Unlike the holography technique using active sound source arrays, metasurface-based holography can avoid cumbersome circuitry and only needs a single transducer. However, a large number of individually designed elements with unique amplitude and phase modulation capabilities are often required to obtain a high-quality holographic image, which is a non-trivial task. In this paper, the deep-learning-aided inverse design of an acoustic metasurface-based hologram with millions of elements to reconstruct megapixel pictures is reported. To improve the imaging quality, an iterative compensation algorithm is proposed to remove the interference fringes and unclear details of the images. A megapixel image of Mona Lisa's portrait is reconstructed by a 2000 × 2000 metasurface-based hologram. Finally, the design is experimentally validated by a metasurface consisting 30 × 30 three-dimensional printed elements that can reproduce the eye part of Mona Lisa's portrait. It is shown that the sparse arrangement of the elements can produce high-quality images even when the metasurface has fewer elements than the targeted image pixels.

1.
S.
Tay
,
P. A.
Blanche
,
R.
Voorakaranam
,
A. V.
Tunc
,
W.
Lin
,
S.
Rokutanda
,
T.
Gu
,
D.
Flores
,
P.
Wang
,
G.
Li
,
P. St.
Hilaire
,
J.
Thomas
,
R. A.
Norwood
,
M.
Yamamoto
, and
N.
Peyghambarian
, “
An updatable holographic three-dimensional display
,”
Nature
451
,
694
698
(
2008
).
2.
D. G.
Grier
, “
A revolution in optical manipulation
,”
Nature
424
,
810
816
(
2003
).
3.
M. L.
Juan
,
M.
Righini
, and
R.
Quidant
, “
Plasmon nano-optical tweezers
,”
Nat. Photonics
5
,
349
356
(
2011
).
4.
A.
Marzo
and
B. W.
Drinkwater
, “
Holographic acoustic tweezers
,”
Proc. Natl. Acad. Sci. U.S.A.
116
,
84
89
(
2019
).
5.
X.
Ni
,
A. V.
Kildishev
, and
V. M.
Shalaev
, “
Metasurface holograms for visible light
,”
Nat. Commun.
4
,
2807
(
2013
).
6.
A.
Marzo
,
S. A.
Seah
,
B. W.
Drinkwater
,
D. R.
Sahoo
,
B.
Long
, and
S.
Subramanian
, “
Holographic acoustic elements for manipulation of levitated objects
,”
Nat. Commun.
6
,
8661
(
2015
).
7.
K.
Melde
,
A. G.
Mark
,
T.
Qiu
, and
P.
Fischer
, “
Holograms for acoustics
,”
Nature
537
,
518
522
(
2016
).
8.
Y.
Hertzberg
and
G.
Navon
, “
Bypassing absorbing objects in focused ultrasound using computer generated holographic technique
,”
Med. Phys.
38
,
6407
6415
(
2011
).
9.
Z. C.
Ma
,
A. W.
Holle
,
K.
Melde
,
T.
Qiu
,
K.
Poeppel
,
V. M.
Kadiri
, and
P.
Fischer
, “
Acoustic holographic cell patterning in a biocompatible hydrogel
,”
Adv. Mater.
32
,
1904181
(
2020
).
10.
Z. L.
Deng
,
X. P.
Li
, and
G. X.
Li
,
Metasurface Holography
,
Synthesis Lectures on Materials and Optics Vol.
1
(Morgan & Claypool,
2020
), pp.
1
76
.
11.
A. L.
Chen
,
Y. S.
Wang
,
Y. F.
Wang
,
H. T.
Zhou
, and
S. M.
Yuan
, “
Design of acoustic/elastic phase gradient metasurfaces: Principles, functional elements, tunability and coding
,”
Appl. Mech. Rev.
74
,
020801
(
2022
).
12.
B.
Assouar
,
B.
Liang
,
Y.
Wu
,
Y.
Li
,
J. C.
Cheng
, and
Y.
Jing
, “
Acoustic metasurfaces
,”
Nat. Rev. Mater.
3
,
460
472
(
2018
).
13.
Y. B.
Xie
,
C.
Shen
,
W. Q.
Wang
,
J. F.
Li
,
D. J.
Suo
,
B. I.
Popa
,
Y.
Jing
, and
S. A.
Cummer
, “
Acoustic holographic rendering with two-dimensional metamaterial-based passive phased array
,”
Sci. Rep.
6
,
35437
(
2016
).
14.
M.
Bakhtiari-Nejad
,
A.
Elnahhas
,
M. R.
Hajj
, and
S.
Shahab
, “
Acoustic holograms in contactless ultrasonic power transfer systems: Modeling and experiment
,”
J. Appl. Phys.
124
,
244901
(
2018
).
15.
J.
Zhang
,
Y.
Tian
,
Y.
Cheng
, and
X. J.
Liu
, “
Acoustic holography using composite metasurfaces
,”
Appl. Phys. Lett.
116
,
030501
(
2020
).
16.
Y.
Tian
,
Q.
Wei
,
Y.
Cheng
, and
X. J.
Liu
, “
Acoustic holography based on composite metasurface with decoupled modulation of phase and amplitude
,”
Appl. Phys. Lett.
110
,
191901
(
2017
).
17.
Y. F.
Zhu
,
J.
Hu
,
X. D.
Fan
,
J.
Yang
,
B.
Liang
,
X. F.
Zhu
, and
J. C.
Cheng
, “
Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase
,”
Nat. Commun.
9
,
1632
(
2018
).
18.
S. W.
Fan
,
Y. F.
Zhu
,
L. Y.
Cao
,
Y. F.
Wang
,
A. L.
Chen
,
B.
Vincent
,
Y. S.
Wang
, and
B.
Assouar
, “
Broadband tunable lossy metasurface with independent amplitude and phase modulations for acoustic holography
,”
Smart Mater. Struct.
29
,
105038
(
2020
).
19.
J.
Zhang
,
Y.
Yang
,
B. P.
Zhu
,
X. J.
Li
,
J.
Jin
,
Z. Y.
Chen
,
Y.
Chen
, and
Q. F.
Zhou
, “
Multifocal point beam forming by a single ultrasonic transducer with 3D printed holograms
,”
Appl. Phys. Lett.
113
,
243502
(
2018
).
20.
M. D.
Brown
, “
Phase and amplitude modulation with acoustic holograms
,”
Appl. Phys. Lett.
115
,
053701
(
2019
).
21.
Y. F.
Zhu
and
B.
Assouar
, “
Systematic design of multiplexed-acoustic-metasurface hologram with simultaneous amplitude and phase modulations
,”
Phys. Rev. Mater.
3
,
045201
(
2019
).
22.
Y. F.
Zhu
,
N. J.
Gerard
,
X. X.
Xia
,
G. C.
Stevenson
,
L. Y.
Cao
,
S. W.
Fan
,
C. M.
Spadaccini
,
Y.
Jing
, and
B.
Assouar
, “
Systematic design and experimental demonstration of transmission-type multiplexed acoustic meta-holograms
,”
Adv. Funct. Mater.
31
,
2101947
(
2021
).
23.
H. W.
Dong
,
C.
Shen
,
S. D.
Zhao
,
W.
Qiu
,
H.
Zheng
,
C.
Zhang
,
S. A.
Cummer
,
Y. S.
Wang
,
D.
Fang
, and
L.
Cheng
, “
Achromatic metasurfaces with inversely customized dispersion for ultra-broadband acoustic beam engineering
,”
Natl. Sci. Rev.
9
,
nwac030
(
2022
).
24.
H. T.
Zhou
,
W. X.
Fu
,
X. S.
Li
,
Y. F.
Wang
, and
Y. S.
Wang
, “
Loosely coupled reflective impedance metasurfaces: Precise manipulation of waterborne sound by topology optimization
,”
Mech. Syst. Signal Process.
177
,
109228
(
2022
).
25.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
,
436
444
(
2015
).
26.
S. S.
An
,
C.
Fowler
,
B. W.
Zheng
,
M. Y.
Shalaginov
,
H.
Tang
,
H.
Li
,
L.
Zhou
,
J.
Ding
,
A. M.
Agarwal
,
C.
Rivero-Baleine
,
K. A.
Richardson
,
T.
Gu
,
J. J.
Hu
, and
H. L.
Zhang
, “
A deep learning approach for objective-driven all-dielectric metasurface design
,”
ACS Photonics
6
,
3196
3207
(
2019
).
27.
C. C.
Nadell
,
B. H.
Huang
,
J. M.
Malof
, and
W. J.
Padilla
, “
Deep learning for accelerated all-dielectric metasurface design
,”
Opt. Express
27
,
27523
(
2019
).
28.
L. L.
Li
,
H. X.
Ruan
,
C.
Liu
,
Y.
Li
,
Y.
Shuang
,
A.
Alù
,
C. W.
Qiu
, and
T. J.
Cui
, “
Machine-learning reprogrammable metasurface imager
,”
Nat. Commun.
10
,
1082
(
2019
).
29.
I.
Tanriover
,
W.
Hadibrata
, and
K.
Aydin
, “
A physics based approach for neural networks enabled design of all-dielectric metasurfaces
,”
ACS Photonics
7
,
1957
1964
(
2020
).
30.
J.
Weng
,
Y. J.
Ding
,
C. B.
Hu
,
X. F.
Zhu
,
B.
Liang
,
J.
Yang
, and
J. C.
Cheng
, “
Meta-neural-network for real-time and passive deep-learning-based object recognition
,”
Nat. Commun.
11
,
6309
(
2020
).
31.
Q.
Lin
,
J. Q.
Wang
,
F. Y.
Cai
,
R. J.
Zhang
,
D. G.
Zhao
,
X. X.
Xia
,
J. P.
Wang
, and
H. R.
Zheng
, “
A deep learning approach for the fast generation of acoustic holograms
,”
J. Acoust. Soc. Am.
149
,
2312
(
2021
).
32.
K.
Donda
,
Y. F.
Zhu
,
A.
Merkel
,
S. W.
Fan
,
L. Y.
Cao
,
S.
Wan
, and
B.
Assouar
, “
Ultrathin acoustic absorbing metasurface based on deep learning approach
,”
Smart Mater. Struct.
30
,
085003
(
2021
).
33.
H.
Ding
,
X. S.
Fang
,
B.
Jia
,
N. Y.
Wang
,
Q.
Cheng
, and
Y.
Li
, “
Deep learning enables accurate sound redistribution via nonlocal metasurfaces
,”
Phys. Rev. Appl.
16
,
064035
(
2021
).
34.
S.
So
,
T.
Badloe
,
J.
Noh
,
J.
Rho
, and
J.
Bravo-Abad
, “
Deep learning enabled inverse design in nanophotonics
,”
Nanophotonics
9
,
1041
1057
(
2020
).
35.
L.
Shi
,
B. C.
Li
,
C.
Kim
,
P.
Kellnhofer
, and
W.
Matusik
, “
Towards real-time photorealistic 3D holography with deep neural networks
,”
Nature
591
,
234
239
(
2021
).
36.
A.
Maimone
,
A.
Georgiou
, and
J. S.
Kollin
, “
Holographic near-eye displays for virtual and augmented reality
,”
ACM Trans. Graphics
36
(
4
),
1
16
(
2017
).
37.
Q.
Zhang
,
C.
Liu
,
X.
Wan
,
L.
Zhang
,
S.
Liu
,
Y.
Yang
, and
T. J.
Cui
, “
Machine‐learning designs of anisotropic digital coding metasurfaces
,”
Adv. Theory Simul.
2
,
1800132
(
2019
).
38.
J.
Li
,
C.
Shen
,
A.
Díaz-Rubio
,
S. A.
Tretyakov
, and
S. A.
Cummer
, “
Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts
,”
Nat. Commun.
9
,
1342
(
2018
).
39.
W.
Ye
,
C.
Chen
,
Z.
Wang
,
I. H.
Chu
, and
S. P.
Ong
, “
Deep neural networks for accurate predictions of crystal stability
,”
Nat. Commun.
9
,
3800
(
2018
).
40.
H.
Larochelle
,
Y.
Bengio
,
J.
Louradour
, and
P.
Lamblin
, “
Exploring strategies for training deep neural networks
,”
J. Mach. Learn. Res.
10
,
1
40
(
2009
).
41.
M. H.
Hassoun
,
Fundamentals of Artificial Neural Networks
(
MIT Press
,
1995
).
42.
I.
Stephen
, “
Perceptron-based learning algorithms
,”
IEEE Trans. Neural Networks
50
,
179
191
(
1990
).
43.
R.
Hecht-Nielsen
, “
Theory of the backpropagation neural network
,” in
Neural Networks for Perception
(
Academic Press
,
1992
), pp. 65–93.

Supplementary Material

You do not currently have access to this content.