Volatile organic compounds detection technology, electronic nose, is promising in various applications such as health management, environmental monitoring, public safety, agriculture, and food production. The critical point of electronic nose to achieve good recognition ability, the fundament for applications, is the generation of high-quality signal characteristics that are transduced from each sensor unit, and aided with algorithm. However, chamber without uniform fluidic state introduce sensors' locations caused artificial characteristics to make the recognition difficult, even incredible. Inspired by the structure of the nasal cavity, a small volume chamber with well-controlled fluidic behavior is designed and fabricated according to theoretical simulation. All the expected fluidic features, including uniform flow field and concentration field, are achieved, which are experimentally demonstrated by humidity and 2-hexanone detection using sensors arrays. The well controlled fluidic behaviors of volatile analytes help achieving the ultra-sensitive volatile organic compounds detection, which might shed a new light for e-nose technology to go over the gap between academics and industry.

1.
A.
Lichtenstein
,
E.
Havivi
,
R.
Shacham
,
E.
Hahamy
,
R.
Leibovich
,
A.
Pevzner
,
V.
Krivitsky
,
G.
Davivi
,
I.
Presman
,
R.
Elnathan
,
Y.
Engel
,
E.
Flaxer
, and
F.
Patolsky
, “
Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays
,”
Nat. Commun.
5
,
4195
(
2014
).
2.
W.
Hu
,
W.
Wu
,
Y.
Jian
,
H.
Haick
,
G.
Zhang
,
Y.
Qian
,
M.
Yuan
, and
M.
Yao
, “
Volatolomics in healthcare and its advanced detection technology
,”
Nano Res.
15
(
9
),
8185
(
2022
).
3.
J.
Laothawornkitkul
,
J. P.
Moore
,
J. E.
Taylor
,
M.
Possell
,
T. D.
Gibson
,
C. N.
Hewitt
, and
N. D.
Paul
, “
Discrimination of plant volatile signatures by an electronic nose: A potential technology for plant pest and disease monitoring
,”
Environ. Sci. Technol.
42
(
22
),
8433
(
2008
).
4.
K.
Liu
,
C.
Zhang
,
J.
Xu
, and
Q.
Liu
, “
Research advance in gas detection of volatile organic compounds released in rice quality deterioration process
,”
Compr. Rev. Food Sci. Food Saf.
20
(
6
),
5802
(
2021
).
5.
H.
Haick
,
Y. Y.
Broza
,
P.
Mochalski
,
V.
Ruzsanyi
, and
A.
Amann
, “
Assessment, origin, and implementation of breath volatile cancer markers
,”
Chem. Soc. Rev.
43
(
5
),
1423
(
2014
).
6.
W.
Hu
,
L.
Wan
,
Y.
Jian
,
C.
Ren
,
K.
Jin
,
X.
Su
,
X.
Bai
,
H.
Haick
,
M.
Yao
, and
W.
Wu
, “
Electronic noses: From advanced materials to sensors aided with data processing
,”
Adv. Mater. Technol.
4
(
2
),
1800488
(
2019
).
7.
K.
Lee
,
J.
Park
,
M. S.
Lee
,
J.
Kim
,
B. G.
Hyun
,
D. J.
Kang
,
K.
Na
,
C. Y.
Lee
,
F.
Bien
, and
J. U.
Park
, “
In-situ synthesis of carbon nanotube–graphite electronic devices and their integrations onto surfaces of live plants and insects
,”
Nano Lett.
14
(
5
),
2647
(
2014
).
8.
Y.
Jian
,
N.
Zhang
,
T.
Liu
,
Y.
Zhu
,
D.
Wang
,
H.
Dong
,
L.
Guo
,
D.
Qu
,
X.
Jiang
,
T.
Du
,
Y.
Zheng
,
M.
Yuan
,
X.
Fu
,
J.
Liu
,
W.
Dou
,
F.
Niu
,
R.
Ning
,
G.
Zhang
,
J.
Fan
,
H.
Haick
, and
W.
Wu
, “
Artificially intelligent olfaction for fast and noninvasive diagnosis of bladder cancer from urine
,”
ACS Sens.
7
(
6
),
1720
(
2022
).
9.
X.
Ma
and
F. M.
Fernández
, “
Advances in mass spectrometry imaging for spatial cancer metabolomics
,”
Mass Spectrom. Rev.
e21804
(
2022
).
10.
B.
You
,
W.
Zhou
,
J.
Li
,
Z.
Li
, and
Y.
Sun
, “
A review of indoor gaseous organic compounds and human chemical exposure: Insights from real-time measurements
,”
Environ. Int.
170
,
107611
(
2022
).
11.
Y.
Jian
,
W.
Hu
,
Z.
Zhao
,
P.
Cheng
,
H.
Haick
,
M.
Yao
, and
W.
Wu
, “
Gas sensors based on chemi-resistive hybrid functional nanomaterials
,”
Nano-Micro Lett.
12
,
71
(
2020
).
12.
R.
Vishinkin
and
H.
Haick
, “
Nanoscale sensor technologies for disease detection via volatolomics
,”
Small
11
(
46
),
6142
(
2015
).
13.
S. Y.
Jeong
,
J. S.
Kim
, and
J. H.
Lee
, “
Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction
,”
Adv. Mater.
32
(
51
),
2002075
(
2020
).
14.
A. M.
Lezzi
,
G. P.
Beretta
,
E.
Comini
,
G.
Faglia
,
G.
Galli
, and
G.
Sberveglieri
, “
Influence of gaseous species transport on the response of solid state gas sensors within enclosures
,”
Sens. Actuators, B
78
(
1–3
),
144
(
2001
).
15.
F.
Di Francesco
,
M.
Falcitelli
,
L.
Marano
, and
G.
Pioggia
, “
A radially symmetric measurement chamber for electronic noses
,”
Sens. Actuators, B
105
(
2
),
295
(
2005
).
16.
S. M.
Scott
,
D.
James
,
Z.
Ali
, and
W. T.
O'Hare
, “
Optimising of the sensing chamber of an array of a volatile detection system
,”
J. Theor. Biol.
76
,
693
(
2004
).
17.
Z.
Chang
,
Y.
Sun
,
Y.
Zhang
,
Y.
Gao
,
X.
Weng
,
D.
Chen
,
L.
David
, and
J.
Xie
, “
Erratum to: Bionic optimization design of electronic nose chamber for oil and gas detection
,”
J. Bionic Eng.
15
(
5
),
939
(
2018
).
18.
B. L.
Villarreal
and
J. L.
Gordillo
, “
Bioinspired smell sensor: Nostril model and design
,”
IEEE ASME Trans. Mechatron.
21
(
2
),
912
(
2016
).
19.
M.
Falcitelli
,
A.
Benassi
,
F.
Di Francesco
,
C.
Domenici
,
L.
Marano
, and
G.
Pioggia
, “
Fluid dynamic simulation of a measurement chamber for electronic noses
,”
Sens. Actuators, B
85
(
1
),
166
(
2002
).
20.
G.
Viccione
,
T.
Zarra
,
S.
Giuliani
,
V.
Naddeo
, and
V.
Belgiorno
, “
Performance study of e-nose measurement chamber for environmental odour monitoring
,”
Chem. Eng. Trans.
30
,
109
(
2012
).
21.
J.
Wang
,
Q.
Meng
,
X.
Jin
, and
Z.
Sun
, “
Design of handheld electronic nose bionic chambers for Chinese liquors recognition
,”
Measurements
172
,
108856
(
2021
).
22.
J.
Zhang
,
Y.
Xue
,
Q.
Sun
,
T.
Zhang
,
Y.
Chen
,
W.
Yu
,
Y.
Xiong
,
X.
Wei
,
G.
Yu
,
H.
Wan
, and
P.
Wang
, “
A miniaturized electronic nose with artificial neural network for anti-interference detection of mixed indoor hazardous gases
,”
Sens. Actuators, B
326
,
128822
(
2021
).
23.
K.
Zhao
,
P. W.
Scherer
,
S. A.
Hajiloo
, and
P.
Dalton
, “
Effect of anatomy on human nasal air flow and odorant transport patterns: Implications for olfaction
,”
Chem. Senses
29
,
365
(
2004
).
24.
K.
Zhao
,
P.
Dalton
,
G. C.
Yang
, and
P. W.
Scherer
, “
Numerical modeling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose
,”
Chem. Senses
31
(
2
),
107
(
2006
).
25.
J.
Wen
,
K.
Inthavong
,
J.
Tu
, and
S.
Wang
, “
Numerical simulations for detailed airflow dynamics in a human nasal cavity
,”
Respir. Physiol. Neurobiol.
161
(
2
),
125
(
2008
).
26.
K.
Keyhani
,
P. W.
Scherer
, and
M. M.
Mozell
, “
A numerical model of nasal odorant transport for the analysis of human olfaction
,”
J. Theor. Biol.
186
(
3
),
279
(
1997
).
27.
D.
Elad
,
R.
Liebenthal
,
B. L.
Wenig
, and
S.
Einav
, “
Analysis of air flow patterns in the human nose
,”
Med. Biol. Eng. Comput.
31
(
6
),
585
(
1993
).
28.
F.-E.
Annanouch
,
G.
Bouchet
,
P.
Perrier
,
N.
Morati
,
C.
Reynard-Carette
,
K.
Aguir
,
V.
Martini-Laithier
, and
M.
Bendahan
, “
Hydrodynamic evaluation of gas testing chamber: Simulation, experiment
,”
Sens. Actuators, B
290
,
598
(
2019
).
29.
W.
Wu
,
B.
Wang
,
M.
Segev-Bar
,
W.
Dou
,
F.
Niu
,
Y. D.
Horev
,
Y.
Deng
,
M.
Plotkin
,
T.-P.
Huynh
,
R.
Jeries
,
H.
Zhu
,
A. l
Garaa
,
S.
Badarneh
,
L.
Chen
,
M.
Du
,
W.
Hu
, and
H.
Haick
, “
Free‐standing and eco‐friendly polyaniline thin films for multifunctional sensing of physical and chemical stimuli
,”
Adv. Funct. Mater.
27
(
40
),
1703147
(
2017
).

Supplementary Material

You do not currently have access to this content.