In the context of continued spread of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 and the emergence of new variants, the demand for rapid, accurate, and frequent detection is increasing. Moreover, the new predominant strain, Omicron variant, manifests more similar clinical features to those of other common respiratory infections. The concurrent detection of multiple potential pathogens helps distinguish SARS-CoV-2 infection from other diseases with overlapping symptoms, which is significant for providing tailored treatment to patients and containing the outbreak. Here, we report a lab-on-a-chip biosensing platform for SARS-CoV-2 detection based on the subwavelength grating micro-ring resonator. The sensing surface is functionalized by specific antibody against SARS-CoV-2 spike protein, which could produce redshifts of resonant peaks by antigen–antibody combination, thus achieving quantitative detection. Additionally, the sensor chip is integrated with a microfluidic chip featuring an anti-backflow Y-shaped structure that enables the concurrent detection of two analytes. In this study, we realized the detection and differentiation of COVID-19 and influenza A H1N1. Experimental results indicate that the limit of detection of our device reaches 100 fg/ml (1.31 fM) within 15 min detecting time, and cross-reactivity tests manifest the specificity of the optical diagnostic assay. Furthermore, the integrated packaging and streamlined workflow facilitate its use for clinical applications. Thus, the biosensing platform presents a promising approach for attaining highly sensitive, selective, multiplexed, and quantitative point-of-care diagnosis and distinction between COVID-19 and influenza.

1.
S.
Zhao
,
Q.
Lin
,
J.
Ran
,
S. S.
Musa
,
G.
Yang
,
W.
Wang
,
Y.
Lou
,
D.
Gao
,
L.
Yang
, and
D.
He
, “
Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak
,”
Int. J. Infect. Dis.
92
,
214
217
(
2020
).
2.
L.-L.
Ren
,
Y.-M.
Wang
,
Z.-Q.
Wu
,
Z.-C.
Xiang
,
L.
Guo
,
T.
Xu
,
Y.-Z.
Jiang
,
Y.
Xiong
,
Y.-J.
Li
, and
X.-W.
Li
, “
Identification of a novel coronavirus causing severe pneumonia in human: A descriptive study
,”
Chin. Med. J.
133
(
09
),
1015
1024
(
2020
).
3.
M.
Khan
,
S. F.
Adil
,
H. Z.
Alkhathlan
,
M. N.
Tahir
,
S.
Saif
,
M.
Khan
, and
S. T.
Khan
, “
COVID-19: A global challenge with old history, epidemiology and progress so far
,”
Mol
26
(
1
),
39
(
2020
).
4.
World Health Organization, see https://covid19.who.int/ for “
WHO Coronavirus (COVID-19) Dashboard
” (accessed November 15,
2022
).
5.
D.
Tian
,
Y.
Sun
,
J.
Zhou
, and
Q.
Ye
, “
The global epidemic of SARS‐CoV‐2 variants and their mutational immune escape
,”
J. Med. Virol.
94
(
3
),
847
857
(
2022
).
6.
J. A.
Sheikh
,
J.
Singh
,
H.
Singh
,
S.
Jamal
,
M.
Khubaib
,
S.
Kohli
,
U.
Dobrindt
,
S. A.
Rahman
,
N. Z.
Ehtesham
, and
S. E.
Hasnain
, “
Emerging genetic diversity among clinical isolates of SARS-CoV-2: Lessons for today
,”
Infect., Genet. Evol.
84
,
104330
(
2020
).
7.
M.
Giovanetti
,
F.
Benedetti
,
G.
Campisi
,
A.
Ciccozzi
,
S.
Fabris
,
G.
Ceccarelli
,
V.
Tambone
,
A.
Caruso
,
S.
Angeletti
, and
D.
Zella
, “
Evolution patterns of SARS-CoV-2: Snapshot on its genome variants
,”
Biochem. Biophys. Res. Commun.
538
,
88
91
(
2021
).
8.
W. T.
Harvey
,
A. M.
Carabelli
,
B.
Jackson
,
R. K.
Gupta
,
E. C.
Thomson
,
E. M.
Harrison
,
C.
Ludden
,
R.
Reeve
,
A.
Rambaut
, and
S. J.
Peacock
, “
SARS-CoV-2 variants, spike mutations and immune escape
,”
Nat. Rev. Microbiol.
19
(
7
),
409
424
(
2021
).
9.
P.
Fathi-Hafshejani
,
N.
Azam
,
L.
Wang
,
M. A.
Kuroda
,
M. C.
Hamilton
,
S.
Hasim
, and
M.
Mahjouri-Samani
, “
Two-dimensional-material-based field-effect transistor biosensor for detecting COVID-19 virus (SARS-CoV-2)
,”
ACS Nano
15
(
7
),
11461
11469
(
2021
).
10.
A.
Asghari
,
C.
Wang
,
K. M.
Yoo
,
A.
Rostamian
,
X.
Xu
,
J.-D.
Shin
,
H.
Dalir
, and
R. T.
Chen
, “
Fast, accurate, point-of-care COVID-19 pandemic diagnosis enabled through advanced lab-on-chip optical biosensors: Opportunities and challenges
,”
Appl. Phys. Rev.
8
(
3
),
031313
(
2021
).
11.
D.
Tian
,
Y.
Sun
,
H.
Xu
, and
Q.
Ye
, “
The emergence and epidemic characteristics of the highly mutated SARS‐CoV‐2 Omicron variant
,”
J. Med. Virol.
94
(
6
),
2376
2383
(
2022
).
12.
C.
Maslo
,
R.
Friedland
,
M.
Toubkin
,
A.
Laubscher
,
T.
Akaloo
, and
B.
Kama
, “
Characteristics and outcomes of hospitalized patients in South Africa during the COVID-19 Omicron wave compared with previous waves
,”
J. Am. Med. Assoc.
327
(
6
),
583
584
(
2022
).
13.
P. A.
Christensen
,
R. J.
Olsen
,
S. W.
Long
,
R.
Snehal
,
J. J.
Davis
,
M. O.
Saavedra
,
K.
Reppond
,
M. N.
Shyer
,
J.
Cambric
, and
R.
Gadd
, “
Signals of significantly increased vaccine breakthrough, decreased hospitalization rates, and less severe disease in patients with Coronavirus disease 2019 caused by the Omicron variant of severe acute respiratory syndrome Coronavirus 2 in Houston, Texas
,”
Am. J. Pathol.
192
(
4
),
642
652
(
2022
).
14.
H.
Khorramdelazad
,
M. H.
Kazemi
,
A.
Najafi
,
M.
Keykhaee
,
R. Z.
Emameh
, and
R.
Falak
, “
Immunopathological similarities between COVID-19 and influenza: Investigating the consequences of Co-infection
,”
Microb. Pathog.
152
,
104554
(
2021
).
15.
A.
Pormohammad
,
S.
Ghorbani
,
A.
Khatami
,
M. H.
Razizadeh
,
E.
Alborzi
,
M.
Zarei
,
J. P.
Idrovo
, and
R. J.
Turner
, “
Comparison of influenza type A and B with COVID‐19: A global systematic review and meta‐analysis on clinical, laboratory and radiographic findings
,”
Rev. Med. Virol.
31
(
3
),
e2179
(
2021
).
16.
A. S.
Monto
,
S.
Gravenstein
,
M.
Elliott
,
M.
Colopy
, and
J.
Schweinle
, “
Clinical signs and symptoms predicting influenza infection
,”
Arch. Intern. Med.
160
(
21
),
3243
3247
(
2000
).
17.
Y.
Liu
and
J.
Rocklöv
, “
The effective reproduction number for the omicron SARS-CoV-2 variant of concern is several times higher than Delta
,”
J. Travel Med.
12
(
3
),
taac037
(
2022
).
18.
A.
Tahamtan
and
A.
Ardebili
, “
Real-time RT-PCR in COVID-19 detection: Issues affecting the results
,”
Expert Rev. Mol. Diagn.
20
(
5
),
453
454
(
2020
).
19.
W. M.
Freeman
,
S. J.
Walker
, and
K. E.
Vrana
, “
Quantitative RT-PCR: Pitfalls and potential
,”
Biotechniques
26
(
1
),
112
125
(
1999
).
20.
U. E.
Gibson
,
C. A.
Heid
, and
P. M.
Williams
, “
A novel method for real time quantitative RT-PCR
,”
Genome Res.
6
(
10
),
995
1001
(
1996
).
21.
C.
Wang
,
C.
Wang
,
X.
Wang
,
K.
Wang
,
Y.
Zhu
,
Z.
Rong
,
W.
Wang
,
R.
Xiao
, and
S.
Wang
, “
Magnetic SERS strip for sensitive and simultaneous detection of respiratory viruses
,”
ACS Appl. Mater. Interfaces
11
(
21
),
19495
19505
(
2019
).
22.
D.
Najjar
,
J.
Rainbow
,
S.
Sharma Timilsina
,
P.
Jolly
,
H.
De Puig
,
M.
Yafia
,
N.
Durr
,
H.
Sallum
,
G.
Alter
, and
J. Z.
Li
, “
A lab-on-a-chip for the concurrent electrochemical detection of SARS-CoV-2 RNA and anti-SARS-CoV-2 antibodies in saliva and plasma
,”
Nat. Biomed. Eng.
6
(
8
),
968
978
(
2022
).
23.
G.
Seo
,
G.
Lee
,
M. J.
Kim
,
S.-H.
Baek
,
M.
Choi
,
K. B.
Ku
,
C.-S.
Lee
,
S.
Jun
,
D.
Park
, and
H. G.
Kim
, “
Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor
,”
ACS Nano
14
(
4
),
5135
5142
(
2020
).
24.
S. M.
Yoo
and
S. Y.
Lee
, “
Optical biosensors for the detection of pathogenic microorganisms
,”
Trends Biotechnol.
34
(
1
),
7
25
(
2016
).
25.
E.
Luan
,
H.
Shoman
,
D. M.
Ratner
,
K. C.
Cheung
, and
L.
Chrostowski
, “
Silicon photonic biosensors using label-free detection
,”
Sensors
18
(
10
),
3519
(
2018
).
26.
Z.
Liao
,
Y.
Zhang
,
Y.
Li
,
Y.
Miao
,
S.
Gao
,
F.
Lin
,
Y.
Deng
, and
L.
Geng
, “
Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review
,”
Biosens. Bioelectron.
126
,
697
706
(
2019
).
27.
K. M.
Yoo
and
R. T.
Chen
, “
Monolithic integration of Si3N4 ring resonator and on-chip Fourier transform spectrometer for the lab-on-a-chip biosensor
,” in
Conference on Lasers and Electro-Optics
(
IEEE
,
2022
).
28.
C.-J.
Yang
,
H.
Yan
,
N.
Tang
,
Y.
Zou
,
Y.
Al-Hadeethi
,
X.
Xu
,
H.
Dalir
, and
R. T.
Chen
, “
Ultra sensitivity silicon-based photonic crystal microcavity biosensors for plasma protein detection in patients with pancreatic cancer
,”
Micromachines
11
(
3
),
282
(
2020
).
29.
J. S.
Cognetti
,
M. T.
Moen
,
M. G.
Brewer
,
M. R.
Bryan
,
J. D.
Tice
,
J. L.
McGrath
, and
B. L.
Miller
, “
A photonic biosensor-integrated tissue chip platform for real-time sensing of lung epithelial inflammatory markers
,”
Lab Chip
23
,
239
–250 (
2023
).
30.
M. R.
Bryan
,
J. N.
Butt
,
J.
Bucukovski
, and
B. L.
Miller
, “
Biosensing with silicon nitride microring resonators integrated with an on-chip filter bank spectrometer
,”
ACS Sensors
8
(
2
),
739
747
(
2023
).
31.
E.
Aljohani
,
S.
Gundavarapu
,
C. A.
Chapman
,
C.-C.
Lin
, and
D.
Vermeulen
, “
Foundry compatible fabrication of Si3N4 microring resonators for 15-plex biosensing at 1310 nm
,”
Proc. SPIE
12006
,
120060F
(
2022
).
32.
J.
Arlett
,
E.
Myers
, and
M.
Roukes
, “
Comparative advantages of mechanical biosensors
,”
Nat. Nanotechnol.
6
(
4
),
203
215
(
2011
).
33.
H.
Yan
,
L.
Huang
,
X.
Xu
,
S.
Chakravarty
,
N.
Tang
,
H.
Tian
, and
R. T.
Chen
, “
Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides
,”
Opt. Express
24
(
26
),
29724
29733
(
2016
).
34.
Z.
Wang
,
X.
Xu
,
D.
Fan
,
Y.
Wang
, and
R. T.
Chen
, “
High quality factor subwavelength grating waveguide micro-ring resonator based on trapezoidal silicon pillars
,”
Opt. Lett.
41
(
14
),
3375
3378
(
2016
).
35.
S.
Schmidt
,
J.
Flueckiger
,
W.
Wu
,
S. M.
Grist
,
S. T.
Fard
,
V.
Donzella
,
P.
Khumwan
,
E. R.
Thompson
,
Q.
Wang
, and
P.
Kulik
,
2014
. “
Improving the performance of silicon photonic rings, disks, and Bragg gratings for use in label-free biosensing
,”
Biosensing and Nanomedicine VII
, pp.
71
108
.
SPIE
.
36.
X.
Xu
,
Z.
Pan
,
C.-J.
Chung
,
C.-W.
Chang
,
H.
Yan
, and
R. T.
Chen
, “
Subwavelength grating metamaterial racetrack resonator for sensing and modulation
,”
IEEE J. Sel. Top. Quantum Electron.
25
(
3
),
1
8
(
2019
).
37.
Z.
Wang
,
H.
Yan
,
S.
Chakravarty
,
H.
Subbaraman
,
X.
Xu
,
D.
Fan
,
A. X.
Wang
, and
R. T.
Chen
, “
Microfluidic channels with ultralow-loss waveguide crossings for various chip-integrated photonic sensors
,”
Opt. Lett.
40
(
7
),
1563
1566
(
2015
).
38.
V.
Soni
,
C.-W.
Chang
,
X.
Xu
,
C.
Wang
,
H.
Yan
,
M.
D'Agati
,
L.-W.
Tu
,
Q. Y.
Chen
,
H.
Tian
, and
R. T.
Chen
, “
Portable automatic microring resonator system using a subwavelength grating metamaterial waveguide for high-sensitivity real-time optical-biosensing applications
,”
IEEE Trans. Biomed. Eng.
68
(
6
),
1894
1902
(
2020
).
39.
S.
Ning
,
S.
Liu
,
Y.
Xiao
,
G.
Zhang
,
W.
Cui
, and
M.
Reed
, “
A microfluidic chip with a serpentine channel enabling high-throughput cell separation using surface acoustic waves
,”
Lab Chip
21
(
23
),
4608
4617
(
2021
).
40.
V.
Donzella
,
A.
Sherwali
,
J.
Flueckiger
,
S. M.
Grist
,
S. T.
Fard
, and
L.
Chrostowski
, “
Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides
,”
Opt. Express
23
(
4
),
4791
4803
(
2015
).
41.
E.
Luan
,
H.
Yun
,
L.
Laplatine
,
Y.
Dattner
,
D. M.
Ratner
,
K. C.
Cheung
, and
L.
Chrostowski
, “
Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors
,”
IEEE J. Sel. Top. Quantum Electron.
25
(
3
),
1
11
(
2018
).
42.
N. A.
Yebo
,
D.
Taillaert
,
J.
Roels
,
D.
Lahem
,
M.
Debliquy
,
D.
Van Thourhout
, and
R.
Baets
, “
Silicon-on-insulator (SOI) ring resonator-based integrated optical hydrogen sensor
,”
IEEE Photonics Technol. Lett.
21
(
14
),
960
962
(
2009
).
43.
R.
Halir
,
P. J.
Bock
,
P.
Cheben
,
A.
Ortega‐Moñux
,
C.
Alonso‐Ramos
,
J. H.
Schmid
,
J.
Lapointe
,
D. X.
Xu
,
J. G.
Wangüemert‐Pérez
, and
Í.
Molina‐Fernández
, “
Waveguide sub‐wavelength structures: A review of principles and applications
,”
Laser Photonics Rev.
9
(
1
),
25
49
(
2015
).
44.
Z.
Wang
,
X.
Xu
,
D.
Fan
,
Y.
Wang
,
H.
Subbaraman
, and
R. T.
Chen
, “
Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits
,”
Sci. Rep.
6
(
1
),
24106
(
2016
).
45.
T.
Taniguchi
,
A.
Hirowatari
,
T.
Ikeda
,
M.
Fukuyama
,
Y.
Amemiya
,
A.
Kuroda
, and
S.
Yokoyama
, “
Detection of antibody-antigen reaction by silicon nitride slot-ring biosensors using protein G
,”
Opt. Commun.
365
,
16
23
(
2016
).
46.
S.
Yousuf
,
J.
Kim
,
A.
Orozaliev
,
M. S.
Dahlem
,
Y.-A.
Song
, and
J.
Viegas
, “
Label-free detection of morpholino-DNA hybridization using a silicon photonics suspended slab micro-ring resonator
,”
IEEE Photonics J.
13
(
4
),
1
9
(
2021
).
47.
J. D.
Jackson
,
Classical Electrodynamics
(
American Association of Physics Teachers
,
1999
).
48.
P.
Steglich
,
M.
Hülsemann
,
B.
Dietzel
, and
A.
Mai
, “
Optical biosensors based on silicon-on-insulator ring resonators: A review
,”
Molecules
24
(
3
),
519
(
2019
).
49.
L.
Chrostowski
,
S.
Grist
,
J.
Flueckiger
,
W.
Shi
,
X.
Wang
,
E.
Ouellet
,
H.
Yun
,
M.
Webb
,
B.
Nie
, and
Z.
Liang
, “
Silicon photonic resonator sensors and devices
,” in
Laser Resonators, Microresonators, and Beam Control XIV
(
SPIE
,
2012
), pp.
387
402
.
50.
Y. R.
Bawankar
and
A.
Singh
, “
Microring resonators based applications in silicon Photonics-A review
,” in
Fifth International Conference on Computational Intelligence and Communication Technologies (CCICT)
(
IEEE
,
2021
).
51.
J.
Ackert
,
J.
Doylend
,
D.
Logan
,
P.
Jessop
,
R.
Vafaei
,
L.
Chrostowski
, and
A.
Knights
, “
Defect-mediated resonance shift of silicon-on-insulator racetrack resonators
,”
Opt. Express
19
(
13
),
11969
11976
(
2011
).
52.
S. T.
Fard
,
V.
Donzella
,
S. A.
Schmidt
,
J.
Flueckiger
,
S. M.
Grist
,
P. T.
Fard
,
Y.
Wu
,
R. J.
Bojko
,
E.
Kwok
, and
N. A.
Jaeger
, “
Performance of ultra-thin SOI-based resonators for sensing applications
,”
Opt. Express
22
(
12
),
14166
14179
(
2014
).
53.
Y.
Xia
and
G. M.
Whitesides
, “
Soft lithography
,”
Angew. Chem., Int. Ed
37
(
5
),
550
575
(
1998
).
54.
E.
Kim
,
M. S.
Khan
,
A.
Ferrari
,
S.
Huang
,
J. C.
Sammartino
,
E.
Percivalle
,
T. W.
Kenniston
,
I.
Cassaniti
,
F.
Baldanti
, and
A.
Gambotto
, “
SARS-CoV-2 S1 subunit booster vaccination elicits robust humoral immune responses in aged mice
,” bioRxiv (
2022
).
55.
A. L.
Ahmad
,
T. A.
Otitoju
, and
B. S.
Ooi
, “
Optimization of a high performance 3-aminopropyltriethoxysilane-silica impregnated polyethersulfone membrane using response surface methodology for ultrafiltration of synthetic oil-water emulsion
,”
J. Taiwan Inst. Chem. Eng.
93
,
461
476
(
2018
).
56.
S.
Udomsom
,
U.
Mankong
,
P.
Paengnakorn
, and
N.
Theera-Umpon
, “
Novel rapid protein coating technique for silicon photonic biosensor to improve surface morphology and increase bioreceptor density
,”
Coatings
11
(
5
),
595
(
2021
).
57.
H. M.
Robison
and
R. C.
Bailey
, “
A guide to quantitative biomarker assay development using whispering gallery mode biosensors
,”
Curr. Protoc. Chem. Biol.
9
(
3
),
158
173
(
2017
).
58.
A. J.
Qavi
,
K.
Meserve
,
M. J.
Aman
,
H.
Vu
,
L.
Zeitlin
,
J. M.
Dye
,
J. W.
Froude
,
D. W.
Leung
,
L.
Yang
, and
F. W.
Holtsberg
, “
Rapid detection of an Ebola biomarker with optical microring resonators
,”
Cells Rep. Methods
2
,
100234
(
2022
).
59.
C.-W.
Chang
,
X.
Xu
,
S.
Chakravarty
,
H.-C.
Huang
,
L.-W.
Tu
,
Q. Y.
Chen
,
H.
Dalir
,
M. A.
Krainak
, and
R. T.
Chen
, “
Pedestal subwavelength grating metamaterial waveguide ring resonator for ultra-sensitive label-free biosensing
,”
Biosens. Bioelectron.
141
,
111396
(
2019
).
60.
M.
Lahav
,
A.
Vaskevich
, and
I.
Rubinstein
, “
Biological sensing using transmission surface plasmon resonance spectroscopy
,”
Langmuir
20
(
18
),
7365
7367
(
2004
).
61.
R.
Janeiro
,
R.
Flores
, and
J.
Viegas
, “
Refractive index of phosphate-buffered saline in the telecom infrared C+ L bands
,”
OSA Continuum
4
(
12
),
3039
3051
(
2021
).
62.
R.
Lu
,
X.
Zhao
,
J.
Li
,
P.
Niu
,
B.
Yang
,
H.
Wu
,
W.
Wang
,
H.
Song
,
B.
Huang
, and
N.
Zhu
, “
Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding
,”
Lancet
395
(
10224
),
565
574
(
2020
).
63.
Y.
Shi
,
Y.
Wang
,
C.
Shao
,
J.
Huang
,
J.
Gan
,
X.
Huang
,
E.
Bucci
,
M.
Piacentini
,
G.
Ippolito
, and
G.
Melino
, “
COVID-19 infection: The perspectives on immune responses
,”
Cell Death Differ.
27
(
5
),
1451
1454
(
2020
).
64.
G.
Zhou
and
Q.
Zhao
, “
Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2
,”
Int. J. Biol. Sci.
16
(
10
),
1718
1723
(
2020
).
65.
C.
Ligiero
,
T.
Fernandes
,
D.
D'Amato
,
F.
Gaspar
,
P.
Duarte
,
M.
Strauch
,
J.
Fonseca
,
L.
Meirelles
,
P. B.
da Silva
, and
R.
Azevedo
, “
Influence of particle size on the SARS-CoV-2 spike protein detection using IgG-capped gold nanoparticles and dynamic light scattering
,”
Mater. Today Chem.
25
,
100924
(
2022
).
66.
G.
Ruiz
,
N.
Ryan
,
K.
Rutschke
,
O.
Awotunde
, and
J. D.
Driskell
, “
Antibodies irreversibly adsorb to gold nanoparticles and resist displacement by common blood proteins
,”
Langmuir
35
(
32
),
10601
10609
(
2019
).
67.
K.
Leirs
,
P.
Tewari Kumar
,
D.
Decrop
,
E.
Pérez-Ruiz
,
P.
Leblebici
,
B.
Van Kelst
,
G.
Compernolle
,
H.
Meeuws
,
L.
Van Wesenbeeck
, and
O.
Lagatie
, “
Bioassay development for ultrasensitive detection of influenza a nucleoprotein using digital ELISA
,”
Anal. Chem.
88
(
17
),
8450
8458
(
2016
).

Supplementary Material

You do not currently have access to this content.