanical resonators
,”
Nanoscale
9
,
18208
18215
(
2017
).
66.
R.
Kumar
,
D. W.
Session
,
R.
Tsuchikawa
,
M.
Homer
,
H.
Paas
,
K.
Watanabe
,
T.
Taniguchi
, and
V. V.
Deshpande
, “
Circular electromechanical resonators based on hexagonal-boron nitride-graphene heterostructures
,”
Appl. Phys. Lett.
117
(
18
),
183103
(
2020
).
67.
L. D.
Varma Sangani
,
S.
Mandal
,
S.
Ghosh
,
K.
Watanabe
,
T.
Taniguchi
, and
M. M.
Deshmukh
, “
Dynamics of interfacial bubble controls adhesion mechanics in van der Waals heterostructure
,”
Nano Lett.
22
(
9
),
3612
3619
(
2022
).
68.
D.
Davidovikj
,
D. J.
Groenendijk
,
A. M. R. V. L.
Monteiro
,
A.
Dijkhoff
,
D.
Afanasiev
,
M.
Šiškins
,
M.
Lee
,
Y.
Huang
,
E.
van Heumen
,
H. S. J.
van der Zant
,
A. D.
Caviglia
, and
P. G.
Steeneken
, “
Ultrathin complex oxide nanomechanical resonators
,”
Commun. Phys.
3
(
1
),
163
(
2020
).
69.
V.
Harbola
,
S.
Crossley
,
S. S.
Hong
,
D.
Lu
,
Y. A.
Birkholzer
,
Y.
Hikita
, and
H. Y.
Hwang
, “
Strain gradient elasticity in SrTiO3 membranes: Bending versus stretching
,”
Nano Lett.
21
(
6
),
2470
2475
(
2021
).
70.
M.
Lee
,
M. P.
Robin
,
R. H.
Guis
,
U.
Filippozzi
,
D. H.
Shin
,
T. C.
van Thiel
,
S. P.
Paardekooper
,
J. R.
Renshof
,
H. S. J.
van der Zant
,
A. D.
Caviglia
,
G. J.
Verbiest
, and
P. G.
Steeneken
, “
Self-sealing complex oxide resonators
,”
Nano Lett.
22
(
4
),
1475
1482
(
2022
).
71.
S. K.
Sahu
,
J.
Vaidya
,
F.
Schmidt
,
D.
Jangade
,
A.
Thamizhavel
,
G.
Steele
,
M. M.
Deshmukh
, and
V.
Singh
, “
Nanoelectromechanical resonators from high-Tc superconducting crystals of Bi2Sr2Ca1Cu2O8+δ
,”
2D Mater.
6
(
2
),
025027
(
2019
).
72.
S. K.
Sahu
,
S.
Mandal
,
S.
Ghosh
,
M. M.
Deshmukh
, and
V.
Singh
, “
Superconducting vortex-charge measurement using cavity electromechanics
,”
Nano Lett.
22
(
4
),
1665
1671
(
2022
).
73.
W.
Bao
,
F.
Miao
,
Z.
Chen
,
H.
Zhang
,
W.
Jang
,
C.
Dames
, and
C. N.
Lau
, “
Controlled ripple texturing of suspended graphene and ultrathin graphite membranes
,”
Nat. Nanotechnol.
4
(
9
),
562
566
(
2009
).
74.
S.
Deng
and
V.
Berry
, “
Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications
,”
Mater. Today
19
(
4
),
197
212
(
2016
).
75.
E.
Cerda
and
L.
Mahadevan
, “
Geometry and physics of wrinkling
,”
Phys. Rev. Lett.
90
,
074302
(
2003
).
76.
D.
Garcia-Sanchez
,
A. M.
van der Zande
,
A. S.
Paulo
,
B.
Lassagne
,
P. L.
McEuen
, and
A.
Bachtold
, “
Imaging mechanical vibrations in suspended graphene sheets
,”
Nano Lett.
8
(
5
),
1399
1403
(
2008
).
77.
D.
Davidovikj
,
J. J.
Slim
,
S. J.
Cartamil-Bueno
,
H. S. J.
van der Zant
,
P. G.
Steeneken
, and
W. J.
Venstra
, “
Visualizing the motion of graphene nanodrums
,”
Nano Lett.
16
(
4
),
2768
2773
(
2016
).
78.
J. S.
Bunch
,
S. S.
Verbridge
,
J. S.
Alden
,
A. M.
van der Zande
,
J. M.
Parpia
,
H. G.
Craighead
, and
P. L.
McEuen
, “
Impermeable atomic membranes from graphene sheets
,”
Nano Lett.
8
(
8
),
2458
2462
(
2008
).
79.
R. A.
Barton
,
I. R.
Storch
,
V. P.
Adiga
,
R.
Sakakibara
,
B. R.
Cipriany
,
B.
Ilic
,
S. P.
Wang
,
P.
Ong
,
P. L.
McEuen
,
J. M.
Parpia
, and
H. G.
Craighead
, “
Photothermal self-oscillation and laser cooling of graphene optomechanical systems
,”
Nano Lett.
12
(
9
),
4681
4686
(
2012
).
80.
R.
De Alba
,
F.
Massel
,
I. R.
Storch
,
T. S.
Abhilash
,
A.
Hui
,
P. L.
McEuen
,
H. G.
Craighead
, and
J. M.
Parpia
, “
Tunable phonon-cavity coupling in graphene membranes
,”
Nat. Nanotechnol.
11
(
9
),
741
746
(
2016
).
81.
I. R.
Storch
,
R.
De Alba
,
V. P.
Adiga
,
T. S.
Abhilash
,
R. A.
Barton
,
H. G.
Craighead
,
J. M.
Parpia
, and
P. L.
McEuen
, “
Young's modulus and thermal expansion of tensioned graphene membranes
,”
Phys. Rev. B
98
,
085408
(
2018
).
82.
R.
De Alba
,
T. S.
Abhilash
,
A.
Hui
,
I. R.
Storch
,
H. G.
Craighead
, and
J. M.
Parpia
, “
Temperature-dependence of stress and elasticity in wet-transferred graphene membranes
,”
J. Appl. Phys.
123
(
9
),
095109
(
2018
).
83.
C.-H.
Liu
,
I. S.
Kim
, and
L. J.
Lauhon
, “
Optical control of mechanical mode-coupling within a MoS2 resonator in the strong-coupling regime
,”
Nano Lett.
15
(
10
),
6727
6731
(
2015
).
84.
S. P.
Koenig
,
N. G.
Boddeti
,
M. L.
Dunn
, and
J. S.
Bunch
, “
Ultrastrong adhesion of graphene membranes
,”
Nat. Nanotechnol.
6
(
9
),
543
546
(
2011
).
85.
C.
Chen
,
S.
Rosenblatt
,
K. I.
Bolotin
,
W.
Kalb
,
P.
Kim
,
I.
Kymissis
,
H. L.
Stormer
,
T. F.
Heinz
, and
J.
Hone
, “
Performance of monolayer graphene nanomechanical resonators with electrical readout
,”
Nat. Nanotechnol.
4
(
12
),
861
867
(
2009
).
86.
D.
Davidovikj
,
M.
Poot
,
S. J.
Cartamil-Bueno
,
H. S. J.
van der Zant
, and
P. G.
Steeneken
, “
On-chip heaters for tension tuning of graphene nanodrums
,”
Nano Lett.
18
(
5
),
2852
2858
(
2018
).
87.
Y.
Xie
,
J.
Lee
,
Y.
Wang
, and
P. X.-L.
Feng
, “
Straining and tuning atomic layer nanoelectromechanical resonators via comb-drive MEMS actuators
,”
Adv. Mater. Technol.
6
(
2
),
2000794
(
2021
).
88.
C.
Chen
,
V. V.
Deshpande
,
M.
Koshino
,
S.
Lee
,
A.
Gondarenko
,
A. H.
MacDonald
,
P.
Kim
, and
J.
Hone
, “
Modulation of mechanical resonance by chemical potential oscillation in graphene
,”
Nat. Phys.
12
(
3
),
240
244
(
2016
).
89.
E.
Stolyarova
,
D.
Stolyarov
,
K.
Bolotin
,
S.
Ryu
,
L.
Liu
,
K. T.
Rim
,
M.
Klima
,
M.
Hybertsen
,
I.
Pogorelsky
,
I.
Pavlishin
,
K.
Kusche
,
J.
Hone
,
P.
Kim
,
H. L.
Stormer
,
V.
Yakimenko
, and
G.
Flynn
, “
Observation of graphene bubbles and effective mass transport under graphene films
,”
Nano Lett.
9
(
1
),
332
337
(
2009
).
90.
R. A.
Barton
,
B.
Ilic
,
A. M.
van der Zande
,
W. S.
Whitney
,
P. L.
McEuen
,
J. M.
Parpia
, and
H. G.
Craighead
, “
High, size-dependent quality factor in an array of graphene mechanical resonators
,”
Nano Lett.
11
(
3
),
1232
1236
(
2011
).
91.
H.
Jia
,
R.
Yang
,
A. E.
Nguyen
,
S. N.
Alvillar
,
T.
Empante
,
L.
Bartels
, and
P. X.-L.
Feng
, “
Large-scale arrays of single- and few-layer MoS2 nanomechanical resonators
,”
Nanoscale
8
,
10677
10685
(
2016
).
92.
Z.
Wang
and
P. X. L.
Feng
, “
Interferometric motion detection in atomic layer 2D nanostructures: Visualizing signal transduction efficiency and optimization pathways
,”
Sci. Rep.
6
,
28923
(
2016
).
93.
Y.
Ben-Shimon
and
A.
Ya'akobovitz
, “
Magnetic excitation and dissipation of multilayer two-dimensional resonators
,”
Appl. Phys. Lett.
118
(
6
),
063103
(
2021
).
94.
V.
Sazonova
,
Y.
Yaish
,
H.
Üstünel
,
D.
Roundy
,
T. A.
Arias
, and
P. L.
McEuen
, “
A tunable carbon nanotube electromechanical oscillator
,”
Nature
431
,
284
(
2004
).
95.
Y.
Xu
,
C.
Chen
,
V. V.
Deshpande
,
F. A.
DiRenno
,
A.
Gondarenko
,
D. B.
Heinz
,
S.
Liu
,
P.
Kim
, and
J.
Hone
, “
Radio frequency electrical transduction of graphene mechanical resonators
,”
Appl. Phys. Lett.
97
(
24
),
243111
(
2010
).
96.
C.
Chen
,
S.
Lee
,
V. V.
Deshpande
,
G.-H.
Lee
,
M.
Lekas
,
K.
Shepard
, and
J.
Hone
, “
Graphene mechanical oscillators with tunable frequency
,”
Nat. Nanotechnol.
8
(
12
),
923
927
(
2013
).
97.
S.
Lee
,
C.
Chen
,
V. V.
Deshpande
,
G.-H.
Lee
,
I.
Lee
,
M.
Lekas
,
A.
Gondarenko
,
Y.-J.
Yu
,
K.
Shepard
,
P.
Kim
, and
J.
Hone
, “
Electrically integrated SU-8 clamped graphene drum resonators for strain engineering
,”
Appl. Phys. Lett.
102
(
15
),
153101
(
2013
).
98.
V.
Gouttenoire
,
T.
Barois
,
S.
Perisanu
,
J.-L.
Leclercq
,
S. T.
Purcell
,
P.
Vincent
, and
A.
Ayari
, “
Digital and FM demodulation of a doubly clamped single-walled carbon-nanotube oscillator: Towards a nanotube cell phone
,”
Small
6
(
9
),
1060
1065
(
2010
).
99.
B.
Lassagne
,
Y.
Tarakanov
,
J.
Kinaret
,
D.
Garcia-Sanchez
, and
A.
Bachtold
, “
Coupling mechanics to charge transport in carbon nanotube mechanical resonators
,”
Science
325
(
5944
),
1107
1110
(
2009
).
100.
G. A.
Steele
,
A. K.
Hüttel
,
B.
Witkamp
,
M.
Poot
,
H. B.
Meerwaldt
,
L. P.
Kouwenhoven
, and
H. S. J.
van der Zant
, “
Strong coupling between single-electron tunneling and nanomechanical motion
,”
Science
325
(
5944
),
1103
1107
(
2009
).
101.
H.
Zhu
,
Y.
Wang
,
J.
Xiao
,
M.
Liu
,
S.
Xiong
,
Z. J.
Wong
,
Z.
Ye
,
Y.
Ye
,
X.
Yin
, and
X.
Zhang
, “
Observation of piezoelectricity in free-standing monolayer MoS2
,”
Nat. Nanotechnol.
10
(
2
),
151
155
(
2015
).
102.
S.
Tadigadapa
and
K.
Mateti
, “
Piezoelectric MEMS sensors: State-of-the-art and perspectives
,”
Meas. Sci. Technol.
20
(
9
),
092001
(
2009
).
103.
H.
Liu
,
J.
Zhong
,
C.
Lee
,
S.-W.
Lee
, and
L.
Lin
, “
A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications
,”
Appl. Phys. Rev.
5
(
4
),
041306
(
2018
).
104.
K.-A. N.
Duerloo
,
M. T.
Ong
, and
E. J.
Reed
, “
Intrinsic piezoelectricity in two-dimensional materials
,”
J. Phys. Chem. Lett.
3
(
19
),
2871
2876
(
2012
).
105.
Y.
Zhou
,
W.
Liu
,
X.
Huang
,
A.
Zhang
,
Y.
Zhang
, and
Z. L.
Wang
, “
Theoretical study on two-dimensional MoS2 piezoelectric nanogenerators
,”
Nano Res.
9
(
3
),
800
807
(
2016
).
106.
G.
Pillai
and
S.-S.
Li
, “
Piezoelectric MEMS resonators: A review
,”
IEEE Sens. J.
21
(
11
),
12589
12605
(
2021
).
107.
Z.
Qian
,
F.
Liu
,
Y.
Hui
,
S.
Kar
, and
M.
Rinaldi
, “
Graphene as a massless electrode for ultrahigh-frequency piezoelectric nanoelectromechanical systems
,”
Nano Lett.
15
(
7
),
4599
4604
(
2015
).
108.
L.
Khine
,
J. B. W.
Soon
, and
J. M.
Tsai
, “
Piezoelectric ALN MEMS resonators with high coupling coefficient
,” in
2011 16th International Solid-State Sensors, Actuators and Microsystems Conference
, Beijing, China, 5–9 June 2011 (IEEE, 2011), pp.
526
529
.
109.
R.
Lu
,
Y.
Yang
,
S.
Link
, and
S.
Gong
, “
A1 resonators in 128° Y-cut lithium niobate with electromechanical coupling of 46.4%
,”
J. Microelectromech. Syst.
29
(
3
),
313
319
(
2020
).
110.
Y.
Liu
,
J.
Guo
,
E.
Zhu
,
L.
Liao
,
S.-J.
Lee
,
M.
Ding
,
I.
Shakir
,
V.
Gambin
,
Y.
Huang
, and
X.
Duan
, “
Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions
,”
Nature
557
(
7707
),
696
700
(
May 2018
).
111.
R. M.
Cole
,
G. A.
Brawley
,
V. P.
Adiga
,
R.
De Alba
,
J. M.
Parpia
,
B.
Ilic
,
H. G.
Craighead
, and
W. P.
Bowen
, “
Evanescent-field optical readout of graphene mechanical motion at room temperature
,”
Phys. Rev. Appl.
3
,
024004
(
2015
).
112.
A. W.
Barnard
,
M.
Zhang
,
G. S.
Wiederhecker
,
M.
Lipson
, and
P. L.
McEuen
, “
Real-time vibrations of a carbon nanotube
,”
Nature
566
(
7742
),
89
93
(
2019
).
113.
J.
Zhu
,
L.
Wang
,
J.
Wu
,
Y.
Liang
,
F.
Xiao
,
B.
Xu
,
Z.
Zhang
,
X.
Fan
,
Y.
Zhou
,
J.
Xia
, and
Z.
Wang
, “
Achieving 1.2 fm/Hz1/2 displacement sensitivity with laser interferometry in two-dimensional nanomechanical resonators: Pathways towards quantum-noise-limited measurement at room temperature
,”
Chin. Phys. Lett.
40
(
3
),
038102
(
2023
).
114.
M.
Amabili
,
Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials
(
Cambridge University Press
,
2018
).
115.
V.
Kaajakari
,
Practical MEMS
(
Small Gear Publications
,
Las Vegas, Nevada
,
2009
).
116.
T.
Wah
, “
Vibration of circular plates
,”
J. Acoust. Soc. Am.
34
(
3
),
275
281
(
1962
).
117.
R. J.
Nicholl
,
H. J.
Conley
,
N. V.
Lavrik
,
I.
Vlassiouk
,
Y. S.
Puzyrev
,
V. P.
Sreenivas
,
S. T.
Pantelides
, and
K. I.
Bolotin
, “
The effect of intrinsic crumpling on the mechanics of free-standing graphene
,”
Nat. Commun.
6
(
1
),
8789
(
2015
).
118.
Z.
Wang
,
J.
Lee
,
K.
He
,
J.
Shan
, and
P. X.-L.
Feng
, “
Embracing structural nonidealities and asymmetries in two-dimensional nanomechanical resonators
,”
Sci. Rep.
4
(
1
),
3919
(
2014
).
119.
E.
Kramer
,
J.
van Dorp
,
R.
van Leeuwen
, and
W. J.
Venstra
, “
Strain-dependent damping in nanomechanical resonators from thin MoS2 crystals
,”
Appl. Phys. Lett.
107
(
9
),
091903
(
2015
).
120.
S.
Afyouni Akbari
,
V.
Ghafarinia
,
T.
Larsen
,
M. M.
Parmar
, and
L. G.
Villanueva
, “
Large suspended monolayer and bilayer graphene membranes with diameter up to 750 μm
,”
Sci. Rep.
10
(
1
),
6426
(
2020
).
121.
J.
Zhu
,
B.
Xu
,
F.
Xiao
,
Y.
Liang
,
C.
Jiao
,
J.
Li
,
Q.
Deng
,
S.
Wu
,
T.
Wen
,
S.
Pei
,
J.
Xia
, and
Z.
Wang
, “
Frequency scaling, elastic transition, and broad-range frequency tuning in WSe2 nanomechanical resonators
,”
Nano Lett.
22
(
13
),
5107
5113
(
2022
).
122.
M. C.
Lemme
,
S.
Wagner
,
K.
Lee
,
X.
Fan
,
G. J.
Verbiest
,
S.
Wittmann
,
S.
Lukas
,
R. J.
Dolleman
,
F.
Niklaus
,
H. S. J.
van der Zant
,
G. S.
Duesberg
, and
P. G.
Steeneken
, “
Nanoelectromechanical sensors based on suspended 2D materials
,”
Research
2020
,
8748602
.
123.
M.
Šiškins
,
E.
Sokolovskaya
,
M.
Lee
,
S.
Mañas-Valero
,
D.
Davidovikj
,
H. S. J.
van der Zant
, and
P. G.
Steeneken
, “
Tunable strong coupling of mechanical resonance between spatially separated FePS3 nanodrums
,”
Nano Lett.
22
(
1
),
36
42
(
2022
).
124.
V.
Singh
,
S.
Sengupta
,
H. S.
Solanki
,
R.
Dhall
,
A.
Allain
,
S.
Dhara
,
P.
Pant
, and
M. M.
Deshmukh
, “
Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators
,”
Nanotechnology
21
(
16
),
165204
(
2010
).
125.
P.
Weber
,
J.
Güttinger
,
I.
Tsioutsios
,
D. E.
Chang
, and
A.
Bachtold
, “
Coupling graphene mechanical resonators to superconducting microwave cavities
,”
Nano Lett.
14
(
5
),
2854
2860
(
2014
).
126.
V.
Singh
,
S. J.
Bosman
,
B. H.
Schneider
,
Y. M.
Blanter
,
A.
Castellanos-Gomez
, and
G. A.
Steele
, “
Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity
,”
Nat. Nanotechnol.
9
(
10
),
820
824
(
2014
).
127.
F.
Ye
,
J.
Lee
, and
P. X. L.
Feng
, “
Electrothermally tunable graphene resonators operating at very high temperature up to 1200 K
,”
Nano Lett.
18
(
3
),
1678
1685
(
2018
).
128.
J.
Lee
,
Z.
Wang
,
K.
He
,
J.
Shan
, and
P. X.-L.
Feng
, “
Air damping of atomically thin MoS2 nanomechanical resonators
,”
Appl. Phys. Lett.
105
(
2
),
023104
(
2014
).
129.
M.
Lee
,
D.
Davidovikj
,
B.
Sajadi
,
M.
Šiškins
,
F.
Alijani
,
H. S. J.
van der Zant
, and
P. G.
Steeneken
, “
Sealing graphene nanodrums
,”
Nano Lett.
19
(
8
),
5313
5318
(
2019
).
130.
R. J.
Dolleman
,
D.
Davidovikj
,
S. J.
Cartamil-Bueno
,
H. S. J.
van der Zant
, and
P. G.
Steeneken
, “
Graphene squeeze-film pressure sensors
,”
Nano Lett.
16
(
1
),
568
571
(
2016
).
131.
R. J.
Dolleman
,
D.
Chakraborty
,
D. R.
Ladiges
,
H. S. J.
van der Zant
,
J. E.
Sader
, and
P. G.
Steeneken
, “
Squeeze-film effect on atomically thin resonators in the high-pressure limit
,”
Nano Lett.
21
(
18
),
7617
7624
(
2021
).
132.
R. J.
Dolleman
,
P.
Belardinelli
,
S.
Houri
,
H. S. J.
van der Zant
,
F.
Alijani
, and
P. G.
Steeneken
, “
High-frequency stochastic switching of graphene resonators near room temperature
,”
Nano Lett.
19
(
2
),
1282
1288
(
2019
).
133.
A.
Eichler
,
J.
Moser
,
J.
Chaste
,
M.
Zdrojek
,
I.
Wilson-Rae
, and
A.
Bachtold
, “
Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene
,”
Nat. Nanotechnol.
6
(
6
),
339
342
(
2011
).
134.
R.
Lifshitz
and
M. C.
Cross
,
Nonlinear Dynamics of Nanomechanical and Micromechanical Resonators
(
John Wiley & Sons, Ltd
,
2009
), Chap. 1, pp.
1
52
.
135.
H. W. C.
Postma
,
I.
Kozinsky
,
A.
Husain
, and
M. L.
Roukes
, “
Dynamic range of nanotube- and nanowire-based electromechanical systems
,”
Appl. Phys. Lett.
86
(
22
),
223105
(
2005
).
136.
Q.
Lu
and
R.
Huang
, “
Nonlinear mechanics of single-atomic-layer graphene sheets
,”
Int. J. Appl. Mech.
01
(
03
),
443
467
(
2009
).
137.
R. J.
Dolleman
,
D.
Davidovikj
,
H. S. J.
van der Zant
, and
P. G.
Steeneken
, “
Amplitude calibration of 2D mechanical resonators by nonlinear optical transduction
,”
Appl. Phys. Lett.
111
(
25
),
253104
(
2017
).
138.
P.
Weber
,
J.
Güttinger
,
A.
Noury
,
J.
Vergara-Cruz
, and
A.
Bachtold
, “
Force sensitivity of multilayer graphene optomechanical devices
,”
Nat. Commun.
7
,
12496
(
2016
).
139.
J.
Zhu
,
P.
Zhang
,
R.
Yang
, and
Z.
Wang
, “
Analyzing electrostatic modulation of signal transduction efficiency in MoS2 nanoelectromechanical resonators with interferometric readout
,”
Sci. China Inf. Sci.
65
(
2
),
122409
(
2022
).
140.
Z.
Wang
and
P. X.-L.
Feng
, “
Dynamic range of atomically thin vibrating nanomechanical resonators
,”
Appl. Phys. Lett.
104
(
10
),
103109
(
2014
).
141.
M.
Kumar
and
H.
Bhaskaran
, “
Ultrasensitive room-temperature piezoresistive transduction in graphene-based nanoelectromechanical systems
,”
Nano Lett.
15
(
4
),
2562
2567
(
2015
).
142.
M. H.
Matheny
,
L. G.
Villanueva
,
R. B.
Karabalin
,
J. E.
Sader
, and
M. L.
Roukes
, “
Nonlinear mode-coupling in nanomechanical systems
,”
Nano Lett.
13
(
4
),
1622
1626
(
2013
).
143.
L. G.
Villanueva
,
R. B.
Karabalin
,
M. H.
Matheny
,
E.
Kenig
,
M. C.
Cross
, and
M. L.
Roukes
, “
A nanoscale parametric feedback oscillator
,”
Nano Lett.
11
(
11
),
5054
5059
(
2011
).
144.
X. L.
Feng
,
C. J.
White
,
A.
Hajimiri
, and
M. L.
Roukes
, “
A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator
,”
Nat. Nanotechnol.
3
(
6
),
342
346
(
2008
).
145.
C.-H.
Song
and
K.-A.
Wen
, “
Integration design of wide-dynamic-range MEMS magnetometer and oscillator
,” in
2018 IEEE International Conference on Semiconductor Electronics (ICSE)
, Kuala Lumpur, Malaysia, 15–17 August 2018 (IEEE, 2018), pp. 17–20.
146.
K.
Azgin
,
T.
Akin
, and
L.
Valdevit
, “
Ultrahigh-dynamic-range resonant MEMS load cells for micromechanical test frames
,”
J. Microelectromech. Syst.
21
(
6
),
1519
1529
(
2012
).
147.
I.
Kozinsky
,
H. W. C.
Postma
,
I.
Bargatin
, and
M. L.
Roukes
, “
Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators
,”
Appl. Phys. Lett.
88
(
25
),
253101
(
2006
).
148.
C.
Samanta
,
N.
Arora
, and
A. K.
Naik
, “
Tuning of geometric nonlinearity in ultrathin nanoelectromechanical systems
,”
Appl. Phys. Lett.
113
(
11
),
113101
(
2018
).
149.
A. H.
Nayfeh
and
D. T.
Mook
,
Nonlinear Oscillations
(
John Wiley & Sons, Ltd
,
2007
).
150.
X.
Song
,
M.
Oksanen
,
M. A.
Sillanpää
,
H. G.
Craighead
,
J. M.
Parpia
, and
P. J.
Hakonen
, “
Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout
,”
Nano Lett.
12
(
1
),
198
202
(
2012
).
151.
W. J.
Venstra
,
H. J. R.
Westra
, and
H. S. J.
van der Zant
, “
Stochastic switching of cantilever motion
,”
Nat. Commun.
4
(
1
),
2624
(
2013
).
152.
S.
Mitatha
,
K.
Dejhan
,
P. P.
Yupapin
, and
N.
Pornsuwancharoen
, “
Chaotic signal generation and coding using a nonlinear micro ring resonator
,”
Optik
121
(
1
),
120
125
(
2010
).
153.
V. B.
Braginsky
,
V. P.
Mitrofanov
, and
V. I.
Panov
,
Systems with Small Dissipation
(
University of Chicago Press
,
1985
).
154.
G.
Anetsberger
,
O.
Arcizet
,
Q. P.
Unterreithmeier
,
R.
Rivière
,
A.
Schliesser
,
E. M.
Weig
,
J. P.
Kotthaus
, and
T. J.
Kippenberg
, “
Near-field cavity optomechanics with nanomechanical oscillators
,”
Nat. Phys.
5
(
12
),
909
914
(
2009
).
155.
J. T. M.
van Beek
and
R.
Puers
, “
A review of MEMS oscillators for frequency reference and timing applications
,”
J. Micromech. Microeng.
22
(
1
),
013001
(
2011
).
156.
S.
Ghaffari
,
S. A.
Chandorkar
,
S.
Wang
,
E. J.
Ng
,
C. H.
Ahn
,
V.
Hong
,
Y.
Yang
, and
T. W.
Kenny
, “
Quantum limit of quality factor in silicon micro and nano mechanical resonators
,”
Sci. Rep.
3
(
1
),
3244
(
2013
).
157.
T.
Bagci
,
A.
Simonsen
,
S.
Schmid
,
L. G.
Villanueva
,
E.
Zeuthen
,
J.
Appel
,
J. M.
Taylor
,
A.
Sørensen
,
K.
Usami
,
A.
Schliesser
, and
E. S.
Polzik
, “
Optical detection of radio waves through a nanomechanical transducer
,”
Nature
507
(
7490
),
81
85
(
2014
).
158.
M.
Fischeneder
,
M.
Oposich
,
M.
Schneider
, and
U.
Schmid
, “
Tuneable Q-factor of MEMS cantilevers with integrated piezoelectric thin films
,”
Sensors
18
(
11
),
3842
(
2018
).
159.
Y.
Deimerly
,
P.
Rey
,
P.
Robert
,
T.
Bourouina
, and
G.
Jourdan
, “
Electromechanical damping in MEMS accelerometers: A way towards single chip gyrometer accelerometer co-integration
,” in
2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)
, San Francisco, CA, 26–30 January 2014 (IEEE, 2014), pp. 725–728.
160.
S. S.
Verbridge
,
H. G.
Craighead
, and
J. M.
Parpia
, “
A megahertz nanomechanical resonator with room temperature quality factor over a million
,”
Appl. Phys. Lett.
92
(
1
),
013112
(
2008
).
161.
B. M.
Zwickl
,
W. E.
Shanks
,
A. M.
Jayich
,
C.
Yang
,
A. C.
Bleszynski Jayich
,
J. D.
Thompson
, and
J. G. E.
Harris
, “
High quality mechanical and optical properties of commercial silicon nitride membranes
,”
Appl. Phys. Lett.
92
(
10
),
103125
(
2008
).
162.
J.-W.
Jiang
,
H. S.
Park
, and
T.
Rabczuk
, “
MoS2 nanoresonators: Intrinsically better than graphene?
,”
Nanoscale
6
,
3618
3625
(
2014
).
163.
P. F.
Ferrari
,
S.
Kim
, and
A. M.
van der Zande
, “
Dissipation from interlayer friction in graphene nanoelectromechanical resonators
,”
Nano Lett.
21
(
19
),
8058
8065
(
2021
).
164.
E.
Koren
,
E.
Lörtscher
,
C.
Rawlings
,
A. W.
Knoll
, and
U.
Duerig
, “
Adhesion and friction in mesoscopic graphite contacts
,”
Science
348
(
6235
),
679
683
(
2015
).
165.
M.
Takamura
,
H.
Okamoto
,
K.
Furukawa
,
H.
Yamaguchi
, and
H.
Hibino
, “
Energy dissipation in graphene mechanical resonators with and without free edges
,”
Micromachines
7
(
9
),
158
(
2016
).
166.
M.
Dienwiebel
,
G. S.
Verhoeven
,
N.
Pradeep
,
J. W. M.
Frenken
,
J. A.
Heimberg
, and
H. W.
Zandbergen
, “
Superlubricity of graphite
,”
Phys. Rev. Lett.
92
,
126101
(
2004
).
167.
Z.
Liu
,
J.
Yang
,
F.
Grey
,
J. Z.
Liu
,
Y.
Liu
,
Y.
Wang
,
Y.
Yang
,
Y.
Cheng
, and
Q.
Zheng
, “
Observation of microscale superlubricity in graphite
,”
Phys. Rev. Lett.
108
,
205503
(
2012
).
168.
C.
Androulidakis
,
E. N.
Koukaras
,
G.
Paterakis
,
G.
Trakakis
, and
C.
Galiotis
, “
Tunable macroscale structural superlubricity in two-layer graphene via strain engineering
,”
Nat. Commun.
11
(
1
),
1595
(
2020
).
169.
C. W.
de Silva
,
Vibration and Shock Handbook. Mechanical and Aerospace Engineering Series
(
CRC Press
,
2005
).
170.
S. Y.
Kim
and
H. S.
Park
, “
Multilayer friction and attachment effects on energy dissipation in graphene nanoresonators
,”
Appl. Phys. Lett.
94
(
10
),
101918
(
2009
).
171.
R.
Liu
and
L.
Wang
, “
Nonlinear forced vibration of bilayer van der Waals materials drum resonator
,”
J. Appl. Phys.
128
(
14
),
145105
(
2020
).
172.
C.
Seoánez
,
F.
Guinea
, and
A. H.
Castro Neto
, “
Dissipation in graphene and nanotube resonators
,”
Phys. Rev. B
76
,
125427
(
2007
).
173.
M.
Imboden
and
P.
Mohanty
, “
Dissipation in nanoelectromechanical systems
,”
Phys. Rep.
534
(
3
),
89
146
(
2014
).
174.
M.
Takamura
,
H.
Okamoto
,
K.
Furukawa
,
H.
Yamaguchi
, and
H.
Hibino
, “
Energy dissipation in edged and edgeless graphene mechanical resonators
,”
J. Appl. Phys.
116
(
6
),
064304
(
2014
).
175.
T.
Miao
,
S.
Yeom
,
P.
Wang
,
B.
Standley
, and
M.
Bockrath
, “
Graphene nanoelectromechanical systems as stochastic-frequency oscillators
,”
Nano Lett.
14
(
6
),
2982
2987
(
2014
).
176.
S. Y.
Kim
and
H. S.
Park
, “
The importance of edge effects on the intrinsic loss mechanisms of graphene nanoresonators
,”
Nano Lett.
9
(
3
),
969
974
(
2009
).
177.
J.-W.
Jiang
and
J.-S.
Wang
, “
Why edge effects are important on the intrinsic loss mechanisms of graphene nanoresonators
,”
J. Appl. Phys.
111
(
5
),
054314
(
2012
).
178.
A. K.
Hüttel
,
G. A.
Steele
,
B.
Witkamp
,
M.
Poot
,
L. P.
Kouwenhoven
, and
H. S. J.
van der Zant
, “
Carbon nanotubes as ultrahigh quality factor mechanical resonators
,”
Nano Lett.
9
(
7
),
2547
2552
(
2009
).
179.
V. A.
Sazonova
,
A Tunable Carbon Nanotube Resonator
(
Cornell University
,
2006
).
180.
J.
Güttinger
,
A.
Noury
,
P.
Weber
,
A. M.
Eriksson
,
C.
Lagoin
,
J.
Moser
,
C.
Eichler
,
A.
Wallraff
,
A.
Isacsson
, and
A.
Bachtold
, “
Energy-dependent path of dissipation in nanomechanical resonators
,”
Nat. Nanotechnol.
12
(
7
),
631
636
(
2017
).
181.
D.
Midtvedt
,
A.
Croy
,
A.
Isacsson
,
Z.
Qi
, and
H. S.
Park
, “
Fermi-Pasta-Ulam physics with nanomechanical graphene resonators: Intrinsic relaxation and thermalization from flexural mode coupling
,”
Phys. Rev. Lett.
112
,
145503
(
2014
).
182.
P.
Zhang
,
Y.
Jia
,
M.
Xie
,
Z.
Liu
,
S.
Shen
,
J.
Wei
, and
R.
Yang
, “
Strain-modulated dissipation in two-dimensional molybdenum disulfide nanoelectromechanical resonators
,”
ACS Nano
16
(
2
),
2261
2270
(
2022
).
183.
Y.
Oshidari
,
T.
Hatakeyama
,
R.
Kometani
,
S.
Warisawa
, and
S.
Ishihara
, “
High quality factor graphene resonator fabrication using resist shrinkage-induced strain
,”
Appl. Phys. Express
5
(
11
),
117201
(
2012
).
184.
R.
Lifshitz
, “
Phonon-mediated dissipation in micro- and nano-mechanical systems
,”
Physica B
316–317
,
397
399
(
2002
).
185.
V. P.
Adiga
,
B.
Ilic
,
R. A.
Barton
,
I.
Wilson-Rae
,
H. G.
Craighead
, and
J. M.
Parpia
, “
Approaching intrinsic performance in ultra-thin silicon nitride drum resonators
,”
J. Appl. Phys.
112
(
6
),
064323
(
2012
).
186.
A.
Bachtold
,
J.
Moser
, and
M. I.
Dykman
, “
Mesoscopic physics of nanomechanical systems
,”
Rev. Mod. Phys.
94
,
045005
(
2022
).
187.
A.
Croy
,
D.
Midtvedt
,
A.
Isacsson
, and
J. M.
Kinaret
, “
Nonlinear damping in graphene resonators
,”
Phys. Rev. B
86
,
235435
(
2012
).
188.
S.
De
,
K.
Kunal
, and
N. R.
Aluru
, “
Nonlinear intrinsic dissipation in single layer MoS2 resonators
,”
RSC Adv.
7
,
6403
6410
(
2017
).
189.
S.
De
,
A.
van der Zande
, and
N. R.
Aluru
, “
Intrinsic dissipation due to mode coupling in two-dimensional-material resonators revealed through a multiscale approach
,”
Phys. Rev. Appl.
14
,
034062
(
2020
).
190.
A. M.
Eriksson
,
D.
Midtvedt
,
A.
Croy
, and
A.
Isacsson
, “
Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators
,”
Nanotechnology
24
(
39
),
395702
(
2013
).
191.
W.
Gao
and
R.
Huang
, “
Thermomechanics of monolayer graphene: Rippling, thermal expansion and elasticity
,”
J. Mech. Phys. Solids
66
,
42
58
(
2014
).
192.
H.
Liu
,
M.
Lee
,
M.
Šiškins
,
H. S. J.
van der Zant
,
P. G.
Steeneken
, and
G. J.
Verbiest
, “
Tension tuning of sound and heat transport in graphene
,” arXiv:2204.06877 (
2022
).
193.
P. L.
de Andres
,
F.
Guinea
, and
M. I.
Katsnelson
, “
Bending modes, anharmonic effects, and thermal expansion coefficient in single-layer and multilayer graphene
,”
Phys. Rev. B
86
,
144103
(
2012
).
194.
M. I.
Katsnelson
and
A.
Fasolino
, “
Graphene as a prototype crystalline membrane
,”
Acc. Chem. Res.
46
(
1
),
97
105
(
2013
).
195.
A.
Košmrlj
and
D. R.
Nelson
, “
Response of thermalized ribbons to pulling and bending
,”
Phys. Rev. B
93
,
125431
(
2016
).
196.
J. H.
Los
,
A.
Fasolino
, and
M. I.
Katsnelson
, “
Scaling behavior and strain dependence of in-plane elastic properties of graphene
,”
Phys. Rev. Lett.
116
,
015901
(
2016
).
197.
M. J.
Bowick
,
A.
Košmrlj
,
D. R.
Nelson
, and
R.
Sknepnek
, “
Non-hookean statistical mechanics of clamped graphene ribbons
,”
Phys. Rev. B
95
,
104109
(
2017
).
198.
A.
Morshedifard
,
M.
Ruiz-García
,
M. J.
Abdolhosseini Qomi
, and
A.
Košmrlj
, “
Buckling of thermalized elastic sheets
,”
J. Mech. Phys. Solids
149
,
104296
(
2021
).
199.
P.
Prasad
,
N.
Arora
, and
A. K.
Naik
, “
Gate tunable cooperativity between vibrational modes
,”
Nano Lett.
19
(
9
),
5862
5867
(
2019
).
200.
Z.-Z.
Zhang
,
X.-X.
Song
,
G.
Luo
,
Z.-J.
Su
,
K.-L.
Wang
,
G.
Cao
,
H.-O.
Li
,
M.
Xiao
,
G.-C.
Guo
,
L.
Tian
,
G.-W.
Deng
, and
G.-P.
Guo
, “
Coherent phonon dynamics in spatially-separated graphene mechanical resonators
,”
Proc. Natl. Acad. Sci. U. S. A.
117
(
11
),
5582
5587
(
2020
).
201.
Y.
Wang
,
J.
Lee
,
X.-Q.
Zheng
,
Y.
Xie
, and
P. X.-L.
Feng
, “
Hexagonal boron nitride phononic crystal waveguides
,”
ACS Photonics
6
(
12
),
3225
3232
(
2019
).
202.
J. N.
Kirchhof
,
K.
Weinel
,
S.
Heeg
,
V.
Deinhart
,
S.
Kovalchuk
,
K.
Höflich
, and
K. I.
Bolotin
, “
Tunable graphene phononic crystal
,”
Nano Lett.
21
(
5
),
2174
2182
(
2021
).
203.
H.
Xie
,
S.
Jiang
,
D. A.
Rhodes
,
J. C.
Hone
,
J.
Shan
, and
K. F.
Mak
, “
Tunable exciton-optomechanical coupling in suspended monolayer MoSe2
,”
Nano Lett.
21
(
6
),
2538
2543
(
2021
).
204.
H.-K.
Li
,
K. Y.
Fong
,
H.
Zhu
,
Q.
Li
,
S.
Wang
,
S.
Yang
,
Y.
Wang
, and
X.
Zhang
, “
Valley optomechanics in a monolayer semiconductor
,”
Nat. Photonics
13
(
6
),
397
401
(
2019
).
205.
G. J.
Verbiest
,
M.
Goldsche
,
J.
Sonntag
,
T.
Khodkov
,
N.
von den Driesch
,
D.
Buca
, and
C.
Stampfer
, “
Tunable coupling of two mechanical resonators by a graphene membrane
,”
2D Mater.
8
(
3
),
035039
(
2021
).
206.
R.
Singh
,
A.
Sarkar
,
C.
Guria
,
R. J. T.
Nicholl
,
S.
Chakraborty
,
K. I.
Bolotin
, and
S.
Ghosh
, “
Giant tunable mechanical nonlinearity in graphene-silicon nitride hybrid resonator
,”
Nano Lett.
20
(
6
),
4659
4666
(
2020
).
207.
I.
Mahboob
,
V.
Nier
,
K.
Nishiguchi
,
A.
Fujiwara
, and
H.
Yamaguchi
, “
Multi-mode parametric coupling in an electromechanical resonator
,”
Appl. Phys. Lett.
103
(
15
),
153105
(
2013
).
208.
A. A.
Clerk
,
K. W.
Lehnert
,
P.
Bertet
,
J. R.
Petta
, and
Y.
Nakamura
, “
Hybrid quantum systems with circuit quantum electrodynamics
,”
Nat. Phys.
16
(
3
),
257
267
(
2020
).
209.
D.
Antonio
,
D. H.
Zanette
, and
D.
López
, “
Frequency stabilization in nonlinear micromechanical oscillators
,”
Nat. Commun.
3
(
1
),
806
(
2012
).
210.
A. Z.
Hajjaj
,
M. A.
Hafiz
, and
M. I.
Younis
, “
Mode coupling and nonlinear resonances of MEMS arch resonators for bandpass filters
,”
Sci. Rep.
7
(
1
),
41820
(
2017
).
211.
M.
Spletzer
,
A.
Raman
,
A. Q.
Wu
,
X.
Xu
, and
R.
Reifenberger
, “
Ultrasensitive mass sensing using mode localization in coupled microcantilevers
,”
Appl. Phys. Lett.
88
(
25
),
254102
(
2006
).
212.
K.
Asadi
,
J.
Yu
, and
H.
Cho
, “
Nonlinear couplings and energy transfers in micro- and nano-mechanical resonators: Intermodal coupling, internal resonance and synchronization
,”
Philos. Trans. R. Soc., A
376
(
2127
),
20170141
(
2018
).
213.
S.
Shiva
,
P.
Nathamgari
,
S.
Dong
,
L.
Medina
,
N.
Moldovan
,
D.
Rosenmann
,
R.
Divan
,
D.
Lopez
,
L. J.
Lauhon
, and
H. D.
Espinosa
, “
Nonlinear mode coupling and one-to-one internal resonances in a monolayer WS2 nanoresonator
,”
Nano Lett.
19
(
6
),
4052
4059
(
2019
).
214.
A.
Chiout
,
F.
Correia
,
M.-Q.
Zhao
,
A. T. C.
Johnson
,
D.
Pierucci
,
F.
Oehler
,
A.
Ouerghi
, and
J.
Chaste
, “
Multi-order phononic frequency comb generation within a MoS2 electromechanical resonator
,”
Appl. Phys. Lett.
119
(
17
),
173102
(
2021
).
215.
P. G.
Steeneken
,
R. J.
Dolleman
,
D.
Davidovikj
,
F.
Alijani
, and
H. S. J.
van der Zant
, “
Dynamics of 2D material membranes
,”
2D Mater.
8
(
4
),
042001
(
2021
).
216.
H.
Okamoto
,
A.
Gourgout
,
C.-Y.
Chang
,
K.
Onomitsu
,
I.
Mahboob
,
E. Y.
Chang
, and
H.
Yamaguchi
, “
Coherent phonon manipulation in coupled mechanical resonators
,”
Nat. Phys.
9
(
8
),
480
484
(
2013
).
217.
D.
Kleckner
and
D.
Bouwmeester
, “
Sub-kelvin optical cooling of a micromechanical resonator
,”
Nature
444
(
7115
),
75
78
(
2006
).
218.
A.
Reserbat-Plantey
,
L.
Marty
,
O.
Arcizet
,
N.
Bendiab
, and
V.
Bouchiat
, “
A local optical probe for measuring motion and stress in a nanoelectromechanical system
,”
Nat. Nanotechnol.
7
(
3
),
151
155
(
2012
).
219.
X.
Zhang
,
K.
Makles
,
L.
Colombier
,
D.
Metten
,
H.
Majjad
,
P.
Verlot
, and
S.
Berciaud
, “
Dynamically-enhanced strain in atomically thin resonators
,”
Nat. Commun.
11
(
1
),
5526
(
2020
).
220.
R.
Yang
,
S. M. E. H.
Yousuf
,
J.
Lee
,
P.
Zhang
,
Z.
Liu
, and
P. X.-L.
Feng
, “
Raman spectroscopic probe for nonlinear MoS2 nanoelectromechanical resonators
,”
Nano Lett.
22
(
14
),
5780
5787
(
2022
).
221.
G.
Luo
,
Z.-Z.
Zhang
,
G.-W.
Deng
,
H.-O.
Li
,
G.
Cao
,
M.
Xiao
,
G.-C.
Guo
,
L.
Tian
, and
G.-P.
Guo
, “
Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity
,”
Nat. Commun.
9
,
383
(
2018
).
222.
Z.-Z.
Zhang
,
X.-X.
Song
,
G.
Luo
,
Z.-J.
Su
,
K.-L.
Wang
,
G.
Cao
,
H.-O.
Li
,
M.
Xiao
,
G.-C.
Guo
,
L.
Tian
,
G.-W.
Deng
, and
G.-P.
Guo
, “
Coherent phonon dynamics in spatially separated graphene mechanical resonators
,”
Proc. Natl. Acad. Sci. U. S. A.
117
(
11
),
5582
5587
(
2020
).
223.
H. M.
Ouakad
,
S.
Ilyas
, and
M. I.
Younis
, “
Investigating mode localization at lower- and higher-order modes in mechanically coupled MEMS resonators
,”
J. Comput. Nonlinear Dyn.
15
(
3
),
031001
(
2020
).
224.
T.
Rabenimanana
,
V.
Walter
,
N.
Kacem
,
P.
Le Moal
,
G.
Bourbon
, and
J.
Lardiès
, “
Mass sensor using mode localization in two weakly coupled MEMS cantilevers with different lengths: Design and experimental model validation
,”
Sens. Actuators, A
295
,
643
652
(
2019
).
225.
D.
Hatanaka
,
I.
Mahboob
,
K.
Onomitsu
, and
H.
Yamaguchi
, “
Phonon waveguides for electromechanical circuits
,”
Nat. Nanotechnol.
9
(
7
),
520
524
(
2014
).
226.
J.
Cha
and
C.
Daraio
, “
Electrical tuning of elastic wave propagation in nanomechanical lattices at MHz frequencies
,”
Nat. Nanotechnol.
13
(
11
),
1016
1020
(
2018
).
227.
S.
Kim
,
J.
Bunyan
,
P. F.
Ferrari
,
A.
Kanj
,
A. F.
Vakakis
,
A. M.
van der Zande
, and
S.
Tawfick
, “
Buckling-mediated phase transitions in nano-electromechanical phononic waveguides
,”
Nano Lett.
21
(
15
),
6416
6424
(
2021
).
228.
A. D.
O'Connell
,
M.
Hofheinz
,
M.
Ansmann
,
R. C.
Bialczak
,
M.
Lenander
,
E.
Lucero
,
M.
Neeley
,
D.
Sank
,
H.
Wang
,
M.
Weides
,
J.
Wenner
,
J. M.
Martinis
, and
A. N.
Cleland
, “
Quantum ground state and single-phonon control of a mechanical resonator
,”
Nature
464
(
7289
),
697
703
(
2010
).
229.
M.
Aspelmeyer
,
T. J.
Kippenberg
, and
F.
Marquardt
, “
Cavity optomechanics
,”
Rev. Mod. Phys.
86
,
1391
1452
(
2014
).
230.
M.
Abdi
,
M.-J.
Hwang
,
M.
Aghtar
, and
M. B.
Plenio
, “
Spin-mechanical scheme with color centers in hexagonal boron nitride membranes
,”
Phys. Rev. Lett.
119
,
233602
(
2017
).
231.
M.
Abdi
and
M. B.
Plenio
, “
Quantum effects in a mechanically modulated single-photon emitter
,”
Phys. Rev. Lett.
122
,
023602
(
2019
).
232.
S.
Huang
,
L.
Liang
,
X.
Ling
,
A. A.
Puretzky
,
D. B.
Geohegan
,
B. G.
Sumpter
,
J.
Kong
,
V.
Meunier
, and
M. S.
Dresselhaus
, “
Low-frequency interlayer Raman modes to probe interface of twisted bilayer MoS2
,”
Nano Lett.
16
(
2
),
1435
1444
(
2016
).
233.
S.
Lee
,
V. P.
Adiga
,
R. A.
Barton
,
A. M.
van der Zande
,
G.-H.
Lee
,
B.
Rob Ilic
,
A.
Gondarenko
,
J. M.
Parpia
,
H. G.
Craighead
, and
J.
Hone
, “
Graphene metallization of high-stress silicon nitride resonators for electrical integration
,”
Nano Lett.
13
(
9
),
4275
4279
(
2013
).
234.
L.
Sekaric
,
D. W.
Carr
,
S.
Evoy
,
J. M.
Parpia
, and
H. G.
Craighead
, “
Nanomechanical resonant structures in silicon nitride: Fabrication, operation and dissipation issues
,”
Sens. Actuators, A
101
(
1
),
215
219
(
2002
).
235.
R.
Singh
,
R. J.
Nicholl
,
K. I.
Bolotin
, and
S.
Ghosh
, “
Motion transduction with thermo-mechanically squeezed graphene resonator modes
,”
Nano Lett.
18
(
11
),
6719
6724
(
2018
).
236.
C.
Schwarz
,
B.
Pigeau
,
L.
Mercier de Lépinay
,
A. G.
Kuhn
,
D.
Kalita
,
N.
Bendiab
,
L.
Marty
,
V.
Bouchiat
, and
O.
Arcizet
, “
Deviation from the normal mode expansion in a coupled graphene-nanomechanical system
,”
Phys. Rev. Appl.
6
,
064021
(
2016
).
237.
R.
Singh
,
A.
Sarkar
,
C.
Guria
,
R. J.
Nicholl
,
S.
Chakraborty
,
K. I.
Bolotin
, and
S.
Ghosh
, “
Giant tunable mechanical nonlinearity in graphene–silicon nitride hybrid resonator
,”
Nano Lett.
20
(
6
),
4659
4666
(
2020
).
238.
Z.
Shi
,
H.
Lu
,
L.
Zhang
,
R.
Yang
,
Y.
Wang
,
D.
Liu
,
H.
Guo
,
D.
Shi
,
H.
Gao
,
E.
Wang
, and
G.
Zhang
, “
Studies of graphene-based nanoelectromechanical switches
,”
Nano Res.
5
(
2
),
82
87
(
February 2012
).
239.
K. M.
Milaninia
,
M. A.
Baldo
,
A.
Reina
, and
J.
Kong
, “
All graphene electromechanical switch fabricated by chemical vapor deposition
,”
Appl. Phys. Lett.
95
(
18
),
183105
(
2009
).
240.
P.
Li
,
Z.
You
,
G.
Haugstad
, and
T.
Cui
, “
Graphene fixed-end beam arrays based on mechanical exfoliation
,”
Appl. Phys. Lett.
98
(
25
),
253105
(
2011
).
241.
M.
Muruganathan
,
N. H.
Van
,
M. E.
Schmidt
, and
H.
Mizuta
, “
Sub 0.5 volt graphene-hBN van der Waals nanoelectromechanical (NEM) switches
,”
Adv. Funct. Mater.
32
(
52
),
2209151
(
2022
).
242.
S. M.
Kim
,
E. B.
Song
,
S.
Lee
,
S.
Seo
,
D. H.
Seo
,
Y.
Hwang
,
R.
Candler
, and
K. L.
Wang
, “
Suspended few-layer graphene beam electromechanical switch with abrupt on-off characteristics and minimal leakage current
,”
Appl. Phys. Lett.
99
(
2
),
023103
(
2011
).
243.
X.
Liu
,
J. W.
Suk
,
N. G.
Boddeti
,
L.
Cantley
,
L.
Wang
,
J. M.
Gray
,
H. J.
Hall
,
V. M.
Bright
,
C. T.
Rogers
,
M. L.
Dunn
,
R. S.
Ruoff
, and
J. S.
Bunch
, “
Large arrays and properties of 3-terminal graphene nanoelectromechanical switches
,”
Adv. Mater.
26
(
10
),
1571
1576
(
2014
).
244.
H.
Tian
,
D.
Xie
,
Y.
Yang
,
T.-L.
Ren
,
Y.-F.
Wang
,
C.-J.
Zhou
,
P.-G.
Peng
,
L.-G.
Wang
, and
L.-T.
Liu
, “
Single-layer graphene sound-emitting devices: Experiments and modeling
,”
Nanoscale
4
,
2272
2277
(
2012
).
245.
J. W.
Suk
,
K.
Kirk
,
Y.
Hao
,
N. A.
Hall
, and
R. S.
Ruoff
, “
Thermoacoustic sound generation from monolayer graphene for transparent and flexible sound sources
,”
Adv. Mater.
24
(
47
),
6342
6347
(
2012
).
246.
Q.
Zhou
and
A.
Zettl
, “
Electrostatic graphene loudspeaker
,”
Appl. Phys. Lett.
102
(
22
),
223109
(
2013
).
247.
P.
Li
,
G.
Jing
,
B.
Zhang
,
S.
Sando
, and
T.
Cui
, “
Single-crystalline monolayer and multilayer graphene nano switches
,”
Appl. Phys. Lett.
104
(
11
),
113110
(
2014
).
248.
T.
Cao
,
T.
Hu
, and
Y.
Zhao
, “
Research status and development trend of MEMS switches: A review
,”
Micromachines
11
(
7
),
694
(
2020
).
249.
S.
Wagner
,
C.
Yim
,
N.
McEvoy
,
S.
Kataria
,
V.
Yokaribas
,
A.
Kuc
,
S.
Pindl
,
C.-P.
Fritzen
,
T.
Heine
,
G. S.
Duesberg
, and
M. C.
Lemme
, “
Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films
,”
Nano Lett.
18
(
6
),
3738
3745
(
2018
).
250.
A. D.
Smith
,
F.
Niklaus
,
A.
Paussa
,
S.
Vaziri
,
A. C.
Fischer
,
M.
Sterner
,
F.
Forsberg
,
A.
Delin
,
D.
Esseni
,
P.
Palestri
,
M.
Östling
, and
M. C.
Lemme
, “
Electromechanical piezoresistive sensing in suspended graphene membranes
,”
Nano Lett.
13
(
7
),
3237
3242
(
2013
).
251.
Q.
Wang
,
W.
Hong
, and
L.
Dong
, “
Graphene ‘microdrums’ on a freestanding perforated thin membrane for high sensitivity MEMS pressure sensors
,”
Nanoscale
8
,
7663
7671
(
2016
).
252.
D.
Davidovikj
,
P. H.
Scheepers
,
H. S. J.
van der Zant
, and
P. G.
Steeneken
, “
Static capacitive pressure sensing using a single graphene drum
,”
ACS Appl. Mater. Interfaces
9
(
49
),
43205
43210
(
2017
).
253.
M.
Šiškins
,
M.
Lee
,
D.
Wehenkel
,
R.
van Rijn
,
T. W.
de Jong
,
J. R.
Renshof
,
B. C.
Hopman
,
W. S. J. M.
Peters
,
D.
Davidovikj
,
H. S. J.
van der Zant
, and
P. G.
Steeneken
, “
Sensitive capacitive pressure sensors based on graphene membrane arrays
,”
Microsyst. Nanoeng.
6
(
1
),
102
(
2020
).
254.
G. J.
Verbiest
,
J. N.
Kirchhof
,
J.
Sonntag
,
M.
Goldsche
,
T.
Khodkov
, and
C.
Stampfer
, “
Detecting ultrasound vibrations with graphene resonators
,”
Nano Lett.
18
(
8
),
5132
5137
(
2018
).
255.
C.
Li
,
X.
Gao
,
T.
Guo
,
J.
Xiao
,
S.
Fan
, and
W.
Jin
, “
Analyzing the applicability of miniature ultra-high sensitivity Fabry–Perot acoustic sensor using a nanothick graphene diaphragm
,”
Meas. Sci. Technol.
26
(
8
),
085101
(
2015
).
256.
F.
Yu
,
Q.
Liu
,
X.
Gan
,
M.
Hu
,
T.
Zhang
,
C.
Li
,
F.
Kang
,
M.
Terrones
, and
R.
Lv
, “
Ultrasensitive pressure detection of few-layer MoS2
,”
Adv. Mater.
29
(
4
),
1603266
(
2017
).
257.
W.
Ni
,
P.
Lu
,
X.
Fu
,
W.
Zhang
,
P. P.
Shum
,
H.
Sun
,
C.
Yang
,
D.
Liu
, and
J.
Zhang
, “
Ultrathin graphene diaphragm-based extrinsic Fabry–Perot interferometer for ultra-wideband fiber optic acoustic sensing
,”
Opt. Express
26
(
16
),
20758
20767
(
2018
).
258.
X.
Fan
,
F.
Forsberg
,
A. D.
Smith
,
S.
Schröder
,
S.
Wagner
,
H.
Rödjegård
,
A. C.
Fischer
,
M.
Östling
,
M. C.
Lemme
, and
F.
Niklaus
, “
Graphene ribbons with suspended masses as transducers in ultra-small nanoelectromechanical accelerometers
,”
Nat. Electron.
2
(
9
),
394
404
(
2019
).
259.
M.
Muruganathan
,
H.
Miyashita
,
J.
Kulothungan
,
M. E.
Schmidt
, and
H.
Mizuta
, “
Zeptogram level mass sensing of light weight gas molecules using graphene nanomechanical (GNEM) resonator
,” in
2018 IEEE SENSORS
, New Delhi, India (IEEE, 2018), pp. 1–4.
260.
A.
Blaikie
,
D.
Miller
, and
B. J.
Alemán
, “
A fast and sensitive room-temperature graphene nanomechanical bolometer
,”
Nat. Commun.
10
(
1
),
4726
(
2019
).
261.
I. E.
Rosłoń
,
A.
Japaridze
,
P. G.
Steeneken
,
C.
Dekker
, and
F.
Alijani
, “
Probing nanomotion of single bacteria with graphene drums
,”
Nat. Nanotechnol.
17
,
637
642
(
2022
).
262.
Q.
Wang
,
Y.
Wang
, and
L.
Dong
, “
MEMS flow sensor using suspended graphene diaphragm with microhole arrays
,”
J. Microelectromech. Syst.
27
(
6
),
951
953
(
2018
).
263.
R.
Pezone
,
G.
Baglioni
,
P. M.
Sarro
,
P. G.
Steeneken
, and
S.
Vollebregt
, “
Sensitive transfer-free wafer-scale graphene microphones
,”
ACS Appl. Mater. Interfaces
14
(
18
),
21705
21712
(
2022
).
264.
Q.
Zhou
,
J.
Zheng
,
S.
Onishi
,
M. F.
Crommie
, and
A. K.
Zettl
, “
Graphene electrostatic microphone and ultrasonic radio
,”
Proc. Natl. Acad. Sci. U. S. A.
112
(
29
),
8942
8946
(
2015
).
265.
D.
Todorović
,
A.
Matković
,
M.
Milićević
,
D.
Jovanović
,
R.
Gajić
,
I.
Salom
, and
M.
Spasenović
, “
Multilayer graphene condenser microphone
,”
2D Mater.
2
(
4
),
045013
(
2015
).
266.
D. R.
Southworth
,
H. G.
Craighead
, and
J. M.
Parpia
, “
Pressure dependent resonant frequency of micromechanical drumhead resonators
,”
Appl. Phys. Lett.
94
(
21
),
213506
(
2009
).
267.
F.
Ejeian
,
S.
Azadi
,
A.
Razmjou
,
Y.
Orooji
,
A.
Kottapalli
,
M.
Ebrahimi Warkiani
, and
M.
Asadnia
, “
Design and applications of MEMS flow sensors: A review
,”
Sens. Actuators, A
295
,
483
502
(
2019
).
268.
A. A.
Yazdi
,
J.
Xu
, and
V.
Berry
, “
Phononics of graphene interfaced with flowing ionic fluid: An avenue for high spatial resolution flow sensor applications
,”
ACS Nano
15
(
4
),
6998
7005
(
2021
).
269.
W.
Wang
,
N.
Wu
,
Y.
Tian
,
C.
Niezrecki
, and
X.
Wang
, “
Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm
,”
Opt. Express
18
(
9
),
9006
9014
(
2010
).
270.
F.
Xu
,
D.
Ren
,
X.
Shi
,
C.
Li
,
W.
Lu
,
L.
Lu
,
L.
Lu
, and
B.
Yu
, “
High-sensitivity Fabry–Perot interferometric pressure sensor based on a nanothick silver diaphragm
,”
Opt. Lett.
37
(
2
),
133
135
(
2012
).
271.
L.
Laurent
,
J.-J.
Yon
,
J.-S.
Moulet
,
M.
Roukes
, and
L.
Duraffourg
, “
12 - μ m-pitch electromechanical resonator for thermal sensing
,”
Phys. Rev. Appl.
9
,
024016
(
2018
).
272.
T.
Endoh
,
S.
Tohyama
,
T.
Yamazaki
,
Y.
Tanaka
,
K.
Okuyama
,
S.
Kurashina
,
M.
Miyoshi
,
K.
Katoh
,
T.
Yamamoto
,
Y.
Okuda
,
T.
Sasaki
,
H.
Ishizaki
,
T.
Nakajima
,
K.
Shinoda
, and
T.
Tsuchiya
, “
Uncooled infrared detector with 12 μm pixel pitch video graphics array
,”
Proc. SPIE
8704
,
87041G
(
2013
).
273.
U.
Mizrahi
,
N.
Argaman
,
S.
Elkind
,
A.
Giladi
,
Y.
Hirsh
,
M.
Labilov
,
I.
Pivnik
,
N.
Shiloah
,
M.
Singer
,
A.
Tuito
,
M.
Ben-Ezra
, and
I.
Shtrichman
, “
Large-format 17 μm high-end VOx μ-bolometer infrared detector
,”
Proc. SPIE
8704
,
87041H
(
2013
).
274.
G. D.
Skidmore
,
C. J.
Han
, and
C.
Li
, “
Uncooled microbolometers at DRS and elsewhere through 2013
,”
Proc. SPIE
9100
,
910003
(
2013
).
275.
T.-S.
Wung
,
Y.-T.
Ning
,
K.-H.
Chang
,
S.
Tang
, and
Y.-X.
Tsai
, “
Vertical-plate-type microaccelerometer with high linearity and low cross-axis sensitivity
,”
Sens. Actuators, A
222
,
284
292
(
2015
).
276.
A. L.
Roy
and
T. K.
Bhattacharyya
, “
Design, fabrication and characterization of high performance SOI MEMS piezoresistive accelerometers
,”
Microsyst. Technol.
21
(
1
),
55
63
(
2015
).
277.
L.
Zhang
,
J.
Lu
,
Y.
Kurashima
,
H.
Takagi
, and
R.
Maeda
, “
Development and application of planar piezoresistive vibration sensor
,”
Microelectron. Eng.
119
,
70
74
(
2014
).
278.
E.
Cabruja
,
A.
Collado
,
J. A.
Plaza
, and
J.
Esteve
, “
Piezoresistive accelerometers for MCM-package—Part II: The packaging
,”
J. Microelectromech. Syst.
14
(
4
),
806
811
(
2005
).
279.
X.
Song
,
M.
Oksanen
,
J.
Li
,
P. J.
Hakonen
, and
M. A.
Sillanpää
, “
Graphene optomechanics realized at microwave frequencies
,”
Phys. Rev. Lett.
113
,
027404
(
2014
).
280.
J.
Moser
,
J.
Güttinger
,
A.
Eichler
,
M. J.
Esplandiu
,
D. E.
Liu
,
M. I.
Dykman
, and
A.
Bachtold
, “
Ultrasensitive force detection with a nanotube mechanical resonator
,”
Nat. Nanotechnol.
8
(
7
),
493
496
(
2013
).
281.
Y.
Ying
,
Z.-Z.
Zhang
,
J.
Moser
,
Z.-J.
Su
,
X.-X.
Song
, and
G.-P.
Guo
, “
Sliding nanomechanical resonators
,”
Nat. Commun.
13
(
1
),
6392
(
2022
).
282.
H.
Conley
,
N. V.
Lavrik
,
D.
Prasai
, and
K. I.
Bolotin
, “
Graphene bimetallic-like cantilevers: Probing graphene/substrate interactions
,”
Nano Lett.
11
(
11
),
4748
4752
(
2011
).
283.
V.
Singh
,
B.
Irfan
,
G.
Subramanian
,
H. S.
Solanki
,
S.
Sengupta
,
S.
Dubey
,
A.
Kumar
,
S.
Ramakrishnan
, and
M. M.
Deshmukh
, “
Coupling between quantum Hall state and electromechanics in suspended graphene resonator
,”
Appl. Phys. Lett.
100
(
23
),
233103
(
2012
).
284.
H.
Gao
,
H.
Gao
,
J.
Suh
,
J.
Suh
,
M. C.
Cao
,
A. Y.
Joe
,
F.
Mujid
,
K. H.
Lee
,
K. H.
Lee
,
S.
Xie
,
S.
Xie
,
P.
Poddar
,
J. U.
Lee
,
J. U.
Lee
,
K.
Kang
,
K.
Kang
,
P.
Kim
,
D. A.
Muller
, and
J.
Park
, “
Tuning electrical conductance of MoS2 monolayers through substitutional doping
,”
Nano Lett.
20
(
6
),
4095
4101
(
2020
).
285.
J.
Gao
,
B.
Li
,
J.
Tan
,
P.
Chow
,
T. M.
Lu
, and
N.
Koratkar
, “
Aging of transition metal dichalcogenide monolayers
,”
ACS Nano
10
(
2
),
2628
2635
(
2016
).
286.
K.
Kang
,
K. H.
Lee
,
Y.
Han
,
H.
Gao
,
S.
Xie
,
D. A.
Muller
, and
J.
Park
, “
Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures
,”
Nature
550
,
229
233
(
2017
).
287.
D.
Neumaier
,
S.
Pindl
, and
M. C.
Lemme
, “
Integrating graphene into semiconductor fabrication lines
,”
Nat. Mater.
18
(
6
),
525
529
(
2019
).
288.
A.
Quellmalz
,
X.
Wang
,
S.
Sawallich
,
B.
Uzlu
,
M.
Otto
,
S.
Wagner
,
Z.
Wang
,
M.
Prechtl
,
O.
Hartwig
,
S.
Luo
,
G. S.
Duesberg
,
M. C.
Lemme
,
K. B.
Gylfason
,
N.
Roxhed
,
G.
Stemme
, and
F.
Niklaus
, “
Large-area integration of two-dimensional materials and their heterostructures by wafer bonding
,”
Nat. Commun.
12
(
1
),
917
(
2021
).
289.
Ora graphene audio
, accessed on dec. 30, 2022 at https://www.ora-sound.com/gq-headphones.
290.
Graphaudio
, accessed on dec. 30, 2022 at https://www.graphaudio.com.
291.
M. K.
Blees
,
A. W.
Barnard
,
P. A.
Rose
,
S. P.
Roberts
,
K. L.
McGill
,
P. Y.
Huang
,
A. R.
Ruyack
,
J. W.
Kevek
,
B.
Kobrin
,
D. A.
Muller
, and
P. L.
McEuen
, “
Graphene kirigami
,”
Nature
524
(
7564
),
204
207
(
2015
).
292.
M. Z.
Miskin
,
K. J.
Dorsey
,
B.
Bircan
,
Y.
Han
,
D. A.
Muller
,
P. L.
McEuen
, and
I.
Cohen
, “
Graphene-based bimorphs for micron-sized, autonomous origami machines
,”
Proc. Natl. Acad. Sci. U. S. A.
115
(
3
),
466
470
(
2018
).
293.
M. Z.
Miskin
,
A. J.
Cortese
,
K.
Dorsey
,
E. P.
Esposito
,
M. F.
Reynolds
,
Q.
Liu
,
M.
Cao
,
D. A.
Muller
,
P. L.
McEuen
, and
I.
Cohen
, “
Electronically integrated, mass-manufactured, microscopic robots
,”
Nature
584
(
7822
),
557
561
(
2020
).
294.
M. F.
Reynolds
,
K. L.
McGill
,
M. A.
Wang
,
H.
Gao
,
F.
Mujid
,
K.
Kang
,
J.
Park
,
M. Z.
Miskin
,
I.
Cohen
, and
P. L.
McEuen
, “
Capillary origami with atomically thin membranes
,”
Nano Lett.
19
(
9
),
6221
6226
(
2019
).
295.
W.
Xu
,
Z.
Qin
,
C.-T.
Chen
,
H. R.
Kwag
,
Q.
Ma
,
A.
Sarkar
,
M. J.
Buehler
, and
D. H.
Gracias
, “
Ultrathin thermoresponsive self-folding 3D graphene
,”
Sci. Adv.
3
(
10
),
e1701084
(
2017
).
296.
A.
Castellanos-Gomez
,
R.
Roldán
,
E.
Cappelluti
,
M.
Buscema
,
F.
Guinea
,
H. S. J.
van der Zant
, and
G. A.
Steele
, “
Local strain engineering in atomically thin MoS2
,”
Nano Lett.
13
(
11
),
5361
5366
(
2013
).
297.
A. R.
Rezk
,
B.
Carey
,
A. F.
Chrimes
,
D. W. M.
Lau
,
B. C.
Gibson
,
C.
Zheng
,
M. S.
Fuhrer
,
L. Y.
Yeo
, and
K.
Kalantar-zadeh
, “
Acoustically-driven trion and exciton modulation in piezoelectric two-dimensional MoS2
,”
Nano Lett.
16
(
2
),
849
855
(
2016
).
298.
R.
Peng
,
A.
Ripin
,
Y.
Ye
,
J.
Zhu
,
C.
Wu
,
S.
Lee
,
H.
Li
,
T.
Taniguchi
,
K.
Watanabe
,
T.
Cao
,
X.
Xu
, and
M.
Li
, “
Long-range transport of 2D excitons with acoustic waves
,”
Nat. Commun.
13
(
1
),
1334
(
2022
).
299.
K.
Datta
,
Z.
Lyu
,
Z.
Li
,
T.
Taniguchi
,
K.
Watanabe
, and
P. B.
Deotare
, “
Spatiotemporally controlled room-temperature exciton transport under dynamic strain
,”
Nat. Photonics
16
(
3
),
242
247
(
2022
).
300.
D.
Hatanaka
,
A.
Bachtold
, and
H.
Yamaguchi
, “
Electrostatically induced phononic crystal
,”
Phys. Rev. Appl.
11
,
024024
(
2019
).
301.
P.
Delsing
,
A. N.
Cleland
,
M. J. A.
Schuetz
,
J.
Knörzer
,
G.
Giedke
,
J. I.
Cirac
,
K.
Srinivasan
,
M.
Wu
,
K. C.
Balram
,
C.
Bäuerle
,
T.
Meunier
,
C. J. B.
Ford
,
P. V.
Santos
,
E.
Cerda-Méndez
,
H.
Wang
,
H. J.
Krenner
,
E. D. S.
Nysten
,
M.
Weiß
,
G. R.
Nash
,
L.
Thevenard
,
C.
Gourdon
,
P.
Rovillain
,
M.
Marangolo
,
J.-Y.
Duquesne
,
G.
Fischerauer
,
W.
Ruile
,
A.
Reiner
,
B.
Paschke
,
D.
Denysenko
,
D.
Volkmer
,
A.
Wixforth
,
H.
Bruus
,
M.
Wiklund
,
J.
Reboud
,
J. M.
Cooper
,
Y.
Fu
,
M. S.
Brugger
,
F.
Rehfeldt
, and
C.
Westerhausen
, “
The 2019 surface acoustic waves roadmap
,”
J. Phys. D
52
(
35
),
353001
(
2019
).
302.
T.
Chari
,
R.
Ribeiro-Palau
,
C. R.
Dean
, and
K.
Shepard
, “
Resistivity of rotated graphite–graphene contacts
,”
Nano Lett.
16
(
7
),
4477
4482
(
2016
).
303.
R.
Ribeiro-Palau
,
C.
Zhang
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Hone
, and
C. R.
Dean
, “
Twistable electronics with dynamically rotatable heterostructures
,”
Science
361
(
6403
),
690
693
(
2018
).
304.
N. R.
Finney
,
M.
Yankowitz
,
L.
Muraleetharan
,
K.
Watanabe
,
T.
Taniguchi
,
C. R.
Dean
, and
J.
Hone
, “
Tunable crystal symmetry in graphene–boron nitride heterostructures with coexisting moiré superlattices
,”
Nat. Nanotechnol.
14
,
1029
(
2019
).
305.
X.
Huang
,
L.
Lin
, and
Q.
Zheng
, “
Theoretical study of superlubric nanogenerators with superb performances
,”
Nano Energy
70
,
104494
(
2020
).
306.
M.
Luo
,
Z.
Zhang
, and
B. I.
Yakobson
, “
Tunable gigahertz oscillators of gliding incommensurate bilayer graphene sheets
,”
J. Appl. Mech.
80
(
4
),
040906
(
2013
).
307.
S.
Young Kim
,
S.-Y.
Cho
,
K.-S.
Kim
, and
J.
Won Kang
, “
Developing nanoscale inertial sensor based on graphite-flake with self-retracting motion
,”
Physica E
50
,
44
50
(
2013
).
308.
U. T.
Duerig
,
A. W.
Knoll
,
E.
Koren
, and
E.
Loertscher
, “
Electromechanical switching device with electrodes having 2D layered materials with distinct functional areas,”
U.S. Patent 10,546,708 (28 January
2020
).
309.
X.
Huang
,
X.
Xiang
,
J.
Nie
,
D.
Peng
,
F.
Yang
,
Z.
Wu
,
H.
Jiang
,
Z.
Xu
, and
Q.
Zheng
, “
Microscale Schottky superlubric generator with high direct-current density and ultralong life
,”
Nat. Commun.
12
(
1
),
2268
(
2021
).
310.
J.
Lee
,
M. D.
LaHaye
, and
P. X.-L.
Feng
, “
Design of strongly nonlinear graphene nanoelectromechanical systems in quantum regime
,”
Appl. Phys. Lett.
120
(
1
),
014001
(
2022
).
311.
C.
Urgell
,
W.
Yang
,
S. L.
De Bonis
,
C.
Samanta
,
M. J.
Esplandiu
,
Q.
Dong
,
Y.
Jin
, and
A.
Bachtold
, “
Cooling and self-oscillation in a nanotube electromechanical resonator
,”
Nat. Phys.
16
(
1
),
32
37
(
2020
).
312.
M.
Tasnimul Haque
,
M.
Will
,
A.
Zyuzin
,
D.
Golubev
, and
P.
Hakonen
, “
Thermal self-oscillations in monolayer graphene coupled to a superconducting microwave cavity
,”
New J. Phys.
24
,
103008
(
2022
).
313.
N.
Lörch
,
J.
Qian
,
A.
Clerk
,
F.
Marquardt
, and
K.
Hammerer
, “
Laser theory for optomechanics: Limit cycles in the quantum regime
,”
Phys. Rev. X
4
,
011015
(
2014
).
314.
J.
Qian
,
A. A.
Clerk
,
K.
Hammerer
, and
F.
Marquardt
, “
Quantum signatures of the optomechanical instability
,”
Phys. Rev. Lett.
109
,
253601
(
2012
).
You do not currently have access to this content.