Ti3C2Tx MXene as a representative material in the emerging two-dimensional (2D) MXene family with high conductivity, abundant functional surface terminals, and large layer spacing is supposed to show specific semiconducting properties like other 2D graphene or transition metal dichalcogenides, thus extending Moore's law beyond silicon. However, despite extensive efforts, the design of Ti3C2Tx MXene based semiconductor materials often depends on the availability of traditional semiconductors to form heterojunctions, where Ti3C2Tx MXene is still in metallic characters and is not in dominant status in the heterojunctions. Here, we demonstrate semiconducting Ti3C2Tx MXene modified with dodecyl (−C12H26) groups, as functionalized Ti3C2Tx MXene possesses opened and typical layer-dependent bandgap. The new arising characteristics, red-shift of characteristic peaks, and intensity ratio of the A1g(C)/A1g(Ti, C, Tx) in Raman spectroscopy suggested the successful grafting of the −C12H26 groups on the Ti3C2Tx MXenes. In addition, the theoretical calculations by density functional theory, photoluminescence spectrum, together with photoelectric measurements of Ti3C2Tx-C12H26 MXene on different layers, show a tunable bandgap of 0.49–2.15 eV and superior photoresponse properties in fabricating near infrared photodetectors.

1.
X.
Huang
,
Z. Y.
Zeng
, and
H.
Zhang
,
Chem. Soc. Rev.
42
,
1934
1946
(
2013
).
2.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
,
Nat. Nanotechnol.
6
,
147
150
(
2011
).
3.
F. I.
Alzakia
and
S. C.
Tan
,
Adv. Sci.
8
,
e2003864
(
2021
).
4.
A.
Silvestri
,
C.
Wetzl
,
N.
Alegret
,
L.
Cardo
,
H. L.
Hou
,
A.
Criado
, and
M.
Prato
,
Adv. Drug Delivery Rev.
186
,
114315
(
2022
).
5.
Z. W.
Huo
,
Y. C.
Wei
,
Y. F.
Wang
,
Z. L.
Wang
, and
Q. J.
Sun
,
Adv. Funct. Mater.
32
,
2206900
(
2022
).
6.
G. Z.
Liang
,
X. C.
Yu
,
X. N.
Hu
,
B.
Qiang
,
C. W.
Wang
, and
Q. J.
Wang
,
Mater. Today
51
,
294
316
(
2021
).
7.
D.
Dumcenco
,
D.
Ovchinnikov
,
K.
Marinov
,
P.
Lazić
,
M.
Gibertini
,
N.
Marzari
,
O. L.
Sanchez
,
Y.-C.
Kung
,
D.
Krasnozhon
,
M.-W.
Chen
,
S.
Bertolazzi
,
P.
Gille
,
A. F. i
Morral
,
A.
Radenovic
, and
A.
Kis
,
ACS Nano
9
,
4611
4620
(
2015
).
8.
J.-Q.
Zong
,
S.-F.
Zhang
,
W.-X.
Ji
,
C.-W.
Zhang
,
P.
Li
, and
P.-J.
Wang
,
Superlattices Microstruct.
122
,
262
267
(
2018
).
9.
K.
Thakar
,
B.
Mukherjee
,
S.
Grover
,
N.
Kaushik
,
M.
Deshmukh
, and
S.
Lodha
,
ACS Appl. Mater. Interfaces
10
,
36512
36522
(
2018
).
10.
M.
Hafeez
,
L.
Gan
,
H. Q.
Li
,
Y.
Ma
, and
T.
Zhai
,
Adv. Funct. Mater.
26
,
4551
4560
(
2016
).
11.
K.
Lee
,
J.
Choi
,
B.
Kaczer
,
A.
Grill
,
J. W.
Lee
,
S.
Van Beek
,
E.
Bury
,
J.
Diaz‐Fortuny
,
A.
Chasin
,
J.
Lee
,
J.
Chun
,
D. H.
Shin
,
J.
Na
,
H.
Cho
,
S. W.
Lee
, and
G. T.
Kim
,
Adv. Funct. Mater.
31
,
2100625
(
2021
).
12.
M.
Naguib
,
M.
Kurtoglu
,
V.
Presser
,
J.
Lu
,
J. J.
Niu
,
M.
Heon
,
L.
Hultman
,
Y.
Gogotsi
, and
M. W.
Barsoum
,
Adv. Mater.
23
,
4248
4253
(
2011
).
13.
F. W.
Ming
,
H. F.
Liang
,
G.
Huang
,
Z.
Bayhan
, and
H. N.
Alshareef
,
Adv. Mater.
33
,
e2004039
(
2021
).
14.
V.
Shukla
,
N. K.
Jena
,
S. R.
Naqvi
,
W.
Luo
, and
R.
Ahuja
,
Nat. Energy
58
,
877
885
(
2019
).
15.
R.
Ma
,
Z.
Chen
,
D.
Zhao
,
X.
Zhang
,
J.
Zhuo
,
Y.
Yin
,
X.
Wang
,
G.
Yang
, and
F.
Yi
,
J. Mater. Chem. A
9
,
11501
11529
(
2021
).
16.
A.
Szuplewska
,
D.
Kulpinska
,
A.
Dybko
,
M.
Chudy
,
A. M.
Jastrzebska
,
A.
Olszyna
, and
Z.
Brzozka
,
Trends Biotechnol.
38
,
264
279
(
2020
).
17.
Y. N.
Ma
,
Y. F.
Cheng
,
J.
Wang
,
S.
Fu
,
M. J.
Zhou
,
Y.
Yang
,
B. W.
Li
,
X.
Zhang
, and
C. W.
Nan
,
InfoMat
4
,
e12328
(
2022
).
18.
C. Q.
Hu
,
L.
Li
,
H.
Huang
, and
G. Z.
Shen
,
Adv. Mater. Technol.
7
,
2101639
(
2022
).
19.
C. Q.
Hu
,
L.
Li
, and
G. Z.
Shen
,
Chin. J. Chem.
39
,
2141
2146
(
2021
).
20.
A.
Iqbal
,
P.
Sambyal
, and
C. M.
Koo
,
Adv. Funct. Mater.
30
,
2000883
(
2020
).
21.
T.
Yun
,
H.
Kim
,
A.
Iqbal
,
Y. S.
Cho
,
G. S.
Lee
,
M.-K.
Kim
,
S. J.
Kim
,
D.
Kim
,
Y.
Gogotsi
,
S. O.
Kim
, and
C. M.
Koo
,
Adv. Mater.
32
,
2070064
(
2020
).
22.
L.
Li
,
W. J.
Liu
,
D.
Chen
,
F. Y.
Qu
, and
G. Z.
Shen
,
Nanomicro Lett.
13
,
100
(
2021
).
23.
N.
Mao
,
S. Q.
Zhang
,
J. X.
Wu
,
J.
Zhang
, and
L.
Tong
,
Small Methods
2
,
1700409
(
2018
).
24.
F.
Chen
and
S.
Mukamel
,
ACS Photonics
8
,
2722
2727
(
2021
).
25.
G.
Li
,
Z.
Lian
,
Z.
Wan
,
Z.
Liu
,
J.
Qian
,
Y.
Deng
,
S.
Zhang
, and
Q.
Zhong
,
Appl. Catal., B
317
,
121787
(
2022
).
26.
V. G.
Trotsenko
,
A.
Lahmar
,
N. V.
Lyanguzov
,
M. E.
Marssi
, and
V. I.
Torgashev
,
Superlattices Microstruct.
127
,
100
108
(
2019
).
27.
A.
Sarycheva
and
Y.
Gogotsi
,
Chem. Mater.
32
,
3480
3488
(
2020
).
28.
P.
Serles
,
M.
Hamidinejad
,
P. G.
Demingos
,
L.
Ma
,
N.
Barri
,
H.
Taylor
,
C. V.
Singh
,
C. B.
Park
, and
T.
Filleter
,
Nano Lett.
22
,
3356
3363
(
2022
).
29.
A.
Splendiani
,
L.
Sun
,
Y.
Zhang
,
T.
Li
,
J.
Kim
,
C. Y.
Chim
,
G.
Galli
, and
F.
Wang
,
Nano Lett.
10
,
1271
1275
(
2010
).
30.
H.
Li
,
Q.
Zhang
,
C. C. R.
Yap
,
B. K.
Tay
,
T. H. T.
Edwin
,
A.
Olivier
, and
D.
Baillargeat
,
Adv. Funct. Mater.
22
,
1385
1390
(
2012
).
31.
E. J.
Heller
,
Y.
Yang
,
L.
Kocia
,
W.
Chen
,
S.
Fang
,
M.
Borunda
, and
E.
Kaxiras
,
ACS Nano
10
,
2803
2818
(
2016
).
32.
V.
Valeš
,
P.
Kovaříček
,
M.
Fridrichová
,
X.
Ji
,
X.
Ling
,
J.
Kong
,
M. S.
Dresselhaus
, and
M.
Kalbáč
,
2D Mater.
4
,
025087
(
2017
).
33.
F.-F.
Kong
,
X.-J.
Tian
,
Y.
Zhang
,
Y.-J.
Yu1
,
S.-H.
Jing
,
Y.
Zhang
,
G.-J.
Tian
,
Y.
Luo
,
J.-L.
Yang
,
Z.-C.
Dong
, and
J. G.
Hou
,
Nat. Commun.
12
,
1280
(
2021
).
34.
A.
Sarycheva
,
M.
Shanmugasundaram
,
A.
Krayev
, and
Y.
Gogotsi
,
ACS Nano
16
,
6858
6865
(
2022
).
35.
K.
Hantanasirisakul
and
Y.
Gogotsi
,
Adv. Mater.
30
,
1804779
(
2018
).
36.
T.
Schultz
,
N. C.
Frey
,
K.
Hantanasirisakul
,
S.
Park
,
S. J.
May
,
V. B.
Shenoy
,
Y.
Gogotsi
, and
N.
Koch
,
Chem. Mater.
31
,
6590
6597
(
2019
).
37.
Q.
Tang
,
Z.
Zhou
, and
P. W.
Shen
,
J. Am. Chem. Soc.
134
,
16909
16916
(
2012
).
38.
X. L.
Li
,
N.
Li
,
Z. D.
Huang
,
Z.
Chen
,
G. J.
Liang
,
Q.
Yang
,
M.
Li
,
Y. W.
Zhao
,
L. T.
Ma
,
B. B.
Dong
,
Q.
Huang
,
J.
Fan
, and
C. Y.
Zhi
,
Adv. Mater.
24
,
2006897
(
2021
).
39.
T.
Li
,
H.
Li
,
H.
Wang
,
W.
Lu
,
M.
Osa
,
Y.
Wang
,
J.
Mays
, and
K.
Hong
,
Polymers
213
,
123207
(
2021
).

Supplementary Material

You do not currently have access to this content.