The archetypical antiferroelectric, PbZrO3, is currently attracting a lot of interest, but no consensus can be clearly established on the nature of its ground state as well as on the influence of external stimuli over its physical properties. Here, the antiferroelectric state of 45-nm-thick epitaxial thin films of PbZrO3 is established by observing the characteristic structural periodicity of antiparallel dipoles at the atomic scale, combined with clear double hysteresis of the polarization-electric field response related to antiferroelectric–to–ferroelectric phase transitions. Surprisingly, while the antiferroelectric state is identified as the ground state, temperature-dependent measurements show that a transition to a ferroelectric-like state appears in a large temperature window (100 K). Atomistic simulations further confirm the existence, and provides the origin, of such ferroelectric state in the films. Electric-field-induced ferroelectric transitions are also detected by the divergence of the piezoresponse force microscopy response. Using this technique, we further reveal the signature of a ferroelectric ground state for 4-nm-thick PbZrO3 films. Compared with bulk crystals, these results suggest a more complex competition between ferroelectric and antiferroelectric phases in epitaxial thin films of PbZrO3.

1.
C.
Kittel
, “
Theory of antiferroelectric crystals
,”
Phys. Rev.
82
(
5
),
729
732
(
1951
).
2.
K. M.
Rabe
, in
Functional Metal Oxides
,
1st ed.,
edited by
S. B.
Ogale
,
T. V.
Venkatesan
, and
M. G.
Blamire
(
Wiley
,
2013
), pp.
221
244
.
3.
K.
Shapovalov
and
M.
Stengel
, “
Tilt-driven antiferroelectricity in PbZrO3
,” arXiv:2112.12167 (
2021
).
4.
E.
Sawaguchi
,
H.
Maniwa
, and
S.
Hoshino
, “
Antiferroelectric structure of lead zirconate
,”
Phys. Rev.
83
(
5
),
1078
1078
(
1951
).
5.
M.
Ye
,
Q.
Sun
,
X.
Chen
,
Z.
Jiang
, and
F.
Wang
, “
Effect of Eu doping on the electrical properties and energy storage performance of PbZrO3 antiferroelectric thin films
,”
J. Am. Ceram. Soc.
94
(
10
),
3234
3236
(
2011
).
6.
S.-T.
Zhang
,
A. B.
Kounga
,
W.
Jo
,
C.
Jamin
,
K.
Seifert
,
T.
Granzow
,
J.
Rödel
, and
D.
Damjanovic
, “
High-strain lead-free antiferroelectric electrostrictors
,”
Adv. Mater.
21
(
46
),
4716
4720
(
2009
).
7.
Y.
Liu
,
J. F.
Scott
, and
B.
Dkhil
, “
Direct and indirect measurements on electrocaloric effect: Recent developments and perspectives
,”
Appl. Phys. Rev.
3
(
3
),
031102
(
2016
).
8.
J.
Parui
and
S. B.
Krupanidhi
, “
Electrocaloric effect in antiferroelectric PbZrO3 thin films
,”
Phys. Status Solidi RRL
2
(
5
),
230
232
(
2008
).
9.
A.
Pérez-Tomás
,
M.
Lira-Cantú
, and
G.
Catalan
, “
Above-bandgap photovoltages in antiferroelectrics
,”
Adv. Mater.
28
(
43
),
9644
9647
(
2016
).
10.
S.
Roberts
, “
Dielectric properties of lead zirconate and barium-lead zirconate
,”
J Am. Ceram. Soc.
33
(
2
),
63
66
(
1950
).
11.
A. K.
Tagantsev
,
K.
Vaideeswaran
,
S. B.
Vakhrushev
,
A. V.
Filimonov
,
R. G.
Burkovsky
,
A.
Shaganov
,
D.
Andronikova
,
A. I.
Rudskoy
,
A. Q. R.
Baron
,
H.
Uchiyama
,
D.
Chernyshov
,
A.
Bosak
,
Z.
Ujma
,
K.
Roleder
,
A.
Majchrowski
,
J.-H.
Ko
, and
N.
Setter
, “
The origin of antiferroelectricity in PbZrO3
,”
Nat. Commun.
4
(
1
),
2229
(
2013
).
12.
P.
Tolédano
and
M.
Guennou
, “
Theory of antiferroelectric phase transitions
,”
Phys. Rev. B
94
(
1
),
014107
(
2016
).
13.
B. A.
Scott
and
G.
Burns
, “
Crystal growth and observation of the ferroelectric phase of PbZrO3
,”
J Am. Ceram. Soc.
55
(
7
),
331
333
(
1972
).
14.
O. E.
Fesenko
,
R. V.
Kolesova
, and
Y.
Sindeyev
, “
The structural phase transitions in lead zirconate in super-high electric fields
,”
Ferroelectrics
20
(
1
),
177
178
(
1978
).
15.
K.
Roleder
,
G. E.
Kugel
,
J.
Handerek
,
M. D.
Fontana
,
C.
Carabatos
,
M.
Hafid
, and
A.
Kania
, “
The first evidence of two phase transitions in PbZrO3 crystals derived from simultaneous Raman and dielectric measurements
,”
Ferroelectrics
80
(
1
),
161
164
(
1988
).
16.
K.
Roleder
and
J.
Dee
, “
The defect-induced ferroelectric phase in thin PbZrO3 single crystals
,”
J. Phys.: Condens. Matter
1
(
8
),
1503
1510
(
1989
).
17.
Z.
Xu
,
X.
Dai
,
D.
Viehland
,
D. A.
Payne
,
Z.
Li
, and
Y.
Jiang
, “
Ferroelectric domains and incommensuration in the intermediate phase region of lead zirconate
,”
J Am. Ceram. Soc.
78
(
8
),
2220
2224
(
1995
).
18.
R.
Faye
,
H.
Liu
,
J.-M.
Kiat
,
B.
Dkhil
, and
P.-E.
Janolin
, “
Non-ergodicity and polar features of the transitional phase in lead zirconate
,”
Appl. Phys. Lett.
105
(
16
),
162909
(
2014
).
19.
J.
Zhai
and
H.
Chen
, “
Direct current field and temperature dependent behaviors of antiferroelectric to ferroelectric switching in highly (100)-oriented PbZrO3 thin films
,”
Appl. Phys. Lett.
82
(
16
),
2673
2675
(
2003
).
20.
P.
Ayyub
,
S.
Chattopadhyay
,
R.
Pinto
, and
M. S.
Multani
, “
Ferroelectric behavior in thin films of antiferroelectric materials
,”
Phys. Rev. B
57
(
10
),
R5559
R5562
(
1998
).
21.
L.
Pintilie
,
K.
Boldyreva
,
M.
Alexe
, and
D.
Hesse
, “
Coexistence of ferroelectricity and antiferroelectricity in epitaxial PbZrO3 films with different orientations
,”
J. Appl. Phys.
103
(
2
),
024101
(
2008
).
22.
S. E.
Reyes-Lillo
and
K. M.
Rabe
, “
Antiferroelectricity and ferroelectricity in epitaxially strained PbZrO3 from first principles
,”
Phys. Rev. B
88
(
18
),
180102
(
2013
).
23.
R. I.
Eglitis
and
D.
Vanderbilt
, “
Ab initio calculations of BaTiO3 and PbTiO3 (001) and (011) surface structures
,”
Phys. Rev. B
76
(
15
),
155439
(
2007
).
24.
K. M.
Rabe
and
P.
Ghosez
, “Ferroelectricity in PbTiO3 thin films: A first principles approach,”
J. Electroceramics
4
(
2/3
),
379
383
(
2000
).
25.
J. S.
Baker
and
D. R.
Bowler
, “
Polar morphologies from first principles: PbTiO3 films on SrTiO3 Substrates and the p(2×Λ) surface reconstruction
,”
Adv. Theory Simul.
3
(
11
),
2000154
(
2020
).
26.
B. K.
Mani
,
C.-M.
Chang
,
S.
Lisenkov
, and
I.
Ponomareva
, “
Critical thickness for antiferroelectricity in PbZrO3
,”
Phys. Rev. Lett.
115
(
9
),
097601
(
2015
).
27.
K.
Patel
,
B.
Xu
,
S.
Prosandeev
,
R.
Faye
,
B.
Dkhil
,
P.-E.
Janolin
, and
L.
Bellaiche
, “
Temperature-dependent properties of the antiferroelectric model PbZrO3: An effective Hamiltonian study
,”
Phys. Rev. B
106
,
214108
(
2022
).
28.
A.
Roy Chaudhuri
,
M.
Arredondo
,
A.
Hähnel
,
A.
Morelli
,
M.
Becker
,
M.
Alexe
, and
I.
Vrejoiu
, “
Epitaxial strain stabilization of a ferroelectric phase in PbZrO3 thin films
,”
Phys. Rev. B
84
(
5
),
054112
(
2011
).
29.
L.
Qiao
,
C.
Song
,
Q.
Wang
,
Y.
Zhou
, and
F.
Pan
, “
Polarization evolution in nanometer-thick PbZrO3 Films: Implications for energy storage and pyroelectric sensors
,”
ACS Appl. Nano Mater.
5
(
5
),
6083
6088
(
2022
).
30.
K.
Boldyreva
,
L.
Pintilie
,
A.
Lotnyk
,
I. B.
Misirlioglu
,
M.
Alexe
, and
D.
Hesse
, “
Thickness-driven antiferroelectric-to-ferroelectric phase transition of thin PbZrO3 layers in epitaxial PbZrO3∕Pb(Zr0.8Ti0.2)O3 multilayers
,”
Appl. Phys. Lett.
91
(
12
),
122915
(
2007
).
31.
G.
Apachitei
,
J. J. P.
Peters
,
A. M.
Sanchez
,
D. J.
Kim
, and
M.
Alexe
, “
Antiferroelectric tunnel junctions
,”
Adv. Electron. Mater.
3
(
7
),
1700126
(
2017
).
32.
R.
Gao
,
S. E.
Reyes-Lillo
,
R.
Xu
,
A.
Dasgupta
,
Y.
Dong
,
L. R.
Dedon
,
J.
Kim
,
S.
Saremi
,
Z.
Chen
,
C. R.
Serrao
,
H.
Zhou
,
J. B.
Neaton
, and
L. W.
Martin
, “
Ferroelectricity in Pb1+δZrO3 thin films
,”
Chem. Mater.
29
(
15
),
6544
6551
(
2017
).
33.
H.
Fujishita
and
S.
Katano
, “
Crystal structure of perovskite PbZrO3 re-investigated by high resolution powder neutron diffraction
,”
Ferroelectrics
217
(
1
),
17
20
(
1998
).
34.
M. P.
Moret
,
J. J.
Schermer
,
F. D.
Tichelaar
,
E.
Aret
, and
P. R.
Hageman
, “
Structure and morphology of epitaxial PbZrO3 films grown by metalorganic chemical vapor deposition
,”
J. Appl. Phys.
92
(
7
),
3947
3957
(
2002
).
35.
X.-K.
Wei
,
A. K.
Tagantsev
,
A.
Kvasov
,
K.
Roleder
,
C.-L.
Jia
, and
N.
Setter
, “
Ferroelectric translational antiphase boundaries in nonpolar materials
,”
Nat. Commun.
5
(
1
),
3031
(
2014
).
36.
A. M.
Glazer
, “
The classification of tilted octahedra in perovskites
,”
Acta Crystallogr., Sect. B
28
(
11
),
3384
3392
(
1972
).
37.
K.
Yamakawa
,
S.
Trolier‐McKinstry
,
J. P.
Dougherty
, and
S. B.
Krupanidhi
, “
Reactive magnetron co‐sputtered antiferroelectric lead zirconate thin films
,”
Appl. Phys. Lett.
67
(
14
),
2014
2016
(
1995
).
38.
H.
Lu
,
S.
Glinsek
,
P.
Buragohain
,
E.
Defay
, and
J.
Iñiguez
, “
Probing antiferroelectric-ferroelectric phase transitions in PbZrO3 capacitors by piezoresponse force microscopy
,”
Adv. Funct. Mater.
30
,
2003622
(
2020
).
39.
M. D.
Nguyen
and
G.
Rijnders
, “
Electric field-induced phase transition and energy storage performance of highly-textured PbZrO3 antiferroelectric films with a deposition temperature dependence
,”
J. Eur. Ceram. Soc.
38
(
15
),
4953
4961
(
2018
).
40.
T.
Ma
,
Z.
Fan
,
B.
Xu
,
T.-H.
Kim
,
P.
Lu
,
L.
Bellaiche
,
M. J.
Kramer
,
X.
Tan
, and
L.
Zhou
, “
Uncompensated polarization in incommensurate modulations of perovskite antiferroelectrics
,”
Phys. Rev. Lett.
123
(
21
),
217602
(
2019
).
41.
Y.
Yao
,
A.
Naden
,
M.
Tian
,
S.
Lisenkov
,
Z.
Beller
,
A.
Kumar
,
J.
Kacher
,
I.
Ponomareva
, and
N.
Bassiri-Gharb
, “
Ferrielectricity in the archetypal antiferroelectric, PbZrO3
,”
Adv. Mater.
35
(
3
),
2206541
(
2023
).
42.
X.-K.
Wei
,
K.
Vaideeswaran
,
C. S.
Sandu
,
C.-L.
Jia
, and
N.
Setter
, “
Preferential creation of polar translational boundaries by interface engineering in antiferroelectric PbZrO3 thin films
,”
Adv. Mater. Interfaces
2
(
18
),
1500349
(
2015
).
43.
W.
Zhong
,
D.
Vanderbilt
, and
K. M.
Rabe
, “
First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3
,”
Phys. Rev. B
52
(
9
),
6301
6312
(
1995
).

Supplementary Material

You do not currently have access to this content.