In the last few years, organic–inorganic hybrid perovskites (OIHPs) have attracted immense research and industry attention for their application as light absorbers in solar cells and light-emitting diodes. Characterizing OIHP materials and optoelectronic devices using transmission electron microscopy (TEM)-based techniques has played a large role in understanding their structural, compositional, and electronic properties. However, the highly energetic and electrically charged electron beam radiation used in TEM can result in damage to the pristine structure, as OIHPs are unstable and highly sensitive to electron beams. This damage potentially obscures intrinsic information and leads to a serious misunderstanding of the microscopic structure–property–performance relationship for OIHP optoelectronic devices. To address this issue, we first review the electron and ion beam-induced degradation mechanism of OIHPs, followed by a review of the development of ultra-low-dose TEM techniques that can able to minimize this damage, thus can able to obtain reliable, intrinsic structural information about OIHPs from the atomic to micrometer length scales. Finally, we suggest a protocol for appropriate TEM specimen preparation and characterization techniques. This protocol can help ensure that future TEM studies of OIHPs give reliable information, thereby enabling a deeper understanding and optimization of the performance and long-term stability of OIHP optoelectronic devices.

1.
Y.
Zhao
,
F.
Ma
,
Z.
Qu
,
S.
Yu
,
T.
Shen
,
H.-X.
Deng
,
X.
Chu
,
X.
Peng
,
Y.
Yuan
,
X.
Zhang
, and
J.
You
, “
Inactive (PbI2)2 RbCl stabilizes perovskite films for efficient solar cells
,”
Science
377
(
6605
),
531
534
(
2022
).
2.
Z.
Li
,
M.
Wu
,
L.
Yang
,
K.
Guo
,
Y.
Duan
,
Y.
Li
,
K.
He
,
Y.
Xing
,
Z.
Zhang
,
H.
Zhou
et al, “
24.64%‐efficiency MA‐free perovskite solar cell with VOC of 1.19 V enabled by a hinge‐type fluorine‐rich complex
,”
Adv. Funct. Mater.
33
,
2212606
(
2022
).
3.
H.
Min
,
D. Y.
Lee
,
J.
Kim
,
G.
Kim
,
K. S.
Lee
,
J.
Kim
,
M. J.
Paik
,
Y. K.
Kim
,
K. S.
Kim
,
M. G.
Kim
et al, “
Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes
,”
Nature
598
(
7881
),
444
450
(
2021
).
4.
Y.
Jiang
,
C.
Sun
,
J.
Xu
,
S.
Li
,
M.
Cui
,
X.
Fu
,
Y.
Liu
,
Y.
Liu
,
H.
Wan
,
K.
Wei
et al, “
Synthesis-on-substrate of quantum dot solids
,”
Nature
612
(
7941
),
679
684
(
2022
).
5.
L. F.
Zhao
,
K. M.
Lee
,
K.
Roh
,
S. U. Z.
Khan
, and
B. P.
Rand
, “
Improved outcoupling efficiency and stability of perovskite light-emitting diodes using thin emitting layers
,”
Adv. Mater.
31
(
2
),
1805836
(
2019
).
6.
Y.-H.
Song
,
J.
Ge
,
L.-B.
Mao
,
K.-H.
Wang
,
X.-L.
Tai
,
Q.
Zhang
,
L.
Tang
,
J.-M.
Hao
,
J.-S.
Yao
,
J.-J.
Wang
et al, “
Planar defect–free pure red perovskite light-emitting diodes via metastable phase crystallization
,”
Sci. Adv.
8
(
45
),
eabq2321
(
2022
).
7.
H.
Lu
,
Y.
Liu
,
P.
Ahlawat
,
A.
Mishra
,
W. R.
Tress
,
F. T.
Eickemeyer
,
Y.
Yang
,
F.
Fu
,
Z.
Wang
,
C. E.
Avalos
et al, “
Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells
,”
Science
370
(
6512
),
eabb8985
(
2020
).
8.
L. M.
Herz
, “
Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits
,”
ACS Energy Lett.
2
(
7
),
1539
1548
(
2017
).
9.
T. J.
Jacobsson
,
J.-P.
Correa-Baena
,
M.
Pazoki
,
M.
Saliba
,
K.
Schenk
,
M.
Grätzel
, and
A.
Hagfeldt
, “
Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells
,”
Energy Environ. Sci.
9
(
5
),
1706
1724
(
2016
).
10.
W.
Zhang
,
M.
Saliba
,
D. T.
Moore
,
S. K.
Pathak
,
M. T.
Hörantner
,
T.
Stergiopoulos
,
S. D.
Stranks
,
G. E.
Eperon
,
J. A.
Alexander-Webber
,
A.
Abate
et al, “
Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells
,”
Nat. Commun.
6
(
1
),
6142
(
2015
).
11.
H.
Oga
,
A.
Saeki
,
Y.
Ogomi
,
S.
Hayase
, and
S.
Seki
, “
Improved understanding of the electronic and energetic landscapes of perovskite solar cells: High local charge carrier mobility, reduced recombination, and extremely shallow traps
,”
J. Am. Chem. Soc.
136
(
39
),
13818
13825
(
2014
).
12.
S. D.
Stranks
,
G. E.
Eperon
,
G.
Grancini
,
C.
Menelaou
,
M. J.
Alcocer
,
T.
Leijtens
,
L. M.
Herz
,
A.
Petrozza
, and
H. J.
Snaith
, “
Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber
,”
Science
342
(
6156
),
341
344
(
2013
).
13.
M. A.
Green
,
E. D.
Dunlop
,
G.
Siefer
,
M.
Yoshita
,
N.
Kopidakis
,
K.
Bothe
, and
X.
Hao
, “
Solar cell efficiency tables (version 61)
,”
Prog. Photovoltaics
31
(
1
),
3
16
(
2023
).
14.
J. S.
Kim
,
J.-M.
Heo
,
G.-S.
Park
,
S.-J.
Woo
,
C.
Cho
,
H. J.
Yun
,
D.-H.
Kim
,
J.
Park
,
S.-C.
Lee
,
S.-H.
Park
,
E.
Yoon
,
N. C.
Greenham
, and
T.-W.
Lee
, “
Ultra-bright, efficient and stable perovskite light-emitting diodes
,”
Nature
611
(
7937
),
688
694
(
2022
).
15.
M.
Park
,
W.
Cho
,
G.
Lee
,
S. C.
Hong
,
M. C.
Kim
,
J.
Yoon
,
N.
Ahn
, and
M.
Choi
, “
Highly reproducible large‐area perovskite solar cell fabrication via continuous megasonic spray coating of CH3NH3PbI3
,”
Small
15
(
1
),
1804005
(
2019
).
16.
G.
Grancini
,
C.
Roldán-Carmona
,
I.
Zimmermann
,
E.
Mosconi
,
X.
Lee
,
D.
Martineau
,
S.
Narbey
,
F.
Oswald
,
F.
De Angelis
,
M.
Graetzel
et al, “
One-Year stable perovskite solar cells by 2D/3D interface engineering
,”
Nat. Commun.
8
(
1
),
15684
(
2017
).
17.
Y.
Liu
,
Y.
Dong
,
T.
Zhu
,
D.
Ma
,
A.
Proppe
,
B.
Chen
,
C.
Zheng
,
Y.
Hou
,
S.
Lee
,
B.
Sun
et al, “
Bright and stable light-emitting diodes based on perovskite quantum dots in perovskite matrix
,”
J. Am. Chem. Soc.
143
(
38
),
15606
15615
(
2021
).
18.
N.
Li
,
X.
Niu
,
Q.
Chen
, and
H.
Zhou
, “
Towards commercialization: The operational stability of perovskite solar cells
,”
Chem. Soc. Rev.
49
(
22
),
8235
8286
(
2020
).
19.
N. G.
Park
, “
Research direction toward scalable, stable, and high efficiency perovskite solar cells
,”
Adv. Energy Mater.
10
(
13
),
1903106
(
2020
).
20.
B.
Chen
,
P. N.
Rudd
,
S.
Yang
,
Y.
Yuan
, and
J.
Huang
, “
Imperfections and their passivation in halide perovskite solar cells
,”
Chem. Soc. Rev.
48
(
14
),
3842
3867
(
2019
).
21.
J.
Burschka
,
N.
Pellet
,
S.-J.
Moon
,
R.
Humphry-Baker
,
P.
Gao
,
M. K.
Nazeeruddin
, and
M.
Grätzel
, “
Sequential deposition as a route to high-performance perovskite-sensitized solar cells
,”
Nature
499
(
7458
),
316
319
(
2013
).
22.
N. J.
Jeon
,
J. H.
Noh
,
W. S.
Yang
,
Y. C.
Kim
,
S.
Ryu
,
J.
Seo
, and
S. I.
Seok
, “
Compositional engineering of perovskite materials for high-performance solar cells
,”
Nature
517
(
7535
),
476
480
(
2015
).
23.
M.
Liu
,
M. B.
Johnston
, and
H. J.
Snaith
, “
Efficient planar heterojunction perovskite solar cells by vapour deposition
,”
Nature
501
(
7467
),
395
398
(
2013
).
24.
J.
Peng
,
F.
Kremer
,
D.
Walter
,
Y.
Wu
,
Y.
Ji
,
J.
Xiang
,
W.
Liu
,
T.
Duong
,
H.
Shen
,
T.
Lu
et al, “
Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent
,”
Nature
601
(
7894
),
573
578
(
2022
).
25.
D. P.
McMeekin
,
G.
Sadoughi
,
W.
Rehman
,
G. E.
Eperon
,
M.
Saliba
,
M. T.
Hörantner
,
A.
Haghighirad
,
N.
Sakai
,
L.
Korte
,
B.
Rech
et al, “
A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
,”
Science
351
(
6269
),
151
155
(
2016
).
26.
M. U.
Rothmann
,
W.
Li
,
Y.
Zhu
,
A.
Liu
,
Z.
Ku
,
U.
Bach
,
J.
Etheridge
, and
Y. B.
Cheng
, “
Structural and chemical changes to CH3NH3PbI3 induced by electron and gallium ion beams
,”
Adv. Mater.
30
(
25
),
1800629
(
2018
).
27.
W.
Li
,
S. K.
Yadavalli
,
D.
Lizarazo-Ferro
,
M.
Chen
,
Y.
Zhou
,
N. P.
Padture
, and
R.
Zia
, “
Subgrain special boundaries in halide perovskite thin films restrict carrier diffusion
,”
ACS Energy Lett.
3
(
11
),
2669
2670
(
2018
).
28.
W.
Li
,
M. U.
Rothmann
,
Y.
Zhu
,
W.
Chen
,
C.
Yang
,
Y.
Yuan
,
Y. Y.
Choo
,
X.
Wen
,
Y.-B.
Cheng
,
U.
Bach
et al, “
The critical role of composition-dependent intragrain planar defects in the performance of MA1–xFAxPbI3 perovskite solar cells
,”
Nat. Energy
6
(
6
),
624
632
(
2021
).
29.
M. U.
Rothmann
,
J. S.
Kim
,
J.
Borchert
,
K. B.
Lohmann
,
C. M.
O'Leary
,
A. A.
Sheader
,
L.
Clark
,
H. J.
Snaith
,
M. B.
Johnston
, and
P. D.
Nellist
et al, “
Atomic-scale microstructure of metal halide perovskite
,”
Science
370
(
6516
),
eabb5940
(
2020
).
30.
Y.
Choi
,
D.
Koo
,
G.
Jeong
,
U.
Kim
,
H.
Kim
,
F.
Huang
, and
H.
Park
, “
A vertically oriented two-dimensional Ruddlesden–Popper phase perovskite passivation layer for efficient and stable inverted perovskite solar cells
,”
Energy Environ. Sci.
15
(
8
),
3369
3378
(
2022
).
31.
S.
Sidhik
,
Y.
Wang
,
M.
De Siena
,
R.
Asadpour
,
A. J.
Torma
,
T.
Terlier
,
K.
Ho
,
W.
Li
,
A. B.
Puthirath
,
X.
Shuai
et al, “
Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells
,”
Science
377
(
6613
),
1425
1430
(
2022
).
32.
I. M.
Hermes
,
A.
Best
,
L.
Winkelmann
,
J.
Mars
,
S. M.
Vorpahl
,
M.
Mezger
,
L.
Collins
,
H.-J.
Butt
,
D. S.
Ginger
,
K.
Koynov
et al, “
Anisotropic carrier diffusion in single MAPbI3 grains correlates to their twin domains
,”
Energy Environ. Sci.
13
(
11
),
4168
4177
(
2020
).
33.
J. M.
Ball
and
A.
Petrozza
, “
Defects in perovskite-halides and their effects in solar cells
,”
Nat. Energy
1
(
11
),
16149
(
2016
).
34.
Y.
Deng
,
S.
Xu
,
S.
Chen
,
X.
Xiao
,
J.
Zhao
, and
J.
Huang
, “
Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability
,”
Nat. Energy
6
(
6
),
633
641
(
2021
).
35.
H. T.
Pham
,
Y.
Yin
,
G.
Andersson
,
K. J.
Weber
,
T.
Duong
, and
J.
Wong-Leung
, “
Unraveling the influence of CsCl/MACl on the formation of nanotwins, stacking faults and cubic supercell structure in FA-based perovskite solar cells
,”
Nano Energy
87
,
106226
(
2021
).
36.
Y.
Zhang
,
Y.
Wang
,
L.
Zhao
,
X.
Yang
,
C.-H.
Hou
,
J.
Wu
,
R.
Su
,
S.
Jia
,
J.-J.
Shyue
,
D.
Luo
et al, “
Depth-dependent defect manipulation in perovskites for high-performance solar cells
,”
Energy Environ. Sci.
14
(
12
),
6526
6535
(
2021
).
37.
M. U.
Rothmann
,
W.
Li
,
Y.
Zhu
,
U.
Bach
,
L.
Spiccia
,
J.
Etheridge
, and
Y.-B.
Cheng
, “
Direct observation of intrinsic twin domains in tetragonal CH3NH3PbI3
,”
Nat. Commun.
8
(
1
),
14547
(
2017
).
38.
S. N.
Rashkeev
,
F.
El-Mellouhi
,
S.
Kais
, and
F. H.
Alharbi
, “
Domain walls conductivity in hybrid organometallic perovskites and their essential role in CH3NH3PbI3 solar cell high performance
,”
Sci. Rep.
5
(
1
),
11467
(
2015
).
39.
S.
Liu
,
F.
Zheng
,
N. Z.
Koocher
,
H.
Takenaka
,
F.
Wang
, and
A. M.
Rappe
, “
Ferroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskites
,”
J. Phys. Chem. Lett.
6
(
4
),
693
699
(
2015
).
40.
O.
Breitenstein
,
J. P.
Rakotoniaina
,
M. H.
Al Rifai
, and
M.
Werner
, “
Shunt types in crystalline silicon solar cells
,”
Prog. Photovoltaics
12
(
7
),
529
538
(
2004
).
41.
J. D.
Major
,
R. E.
Treharne
,
L. J.
Phillips
, and
K.
Durose
, “
A low-cost non-toxic post-growth activation step for CdTe solar cells
,”
Nature
511
(
7509
),
334
337
(
2014
).
42.
W.
Luo
,
Y. S.
Khoo
,
P.
Hacke
,
V.
Naumann
,
D.
Lausch
,
S. P.
Harvey
,
J. P.
Singh
,
J.
Chai
,
Y.
Wang
,
A. G.
Aberle
et al, “
Potential-induced degradation in photovoltaic modules: A critical review
,”
Energy Environ. Sci.
10
(
1
),
43
68
(
2017
).
43.
C.
Li
,
Y.
Wu
,
J.
Poplawsky
,
T. J.
Pennycook
,
N.
Paudel
,
W.
Yin
,
S. J.
Haigh
,
M. P.
Oxley
,
A. R.
Lupini
,
M.
Al-Jassim
et al, “
Grain-boundary-enhanced carrier collection in CdTe solar cells
,”
Phys. Rev. Lett.
112
(
15
),
156103
(
2014
).
44.
J. D.
Major
, “
Grain boundaries in CdTe thin film solar cells: A review
,”
Semicond. Sci. Technol.
31
(
9
),
093001
(
2016
).
45.
S. Y.
Karpov
and
Y. N.
Makarov
, “
Dislocation effect on light emission efficiency in gallium nitride
,”
Appl. Phys. Lett.
81
(
25
),
4721
4723
(
2002
).
46.
A. E.
Chernyakov
,
M. M.
Sobolev
,
V. V.
Ratnikov
,
N. M.
Shmidt
, and
E. B.
Yakimov
, “
Nonradiative recombination dynamics in InGaN/GaN LED defect system
,”
Superlattices Microstruct.
45
(
4–5
),
301
307
(
2009
).
47.
J.
Yu
,
Z.
Hao
,
L.
Li
,
L.
Wang
,
Y.
Luo
,
J.
Wang
,
C.
Sun
,
Y.
Han
,
B.
Xiong
, and
H.
Li
, “
Influence of dislocation density on internal quantum efficiency of GaN-based semiconductors
,”
AIP Adv.
7
(
3
),
035321
(
2017
).
48.
Y.
Zhou
,
L. M.
Herz
,
A. K.
Jen
, and
M.
Saliba
, “
Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells
,”
Nat. Energy
7
(
9
),
794
807
(
2022
).
49.
M. U.
Rothmann
,
W.
Li
,
J.
Etheridge
, and
Y. B.
Cheng
, “
Microstructural characterisations of perovskite solar cells–from grains to interfaces: Techniques, features, and challenges
,”
Adv. Energy Mater.
7
(
23
),
1700912
(
2017
).
50.
M.
Yang
,
Y.
Zhou
,
Y.
Zeng
,
C. S.
Jiang
,
N. P.
Padture
, and
K.
Zhu
, “
Square‐centimeter solution‐processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%
,”
Adv. Mater.
27
(
41
),
6363
6370
(
2015
).
51.
B.
Yang
,
O.
Dyck
,
J.
Poplawsky
,
J.
Keum
,
A.
Puretzky
,
S.
Das
,
I.
Ivanov
,
C.
Rouleau
,
G.
Duscher
,
D.
Geohegan
et al, “
Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions
,”
J. Am. Chem. Soc.
137
(
29
),
9210
9213
(
2015
).
52.
Y.
Fu
,
F.
Meng
,
M. B.
Rowley
,
B. J.
Thompson
,
M. J.
Shearer
,
D.
Ma
,
R. J.
Hamers
,
J. C.
Wright
, and
S.
Jin
, “
Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications
,”
J. Am. Chem. Soc.
137
(
17
),
5810
5818
(
2015
).
53.
M.
Xiao
,
F.
Huang
,
W.
Huang
,
Y.
Dkhissi
,
Y.
Zhu
,
J.
Etheridge
,
A.
Gray-Weale
,
U.
Bach
,
Y. B.
Cheng
, and
L.
Spiccia
, “
A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells
,”
Angew. Chem., Int. Ed.
53
(
37
),
9898
9903
(
2014
).
54.
M. I.
Dar
,
N.
Arora
,
P.
Gao
,
S.
Ahmad
,
M.
Grätzel
, and
M. K.
Nazeeruddin
, “
Investigation regarding the role of chloride in organic–inorganic halide perovskites obtained from chloride containing precursors
,”
Nano Lett.
14
(
12
),
6991
6996
(
2014
).
55.
G.
Wang
,
D.
Li
,
H.-C.
Cheng
,
Y.
Li
,
C.-Y.
Chen
,
A.
Yin
,
Z.
Zhao
,
Z.
Lin
,
H.
Wu
,
Q.
He
et al, “
Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics
,”
Sci. Adv.
1
(
9
),
e1500613
(
2015
).
56.
W.
Hui
,
L.
Chao
,
H.
Lu
,
F.
Xia
,
Q.
Wei
,
Z.
Su
,
T.
Niu
,
L.
Tao
,
B.
Du
,
D.
Li
et al, “
Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity
,”
Science
371
(
6536
),
1359
1364
(
2021
).
57.
B-w
Park
,
H. W.
Kwon
,
Y.
Lee
,
D. Y.
Lee
,
M. G.
Kim
,
G.
Kim
,
K.-J.
Kim
,
Y. K.
Kim
,
J.
Im
,
T. J.
Shin
et al, “
Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells
,”
Nat. Energy
6
(
4
),
419
428
(
2021
).
58.
L.
Niu
,
X.
Liu
,
C.
Cong
,
C.
Wu
,
D.
Wu
,
T. R.
Chang
,
H.
Wang
,
Q.
Zeng
,
J.
Zhou
,
X.
Wang
et al, “
Controlled synthesis of organic/inorganic van der Waals solid for tunable light–matter interactions
,”
Adv. Mater.
27
(
47
),
7800
7808
(
2015
).
59.
K.
Song
,
J.
Liu
,
D.
Qi
,
N.
Lu
, and
W.
Qin
, “
Unravelling structure and formation mechanisms of Ruddlesden–Popper-phase-like nanodomains in inorganic lead halide perovskites
,”
J. Phys. Chem. Lett.
13
,
2117
2123
(
2022
).
60.
S.
Zhang
,
L.
Zhang
,
Q.
Tian
,
X.
Gu
,
Y.
Du
,
K.
Zhao
, and
S.
Liu
, “
Spontaneous construction of multidimensional heterostructure enables enhanced hole extraction for inorganic perovskite solar cells to exceed 20% efficiency
,”
Adv. Energy Mater.
12
(
1
),
2103007
(
2022
).
61.
S.
Chen
,
C.
Wu
,
Q.
Shang
,
Z.
Liu
,
C.
He
,
W.
Zhou
,
J.
Zhao
,
J.
Zhang
,
J.
Qi
,
Q.
Zhang
et al, “
Atomic structure and electrical/ionic activity of antiphase boundary in CH3NH3PbI3
,”
Acta Mater.
234
,
118010
(
2022
).
62.
S.
Cai
,
J.
Dai
,
Z.
Shao
,
M. U.
Rothmann
,
Y.
Jia
,
C.
Gao
,
M.
Hao
,
S.
Pang
,
P.
Wang
,
S. P.
Lau
et al, “
Atomically resolved electrically active intragrain interfaces in perovskite semiconductors
,”
J. Am. Chem. Soc.
144
(
4
),
1910
1920
(
2022
).
63.
S.
Chen
,
C.
Wu
,
B.
Han
,
Z.
Liu
,
Z.
Mi
,
W.
Hao
,
J.
Zhao
,
X.
Wang
,
Q.
Zhang
,
K.
Liu
et al, “
Atomic-scale imaging of CH3NH3PbI3 structure and its decomposition pathway
,”
Nat. Commun.
12
(
1
),
5516
(
2021
).
64.
E. M.
Tennyson
,
T. A. S.
Doherty
, and
S. D.
Stranks
, “
Heterogeneity at multiple length scales in halide perovskite semiconductors
,”
Nat. Rev. Mater.
4
(
9
),
573
587
(
2019
).
65.
F. U.
Kosasih
and
C.
Ducati
, “
Characterising degradation of perovskite solar cells through in-situ and operando electron microscopy
,”
Nano Energy
47
,
243
256
(
2018
).
66.
Z.
Ning
,
X.
Gong
,
R.
Comin
,
G.
Walters
,
F.
Fan
,
O.
Voznyy
,
E.
Yassitepe
,
A.
Buin
,
S.
Hoogland
, and
E. H.
Sargent
, “
Quantum-dot-in-perovskite solids
,”
Nature
523
(
7560
),
324
328
(
2015
).
67.
M.
Anaya
,
A.
Rubino
,
T. C.
Rojas
,
J. F.
Galisteo‐López
,
M. E.
Calvo
, and
H.
Míguez
, “
Strong quantum confinement and fast photoemission activation in CH3NH3PbI3 perovskite nanocrystals grown within periodically mesostructured films
,”
Adv. Opt. Mater.
5
(
8
),
1601087
(
2017
).
68.
M.
Liu
,
Y.
Chen
,
C.-S.
Tan
,
R.
Quintero-Bermudez
,
A. H.
Proppe
,
R.
Munir
,
H.
Tan
,
O.
Voznyy
,
B.
Scheffel
,
G.
Walters
et al, “
Lattice anchoring stabilizes solution-processed semiconductors
,”
Nature
570
(
7759
),
96
101
(
2019
).
69.
T. W.
Kim
and
T.
Kondo
, “
Direction-selective electron beam damage to CH3NH3PbI3 based on crystallographic anisotropy
,”
Appl. Phys. Express
13
(
9
),
091001
(
2020
).
70.
T.
Kollek
,
D.
Gruber
,
J.
Gehring
,
E.
Zimmermann
,
L.
Schmidt‐Mende
, and
S.
Polarz
, “
Porous and shape‐anisotropic single crystals of the semiconductor perovskite CH3NH3PbI3 from a single‐source precursor
,”
Angew. Chem., Int. Ed.
54
(
4
),
1341
1346
(
2015
).
71.
H.
Zhu
,
Y.
Fu
,
F.
Meng
,
X.
Wu
,
Z.
Gong
,
Q.
Ding
,
M. V.
Gustafsson
,
M. T.
Trinh
,
S.
Jin
, and
X. Y.
Zhu
, “
Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors
,”
Nat. Mater.
14
(
6
),
636
642
(
2015
).
72.
D.
Li
,
G.
Wang
,
H.-C.
Cheng
,
C.-Y.
Chen
,
H.
Wu
,
Y.
Liu
,
Y.
Huang
, and
X.
Duan
, “
Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals
,”
Nat. Commun.
7
(
1
),
11330
(
2016
).
73.
D.-Y.
Son
,
J.-W.
Lee
,
Y. J.
Choi
,
I.-H.
Jang
,
S.
Lee
,
P. J.
Yoo
,
H.
Shin
,
N.
Ahn
,
M.
Choi
, and
D.
Kim
, “
Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells
,”
Nat. Energy
1
(
7
),
16081
(
2016
).
74.
F.
Ji
,
S.
Pang
,
L.
Zhang
,
Y.
Zong
,
G.
Cui
,
N. P.
Padture
, and
Y.
Zhou
, “
Simultaneous evolution of uniaxially oriented grains and ultralow-density grain-boundary network in CH3NH3PbI3 perovskite thin films mediated by precursor phase metastability
,”
ACS Energy Lett.
2
(
12
),
2727
2733
(
2017
).
75.
B.
Conings
,
J.
Drijkoningen
,
N.
Gauquelin
,
A.
Babayigit
,
J.
D'Haen
,
L.
D'Olieslaeger
,
A.
Ethirajan
,
J.
Verbeeck
,
J.
Manca
,
E.
Mosconi
et al, “
Intrinsic thermal instability of methylammonium lead trihalide perovskite
,”
Adv. Energy Mater.
5
(
15
),
1500477
(
2015
).
76.
Y.
Li
,
W.
Zhou
,
Y.
Li
,
W.
Huang
,
Z.
Zhang
,
G.
Chen
,
H.
Wang
,
G.-H.
Wu
,
N.
Rolston
,
R.
Vila
et al, “
Unravelling degradation mechanisms and atomic structure of organic-inorganic halide perovskites by cryo-EM
,”
Joule
3
(
11
),
2854
2866
(
2019
).
77.
D. B.
Williams
and
C. B.
Carter
, in
Transmission Electron Microscopy
(
Springer
,
2009
), pp.
53
71
.
78.
Q.
Chen
,
C.
Dwyer
,
G.
Sheng
,
C.
Zhu
,
X.
Li
,
C.
Zheng
, and
Y.
Zhu
, “
Imaging beam‐sensitive materials by electron microscopy
,”
Adv. Mater.
32
(
16
),
1907619
(
2020
).
79.
R. F.
Egerton
, “
Radiation damage to organic and inorganic specimens in the TEM
,”
Micron
119
,
72
87
(
2019
).
80.
R. F.
Egerton
,
P.
Li
, and
M.
Malac
, “
Radiation damage in the TEM and SEM
,”
Micron
35
(
6
),
399
409
(
2004
).
81.
N. Q.
Lam
,
P. R.
Okamoto
, and
M.
Li
, “
Disorder-induced amorphization
,”
J. Nucl. Mater.
251
,
89
97
(
1997
).
82.
M. I.
Buckett
,
J.
Strane
,
D. E.
Luzzi
,
J. P.
Zhang
,
B. W.
Wessels
, and
L. D.
Marks
, “
Electron irradiation damage in oxides
,”
Ultramicroscopy
29
(
1–4
),
217
227
(
1989
).
83.
J. P.
O'Neill
,
I. M.
Ross
,
A. G.
Cullis
,
T.
Wang
, and
P. J.
Parbrook
, “
Electron-beam-induced segregation in InGaN/GaN multiple-quantum wells
,”
Appl. Phys. Lett.
83
(
10
),
1965
1967
(
2003
).
84.
J.-M.
Zuo
,
R.
Yuan
,
Y.-T.
Shao
,
H.-W.
Hsiao
,
S.
Pidaparthy
,
Y.
Hu
,
Q.
Yang
, and
J.
Zhang
, “
Data-driven electron microscopy: Electron diffraction imaging of materials structural properties
,”
Microscopy
71
,
i116
i131
(
2022
).
85.
N.
Jiang
, “
Electron beam damage in oxides: A review
,”
Rep. Prog. Phys.
79
(
1
),
016501
(
2015
).
86.
L. W.
Hobbs
,
F. W.
Clinard
, Jr.
,
S. J.
Zinkle
, and
R. C.
Ewing
, “
Radiation effects in ceramics
,”
J. Nucl. Mater.
216
,
291
321
(
1994
).
87.
A.
Hashimoto
,
K.
Suenaga
,
A.
Gloter
,
K.
Urita
, and
S.
Iijima
, “
Direct evidence for atomic defects in graphene layers
,”
Nature
430
(
7002
),
870
873
(
2004
).
88.
K.
Suenaga
,
H.
Wakabayashi
,
M.
Koshino
,
Y.
Sato
,
K.
Urita
, and
S.
Iijima
, “
Imaging active topological defects in carbon nanotubes
,”
Nat. Nanotechnol.
2
(
6
),
358
360
(
2007
).
89.
M.
Kühne
,
F.
Börrnert
,
S.
Fecher
,
M.
Ghorbani-Asl
,
J.
Biskupek
,
D.
Samuelis
,
A. V.
Krasheninnikov
,
U.
Kaiser
, and
J. H.
Smet
, “
Reversible superdense ordering of lithium between two graphene sheets
,”
Nature
564
(
7735
),
234
239
(
2018
).
90.
Z.
Dang
,
J.
Shamsi
,
F.
Palazon
,
M.
Imran
,
Q. A.
Akkerman
,
S.
Park
,
G.
Bertoni
,
M.
Prato
,
R.
Brescia
, and
L.
Manna
, “
In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals
,”
ACS Nano
11
(
2
),
2124
2132
(
2017
).
91.
F.
Li
,
Y.
Liu
,
H.
Wang
,
Q.
Zhan
,
Q.
Liu
, and
Z.
Xia
, “
Postsynthetic surface trap removal of CsPbX3 (X = Cl, Br, or I) quantum dots via a ZnX2/hexane solution toward an enhanced luminescence quantum yield
,”
Chem. Mater.
30
(
23
),
8546
8554
(
2018
).
92.
S.
Chen
,
Y.
Zhang
,
X.
Zhang
,
J.
Zhao
,
Z.
Zhao
,
X.
Su
,
Z.
Hua
,
J.
Zhang
,
J.
Cao
,
J.
Feng
et al, “
General decomposition pathway of organic–inorganic hybrid perovskites through an intermediate superstructure and its suppression mechanism
,”
Adv. Mater.
32
(
29
),
2001107
(
2020
).
93.
Z.
Cai
,
S.
Chen
, and
L.-W.
Wang
, “
Dissociation path competition of radiolysis ionization-induced molecule damage under electron beam illumination
,”
Chem. Sci.
10
(
46
),
10706
10715
(
2019
).
94.
M.
Fronzi
,
J.
Bishop
,
A. A.
Martin
,
M. H. N.
Assadi
,
B.
Regan
,
C.
Stampfl
,
I.
Aharonovich
,
M. J.
Ford
, and
M.
Toth
, “
Role of knock-on in electron beam induced etching of diamond
,”
Carbon
164
,
51
58
(
2020
).
95.
N. I.
Kato
, “
Reducing focused ion beam damage to transmission electron microscopy samples
,”
J. Electron Microsc.
53
(
5
),
451
458
(
2004
).
96.
A.
Alberti
,
I.
Deretzis
,
G.
Pellegrino
,
C.
Bongiorno
,
E.
Smecca
,
G.
Mannino
,
F.
Giannazzo
,
G. G.
Condorelli
,
N.
Sakai
,
T.
Miyasaka
et al, “
Similar structural dynamics for the degradation of CH3NH3PbI3 in air and in vacuum
,”
ChemPhysChem
16
(
14
),
3064
3071
(
2015
).
97.
Z.
Fan
,
H.
Xiao
,
Y.
Wang
,
Z.
Zhao
,
Z.
Lin
,
H.-C.
Cheng
,
S.-J.
Lee
,
G.
Wang
,
Z.
Feng
,
W. A.
Goddard
III
et al, “
Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates
,”
Joule
1
(
3
),
548
562
(
2017
).
98.
S.
Chen
,
X.
Zhang
,
J.
Zhao
,
Y.
Zhang
,
G.
Kong
,
Q.
Li
,
N.
Li
,
Y.
Yu
,
N.
Xu
,
J.
Zhang
et al, “
Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite
,”
Nat. Commun.
9
(
1
),
4807
(
2018
).
99.
J.
Haruyama
,
K.
Sodeyama
,
L.
Han
, and
Y.
Tateyama
, “
First-principles study of ion diffusion in perovskite solar cell sensitizers
,”
J. Am. Chem. Soc.
137
(
32
),
10048
10051
(
2015
).
100.
D.
Yang
,
W.
Ming
,
H.
Shi
,
L.
Zhang
, and
M.-H.
Du
, “
Fast diffusion of native defects and impurities in perovskite solar cell material CH3NH3PbI3
,”
Chem. Mater.
28
(
12
),
4349
4357
(
2016
).
101.
C.
Eames
,
J. M.
Frost
,
P. R.
Barnes
,
B. C.
O'regan
,
A.
Walsh
, and
M. S.
Islam
, “
Ionic transport in hybrid lead iodide perovskite solar cells
,”
Nat. Commun.
6
(
1
),
7497
(
2015
).
102.
J. L.
Minns
,
P.
Zajdel
,
D.
Chernyshov
,
W.
Van Beek
, and
M. A.
Green
, “
Structure and interstitial iodide migration in hybrid perovskite methylammonium lead iodide
,”
Nat. Commun.
8
(
1
),
15152
(
2017
).
103.
Z.
Cai
,
Y.
Wu
, and
S.
Chen
, “
Energy-dependent knock-on damage of organic–inorganic hybrid perovskites under electron beam irradiation: First-principles insights
,”
Appl. Phys. Lett.
119
(
12
),
123901
(
2021
).
104.
C.
Xiao
,
Z.
Li
,
H.
Guthrey
,
J.
Moseley
,
Y.
Yang
,
S.
Wozny
,
H.
Moutinho
,
B.
To
,
J. J.
Berry
,
B.
Gorman
et al, “
Mechanisms of electron-beam-induced damage in perovskite thin films revealed by cathodoluminescence spectroscopy
,”
J. Phys. Chem. C
119
(
48
),
26904
26911
(
2015
).
105.
A. R.
Milosavljević
,
W.
Huang
,
S.
Sadhu
, and
S.
Ptasinska
, “
Low‐energy electron‐induced transformations in organolead halide perovskite
,”
Angew. Chem., Int. Ed.
55
(
34
),
10083
10087
(
2016
).
106.
S.
Chen
,
Y.
Zhang
,
J.
Zhao
,
Z.
Mi
,
J.
Zhang
,
J.
Cao
,
J.
Feng
,
G.
Zhang
,
J.
Qi
,
J.
Li
et al, “
Transmission electron microscopy of organic-inorganic hybrid perovskites: Myths and truths
,”
Sci. Bull.
65
(
19
),
1643
1649
(
2020
).
107.
Y.
Zhou
,
A. L.
Vasiliev
,
W.
Wu
,
M.
Yang
,
S.
Pang
,
K.
Zhu
, and
N. P.
Padture
, “
Crystal morphologies of organolead trihalide in mesoscopic/planar perovskite solar cells
,”
J. Phys. Chem. Lett.
6
(
12
),
2292
2297
(
2015
).
108.
N.
Klein-Kedem
,
D.
Cahen
, and
G.
Hodes
, “
Effects of light and electron beam irradiation on halide perovskites and their solar cells
,”
Acc. Chem. Res.
49
(
2
),
347
354
(
2016
).
109.
R. F.
Egerton
, “
Control of radiation damage in the TEM
,”
Ultramicroscopy
127
,
100
108
(
2013
).
110.
L.
Gao
,
K.
Zeng
,
J.
Guo
,
C.
Ge
,
J.
Du
,
Y.
Zhao
,
C.
Chen
,
H.
Deng
,
Y.
He
,
H.
Song
et al, “
Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity
,”
Nano Lett.
16
(
12
),
7446
7454
(
2016
).
111.
Y.-H.
Deng
, “
Common phase and structure misidentifications in high-resolution TEM characterization of perovskite materials
,”
Condens. Matter
6
(
1
),
1
(
2020
).
112.
M.
Long
,
T.
Zhang
,
H.
Zhu
,
G.
Li
,
F.
Wang
,
W.
Guo
,
Y.
Chai
,
W.
Chen
,
Q.
Li
,
K. S.
Wong
et al, “
Textured CH3NH3PbI3 thin film with enhanced stability for high performance perovskite solar cells
,”
Nano Energy
33
,
485
496
(
2017
).
113.
T. W.
Kim
,
N.
Shibayama
,
L.
Cojocaru
,
S.
Uchida
,
T.
Kondo
, and
H.
Segawa
, “
Real‐time in situ observation of microstructural change in organometal halide perovskite induced by thermal degradation
,”
Adv. Funct. Mater.
28
(
42
),
1804039
(
2018
).
114.
A. B.
Wong
,
M.
Lai
,
S. W.
Eaton
,
Y.
Yu
,
E.
Lin
,
L.
Dou
,
A.
Fu
, and
P.
Yang
, “
Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for light-emitting diodes
,”
Nano Lett.
15
(
8
),
5519
5524
(
2015
).
115.
W.
Zhang
,
L.
Peng
,
J.
Liu
,
A.
Tang
,
J. S.
Hu
,
J.
Yao
, and
Y. S.
Zhao
, “
Controlling the cavity structures of two‐photon‐pumped perovskite microlasers
,”
Adv. Mater.
28
(
21
),
4040
4046
(
2016
).
116.
J.
Wang
,
S. P.
Senanayak
,
J.
Liu
,
Y.
Hu
,
Y.
Shi
,
Z.
Li
,
C.
Zhang
,
B.
Yang
,
L.
Jiang
,
D.
Di
et al, “
Investigation of electrode electrochemical reactions in CH3NH3PbBr3 perovskite single‐crystal field‐effect transistors
,”
Adv. Mater.
31
(
35
),
1902618
(
2019
).
117.
X.-G.
Zhou
,
C.-Q.
Yang
,
X.
Sang
,
W.
Li
,
L.
Wang
,
Z.-W.
Yin
,
J.-R.
Han
,
Y.
Li
,
X.
Ke
,
Z.-Y.
Hu
et al, “
Probing the electron beam-induced structural evolution of halide perovskite thin films by scanning transmission electron microscopy
,”
J. Phys. Chem. C
125
(
19
),
10786
10794
(
2021
).
118.
R.
Egerton
,
R.
McLeod
,
F.
Wang
, and
M.
Malac
, “
Basic questions related to electron-induced sputtering in the TEM
,”
Ultramicroscopy
110
(
8
),
991
997
(
2010
).
119.
W.
Siemons
,
C.
Beekman
,
J. D.
Fowlkes
,
N.
Balke
,
J. Z.
Tischler
,
R.
Xu
,
W.
Liu
,
C. M.
Gonzales
,
J. D.
Budai
, and
H. M.
Christen
, “
Focused-ion-beam induced damage in thin films of complex oxide BiFeO3
,”
APL Mater.
2
(
2
),
022109
(
2014
).
120.
N. D.
Bassim
,
B. T.
De Gregorio
,
A. L. D.
Kilcoyne
,
K.
Scott
,
T.
Chou
,
S.
Wirick
,
G.
Cody
, and
R. M.
Stroud
, “
Minimizing damage during FIB sample preparation of soft materials
,”
J. Microsc.
245
(
3
),
288
301
(
2012
).
121.
N.
Shukla
,
S. K.
Tripathi
,
A.
Banerjee
,
A. S. V.
Ramana
,
N. S.
Rajput
, and
V. N.
Kulkarni
, “
Study of temperature rise during focused Ga ion beam irradiation using nanothermo-probe
,”
Appl. Surf. Sci.
256
(
2
),
475
479
(
2009
).
122.
F. C.
Tabak
,
E. C. M.
Disseldorp
,
G. H.
Wortel
,
A. J.
Katan
,
M. B. S.
Hesselberth
,
T. H.
Oosterkamp
,
J. W. M.
Frenken
, and
W. M.
Van Spengen
, “
MEMS-based fast scanning probe microscopes
,”
Ultramicroscopy
110
(
6
),
599
604
(
2010
).
123.
M.
Marko
,
C.
Hsieh
,
R.
Schalek
,
J.
Frank
, and
C.
Mannella
, “
Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy
,”
Nat. Methods
4
(
3
),
215
217
(
2007
).
124.
N. A.
Rivas
,
A.
Babayigit
,
B.
Conings
,
T.
Schwarz
,
A.
Sturm
,
A.
Garzón Manjón
,
O.
Cojocaru-Mirédin
,
B.
Gault
, and
F. U.
Renner
, “
Cryo-focused ion beam preparation of perovskite based solar cells for atom probe tomography
,”
PLoS One
15
(
1
),
e0227920
(
2020
).
125.
J.
Zhou
,
N.
Wei
,
D.
Zhang
,
Y.
Wang
,
J.
Li
,
X.
Zheng
,
J.
Wang
,
A. Y.
Alsalloum
,
L.
Liu
,
O. M.
Bakr
et al, “
Cryogenic focused ion beam enables atomic-resolution imaging of local structures in highly sensitive bulk crystals and devices
,”
J. Am. Chem. Soc.
144
(
7
),
3182
3191
(
2022
).
126.
A. M.
Glazer
,. “
The classification of tilted octahedra in perovskites
,”
Acta Crystallogr., Sect. B
28
(
11
),
3384
3392
(
1972
).
127.
T. A.
Doherty
,
S.
Nagane
,
D. J.
Kubicki
,
Y.-K.
Jung
,
D. N.
Johnstone
,
A. N.
Iqbal
,
D.
Guo
,
K.
Frohna
,
M.
Danaie
,
E. M.
Tennyson
et al, “
Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases
,”
Science
374
(
6575
),
1598
1605
(
2021
).
128.
D. I.
Woodward
and
I. M.
Reaney
, “
Electron diffraction of tilted perovskites
,”
Acta Crystallogr., Sect. B
61
(
4
),
387
399
(
2005
).
129.
K.
Song
,
L.
Liu
,
D.
Zhang
,
M. P.
Hautzinger
,
S.
Jin
, and
Y.
Han
, “
Atomic‐resolution imaging of halide perovskites using electron microscopy
,”
Adv. Energy Mater.
10
(
26
),
1904006
(
2020
).
130.
Y.-H.
Deng
and
L. G.
Nest
, “
Analysis of misidentifications in TEM characterisation of organic-inorganic hybrid perovskite material
,”
J. Microsc.
282
,
195
204
(
2021
).
131.
R.
Fernandez-Leiro
and
S. H. W.
Scheres
, “
Unravelling biological macromolecules with cryo-electron microscopy
,”
Nature
537
(
7620
),
339
346
(
2016
).
132.
D.
Zhang
,
Y.
Zhu
,
L.
Liu
,
X.
Ying
,
C.-E.
Hsiung
,
R.
Sougrat
,
K.
Li
, and
Y.
Han
, “
Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials
,”
Science
359
(
6376
),
675
679
(
2018
).
133.
I.
Spanopoulos
,
I.
Hadar
,
W.
Ke
,
Q.
Tu
,
M.
Chen
,
H.
Tsai
,
Y.
He
,
G.
Shekhawat
,
V. P.
Dravid
,
M. R.
Wasielewski
et al, “
Uniaxial expansion of the 2D Ruddlesden–Popper perovskite family for improved environmental stability
,”
J. Am. Chem. Soc.
141
(
13
),
5518
5534
(
2019
).
134.
I.
Lazić
,
E. G. T.
Bosch
, and
S.
Lazar
, “
Phase contrast STEM for thin samples: Integrated differential phase contrast
,”
Ultramicroscopy
160
,
265
280
(
2016
).
135.
Y.
Lin
,
M.
Zhou
,
X.
Tai
,
H.
Li
,
X.
Han
, and
J.
Yu
, “
Analytical transmission electron microscopy for emerging advanced materials
,”
Matter
4
(
7
),
2309
2339
(
2021
).
136.
B.
Shen
,
X.
Chen
,
K.
Shen
,
H.
Xiong
, and
F.
Wei
, “
Imaging the node-linker coordination in the bulk and local structures of metal-organic frameworks
,”
Nat. Commun.
11
(
1
),
2692
(
2020
).
137.
N.
Wang
,
J.
Li
,
W.
Sun
,
Y.
Hou
,
L.
Zhang
,
X.
Hu
,
Y.
Yang
,
X.
Chen
,
C.
Chen
,
B.
Chen
et al, “
Rational design of zinc/zeolite catalyst: selective formation of p‐xylene from methanol to aromatics reaction
,”
Angew. Chem., Int. Ed.
134
,
e202114786
(
2022
).
138.
T.
Bu
,
J.
Li
,
H.
Li
,
C.
Tian
,
J.
Su
,
G.
Tong
,
L. K.
Ono
,
C.
Wang
,
Z.
Lin
,
N.
Chai
et al, “
Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules
,”
Science
372
(
6548
),
1327
1332
(
2021
).
139.
W. J.
Habraken
,
J.
Tao
,
L. J.
Brylka
,
H.
Friedrich
,
L.
Bertinetti
,
A. S.
Schenk
,
A.
Verch
,
V.
Dmitrovic
,
P. H. H.
Bomans
,
P. M.
Frederik
et al, “
Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate
,”
Nat. Commun.
4
(
1
),
1507
(
2013
).
140.
S.
Zhong
and
D. J.
Pochan
, “
Cryogenic transmission electron microscopy for direct observation of polymer and small-molecule materials and structures in solution
,”
Polym. Rev.
50
(
3
),
287
320
(
2010
).
141.
J.
Tian
,
Z.-Y.
Xu
,
D.-W.
Zhang
,
H.
Wang
,
S.-H.
Xie
,
D.-W.
Xu
,
Y.-H.
Ren
,
H.
Wang
,
Y.
Liu
, and
Z.-T.
Li
, “
Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production
,”
Nat. Commun.
7
(
1
),
11580
(
2016
).
142.
M. J.
Zachman
,
Z.
Tu
,
S.
Choudhury
,
L. A.
Archer
, and
L. F.
Kourkoutis
, “
Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries
,”
Nature
560
(
7718
),
345
349
(
2018
).
143.
Y.
Li
,
W.
Huang
,
Y.
Li
,
W.
Chiu
, and
Y.
Cui
, “
Opportunities for cryogenic electron microscopy in materials science and nanoscience
,”
ACS Nano
14
(
8
),
9263
9276
(
2020
).
144.
A.
Meents
,
S.
Gutmann
,
A.
Wagner
, and
C.
Schulze-Briese
, “
Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures
,”
Proc. Natl. Acad. Sci. U. S. A.
107
(
3
),
1094
1099
(
2010
).
145.
P. S.
Whitfield
,
N.
Herron
,
W. E.
Guise
,
K.
Page
,
Y. Q.
Cheng
,
I.
Milas
, and
M. K.
Crawford
, “
Structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide
,”
Sci. Rep.
6
(
1
),
35685
(
2016
).
146.
Y.
Zhu
,
Z.
Gui
,
Q.
Wang
,
F.
Meng
,
S.
Feng
,
B.
Han
,
P.
Wang
,
L.
Huang
,
H.-L.
Wang
, and
M.
Gu
, “
Direct atomic scale characterization of the surface structure and planar defects in the organic-inorganic hybrid CH3NH3PbI3 by Cryo-TEM
,”
Nano Energy
73
,
104820
(
2020
).
147.
B.
Huang
,
Z.
Liu
,
C.
Wu
,
Y.
Zhang
,
J.
Zhao
,
X.
Wang
, and
J.
Li
, “
Polar or nonpolar? That is not the question for perovskite solar cells
,”
Nat. Sci. Rev.
8
(
8
),
nwab094
(
2021
).
148.
P.
Gao
,
A.
Kumamoto
,
R.
Ishikawa
,
N.
Lugg
,
N.
Shibata
, and
Y.
Ikuhara
, “
Picometer-scale atom position analysis in annular bright-field STEM imaging
,”
Ultramicroscopy
184
,
177
187
(
2018
).
149.
B.
Chen
,
T.
Li
,
Q.
Dong
,
E.
Mosconi
,
J.
Song
,
Z.
Chen
,
Y.
Deng
,
Y.
Liu
,
S.
Ducharme
,
A.
Gruverman
et al, “
Large electrostrictive response in lead halide perovskites
,”
Nat. Mater.
17
(
11
),
1020
1026
(
2018
).
150.
J.
Chen
,
T.
Shi
,
X.
Li
,
B.
Zhou
,
H.
Cao
, and
Y.
Wang
, “
Effect of crystal structures on the stability of CH3NH3PbI3 under humidity environment
,”
Sol. Energy
136
,
470
474
(
2016
).
151.
Y.
Lu
,
W.-J.
Yin
,
K.-L.
Peng
,
K.
Wang
,
Q.
Hu
,
A.
Selloni
,
F.-R.
Chen
,
L.-M.
Liu
, and
M.-L.
Sui
, “
Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2
,”
Nat. Commun.
9
(
1
),
2752
(
2018
).
152.
G.
Divitini
,
S.
Cacovich
,
F.
Matteocci
,
L.
Cinà
,
A.
Di Carlo
, and
C.
Ducati
, “
In situ observation of heat-induced degradation of perovskite solar cells
,”
Nat. Energy
1
(
2
),
15012
(
2016
).
You do not currently have access to this content.