The development of big data and artificial intelligence technology is increasing the need for electronic devices to become smaller, cheaper, and more energy efficient, while also having enhanced functionalities. However, the miniaturization of silicon chip technology is approaching its Moore's law (i.e., physical) limits. Thus, the application of three-dimensional integrated circuits (3D ICs), in which multiple chips are stacked vertically, provides the most achievable approach for the advancement of post-Moore electronics. In the recent decade, various key techniques have been developed for stacking chips vertically such as through-silicon vias, micro-bumps, low melting point tin–bismuth solders, redistribution layers, and copper-to-copper direct bonding. However, the need for high current densities in these structures results in severe Joule heating, making electromigration (EM) an increasingly challenging problem. This paper reviews studies on EM failures, mechanisms, and potential solutions for the key components of 3D IC packaging.

1.
K. N.
Tu
, “
Reliability challenges in 3D IC packaging technology
,”
Microelectron. Reliab.
51
(
3
),
517
523
(
2011
).
2.
C. T.
Ko
and
K. N.
Chen
, “
Reliability of key technologies in 3D integration
,”
Microelectron. Reliab.
53
(
1
),
7
16
(
2013
).
3.
K. N.
Tu
and
Y.
Liu
, “
Recent advances on kinetic analysis of solder joint reactions in 3D IC packaging technology
,”
Mater. Sci. Eng.: R: Rep.
136
,
1
12
(
2019
).
4.
W. W.
Shen
and
K. N.
Chen
, “
Three-dimensional integrated circuit (3D IC) key technology: Through-silicon via (TSV)
,”
Nanoscale Res. Lett.
12
(
1
),
56
(
2017
).
5.
A.
Agrawal
,
S.
Huang
,
G.
Gao
,
L.
Wang
,
J.
Delacruz
, and
L.
Mirkarimi
, “
Thermal and electrical performance of direct bond interconnect technology for 2.5D and 3D integrated circuits
,” in
Proceedings of the 67th Electronic Components and Technology Conference (ECTC)
(
IEEE
,
2017
), pp.
989
998
.
6.
Y.
Liu
,
Y. C.
Chu
, and
K. N.
Tu
, “
Scaling effect of interfacial reaction on intermetallic compound formation in Sn/Cu pillar down to 1 μm diameter
,”
Acta Mater.
117
,
146
152
(
2016
).
7.
M. L.
Huang
and
F.
Yang
, “
Size effect model on kinetics of interfacial reaction between Sn-XAg-YCu solders and Cu substrate
,”
Sci. Rep.
4
(
1
),
9
(
2014
).
8.
J. U.
Knickerbocker
,
P. S.
Andry
,
B.
Dang
,
R. R.
Horton
,
M. J.
Interrante
,
C. S.
Patel
,
R. J.
Polastre
,
K.
Sakuma
,
R.
Sirdeshmukh
,
E. J.
Sprogis
,
A. M.
Stephens
,
A. W.
Topol
,
C. K.
Tsang
,
B. C.
Webb
, and
S. L.
Wright
, “
Three-dimensional silicon integration
,”
IBM J. Res. Dev.
52
(
6
),
553
569
(
2008
).
9.
T.
Suga
,
Y.
Fumio
, and
N.
Hosoda
, “
A new approach to Cu-Cu direct bump bonding
,” in
Proceedings of the IEMT/IMC Symposium on 1st Joint International Electronic Manufacturing Symposium and the International Microelectronics Conference
(
IEEE
,
1997
), pp.
146
151
.
10.
C. S.
Tan
,
D. F.
Lim
,
S. G.
Singh
,
S. K.
Goulet
, and
M.
Bergkvist
, “
Cu-Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol
,”
Appl. Phys. Lett.
95
(
19
),
192108
(
2009
).
11.
Q. Y.
Tong
, “
Room temperature metal direct bonding
,”
Appl. Phys. Lett.
89
(
18
),
182101
(
2006
).
12.
J. Y.
Juang
,
K. C.
Shie
,
P. N.
Hsu
,
Y. J.
Li
,
K. N.
Tu
, and
C.
Chen
, “
Low-resistance and high-strength copper direct bonding in no-vacuum ambient using highly (111)-oriented nano-twinned copper
,” in
Proceedings of the 69th Electronic Components and Technology Conference (ECTC)
(
IEEE
,
2019
), pp.
642
647
.
13.
L.
Wang
, “
Direct bond interconnect (DBI®) for fine-pitch bonding in 3D and 2.5D integrated circuits
,” in
Proceedings of the Pan Pacific Microelectronics Symposium (Pan Pacific)
(
IEEE
,
2017
), pp.
8
13
.
14.
A.
Jouve
,
V.
Balan
,
N.
Bresson
,
C.
Euvrard-Colnat
,
F.
Fournel
,
Y.
Exbrayat
,
G.
Mauguen
,
M.
Abdel Sater
,
C.
Beitia
,
L.
Arnaud
,
S.
Cheramy
,
S.
Lhostis
,
A.
Farcy
,
S.
Guillaumet
, and
S.
Mermoz
, “
1 μm pitch direct hybrid bonding with <300 nm wafer-to-wafer overlay accuracy
,” in
Proceedings of the IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)
(
IEEE
,
2018
), pp.
1
2
.
15.
S. W.
Kim
,
F.
Fodor
,
N.
Heylen
,
S.
Iacovo
,
J.
De Vos
,
A.
Miller
,
G.
Beyer
, and
E.
Beyne
, “
Novel Cu/SiCN surface topography control for 1 μm pitch hybrid wafer-to-wafer bonding
,” in
Proceedings of the 70th Electronic Components and Technology Conference (ECTC)
(
IEEE
,
2020
), pp.
216
222
.
16.
T. H.
Kim
,
M. M. R.
Howlader
,
T.
Itoh
, and
T.
Suga
, “
Room temperature Cu–Cu direct bonding using surface activated bonding method
,”
J. Vac. Sci. Technol. A
21
(
2
),
449
453
(
2003
).
17.
L.
Peng
,
J.
Fan
,
H. Y.
Li
,
S.
Gao
, and
C. S.
Tan
, “
Simultaneous formation of electrical connection, mechanical support and hermetic seal with bump-less Cu-Cu bonding for 3D wafer stacking
,” in
Proceedings of Technical Program of 2012 VLSI Technology, System and Application
(
IEEE
,
2012
), pp.
26
27
.
18.
J.
Lee
,
D. M.
Fernandez
,
M.
Paing
,
Y. C.
Yeo
, and
S.
Gao
, “
Electroless Ni plating to compensate for bump height variation in Cu-Cu 3-D packaging
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
2
(
6
),
964
970
(
2012
).
19.
Y. H.
Kuo
,
D. P.
Tran
,
J. J.
Ong
,
K. N.
Tu
, and
C.
Chen
, “
Hybrid Cu-to-Cu bonding with nano-twinned Cu and non-conductive paste
,”
J. Mater. Res. Technol.
18
,
859
871
(
2022
).
20.
C. F.
Tseng
,
C. S.
Liu
,
C. H.
Wu
, and
D.
Yu
, “
InFO (wafer level integrated fan-out) technology
,” in
Proceedings of the 66th Electronic Components and Technology Conference (ECTC)
(
IEEE
,
2016
), pp.
1
6
.
21.
I. H.
Tseng
,
P. N.
Hsu
,
T. L.
Lu
,
K. N.
Tu
, and
C.
Chen
, “
Electromigration failure mechanisms of ⟨1 1 1⟩-oriented nanotwinned Cu redistribution lines with polyimide capping
,”
Results Phys.
24
,
104154
(
2021
).
22.
C. L.
Liang
,
Y. S.
Lin
,
C. L.
Kao
,
D.
Tarng
,
S. B.
Wang
,
Y. C.
Hung
,
G. T.
Lin
, and
K. L.
Lin
, “
Electromigration reliability of advanced high-density fan-out packaging with fine-pitch 2-/2-μm L/S Cu redistribution lines
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
10
(
9
),
1438
1445
(
2020
).
23.
H.
Kuisma
,
A.
Cardoso
, and
T.
Braun
, “
Fan-out wafer-level packaging as packaging technology for MEMS
,”
Handbook of Silicon Based MEMS Materials and Technologies
,
3rd ed.
(
Elsevier
,
2020
), pp.
707
720
.
24.
T.
Frank
,
S.
Moreau
,
C.
Chappaz
,
L.
Arnaud
,
P.
Leduc
,
A.
Thuaire
, and
L.
Anghel
, “
Electromigration behavior of 3D-IC TSV interconnects
,” in
Proceedings of the 62nd Electronic Components and Technology Conference
(
IEEE
,
2012
), Vol.
3
, No.
1
, pp.
326
330
.
25.
H. J.
Choi
,
S. M.
Choi
,
M. S.
Yeo
,
S. D.
Cho
,
D. C.
Baek
, and
J.
Park
, “
An experimental study on the TSV reliability: Electromigration (EM) and time dependant dielectric breakdown (TDDB)
,” in
Proceedings of the International Interconnect Technology Conference
(
IEEE
,
2012
), pp.
4
6
.
26.
Y.
Oba
,
J.
De Messemaeker
,
A. M.
Tyrovouzi
,
Y.
Miyamori
,
J.
De Vos
,
T.
Wang
,
G.
Beyer
,
E.
Beyne
,
I.
De Wolf
, and
K.
Croes
, “
Effect of test structure on electromigration characteristics in three-dimensional through silicon via stacked devices
,”
Jpn. J. Appl. Phys., Part 1
54
(
5
),
0
4
(
2015
).
27.
Y. M.
Lin
,
C. J.
Zhan
,
J. Y.
Juang
,
J. H.
Lau
,
T. H.
Chen
,
R.
Lo
,
M.
Kao
,
T.
Tian
, and
K. N.
Tu
, “
Electromigration in Ni/Sn intermetallic micro bump joint for 3D IC chip stacking
,” in
Proceedings of the 61st Electronic Components and Technology Conference (ECTC)
(
IEEE
,
2011
), pp.
351
357
.
28.
Y.-C.
Tsai
,
C.-H.
Lee
,
H.-C.
Chang
,
J.-H.
Liu
,
H.-W.
Hu
,
H.
Ito
,
Y. S.
Kim
,
T.
Ohba
, and
K.-N.
Chen
, “
Electrical characteristics and reliability of wafer-on-wafer (WOW) bumpless through-silicon via
,”
IEEE Trans. Electron Devices
68
,
3520
3525
(
2021
).
29.
T.
Frank
,
C.
Chappaz
,
P.
Leduc
,
L.
Arnaud
,
S.
Moreau
,
A.
Thuaire
,
R.
El Farhane
, and
L.
Anghel
, “
Reliability approach of high density through silicon via (TSV)
,” in
Proceedings of the 12th Electronics Packaging Technology Conference
(
IEEE
,
2010
), pp.
321
324
.
30.
P.
Kumar
,
I.
Dutta
, and
M. S.
Bakir
, “
Interfacial effects during thermal cycling of Cu-filled through-silicon vias (TSV)
,”
J. Electron. Mater.
41
(
2
),
322
335
(
2012
).
31.
I.
Dutta
,
P.
Kumar
, and
M. S.
Bakir
, “
Interface-related reliability challenges in 3-D interconnect systems with through-silicon vias
,”
JOM
63
(
10
),
70
77
(
2011
).
32.
Y.
Liu
,
M.
Li
,
D. W.
Kim
,
S.
Gu
, and
K. N.
Tu
, “
Synergistic effect of electromigration and joule heating on system level weak-link failure in 2.5D integrated circuits
,”
J. Appl. Phys.
118
(
13
),
1
6
(
2015
).
33.
Y.
Cheng
,
A.
Todri-Sanial
,
J.
Yang
, and
W.
Zhao
, “
Alleviating through-silicon-via electromigration for 3-D integrated circuits taking advantage of self-healing effect
,” in
Proceedings of the IEEE Transactions on Very Large Scale Integration (VLSI) Systems
(
IEEE
,
2016
), Vol.
24
, No.
11
, pp.
3310
3322
.
34.
F. Y.
Ouyang
,
H.
Hsu
,
Y. P.
Su
, and
T. C.
Chang
, “
Electromigration induced failure on lead-free micro bumps in three-dimensional integrated circuits packaging
,”
J. Appl. Phys.
112
(
2
),
023505
(
2012
).
35.
E. C. C.
Yeh
,
W. J.
Choi
,
K. N.
Tu
,
P.
Elenius
, and
H.
Balkan
, “
Current-crowding-induced electromigration failure in flip chip solder joints
,”
Appl. Phys. Lett.
80
(
4
),
580
582
(
2002
).
36.
L.
Zhang
,
S.
Ou
,
J.
Huang
,
K. N.
Tu
,
S.
Gee
, and
L.
Nguyen
, “
Effect of current crowding on void propagation at the interface between intermetallic compound and solder in flip chip solder joints
,”
Appl. Phys. Lett.
88
(
1
),
012106
(
2006
).
37.
K. N.
Tu
,
C. C.
Yeh
,
C. Y.
Liu
, and
C.
Chen
, “
Effect of current crowding on vacancy diffusion and void formation in electromigration
,”
Appl. Phys. Lett.
76
(
8
),
988
990
(
2000
).
38.
M. L.
Huang
,
L.
Zou
, and
S. Q.
Yin
, “
Electromigration behavior and mechanical properties of the whole preferred orientation intermetallic compound interconnects for 3D packaging
,” in
Proceedings of the 68th Electronic Components and Technology Conference (ECTC)
(
IEEE
,
2018
), pp.
2041
2048
.
39.
Y. W.
Chang
,
C. C.
Hu
,
H. Y.
Peng
,
Y. C.
Liang
,
C.
Chen
,
T. C.
Chang
,
C. J.
Zhan
, and
J. Y.
Juang
, “
A new failure mechanism of electromigration by surface diffusion of Sn on Ni and Cu metallization in microbumps
,”
Sci. Rep.
8
(
1
),
1
10
(
2018
).
40.
Y. W.
Chang
,
C.
Chen
,
T. C.
Chang
,
C. J.
Zhan
,
J. Y.
Juang
, and
A. T.
Huang
, “
Fast phase transformation due to electromigration of 18 μm microbumps in three-dimensional integrated-circuit integration
,”
Mater. Lett.
137
,
136
138
(
2014
).
41.
H. Y.
Chen
,
C. H.
Tung
,
Y. L.
Hsiao
,
J. L.
Wu
,
T. C.
Yeh
,
L. L. C.
Lin
,
C.
Chen
, and
D. C. H.
Yu
, “
Electromigration immortality of purely intermetallic micro-bump for 3D integration
,” in
Proceedings of the 65th Electronic Components and Technology Conference (ECTC)
(
IEEE
,
2015
), pp.
620
625
.
42.
G. T.
Park
,
B. R.
Lee
,
K.
Son
, and
Y. B.
Park
, “
Ni barrier symmetry effect on electromigration failure mechanism of Cu/Sn–Ag microbump
,”
Electron. Mater. Lett.
15
(
2
),
149
158
(
2019
).
43.
J. A.
Lin
,
C. K.
Lin
,
C. M.
Liu
,
Y. S.
Huang
,
C.
Chen
,
D. T.
Chu
, and
K. N.
Tu
, “
Formation mechanism of porous Cu3Sn intermetallic compounds by high current stressing at high temperatures in low-bump-height solder joints
,”
Crystals
6
(
1
),
12
(
2016
).
44.
Y. T.
Huang
,
C. H.
Chen
,
S.
Chakroborty
, and
A. T.
Wu
, “
Crystallographic orientation effect on electromigration in Ni-Sn microbump
,”
JOM
69
(
9
),
1717
1723
(
2017
).
45.
M. L.
Huang
,
J. F.
Zhao
,
Z. J.
Zhang
, and
N.
Zhao
, “
Role of diffusion anisotropy in β-Sn in microstructural evolution of Sn-3.0Ag-0.5Cu flip chip bumps undergoing electromigration
,”
Acta Mater.
100
,
98
106
(
2015
).
46.
K. C.
Shie
,
P. N.
Hsu
,
Y. J.
Li
,
K. N.
Tu
, and
C.
Chen
, “
Effect of bonding strength on electromigration failure in Cu–Cu bumps
,”
Materials
14
(
21
),
6394
(
2021
).
47.
K. C.
Shie
,
P. N.
Hsu
,
Y. J.
Li
,
K. N.
Tu
,
B. T. H.
Lin
,
C. C.
Chang
, and
C.
Chen
, “
Electromigration and temperature cycling tests of Cu-Cu joints fabricated by instant copper direct bonding
,” in
Proceedings of the 71st Electronic Components and Technology Conference (ECTC)
(
IEEE
,
2021
), pp.
995
1000
.
48.
S.
Moreau
,
J.
Jourdon
,
S.
Lhostis
,
D.
Bouchu
,
Y.
Henrion
,
L.
Arnaud
,
A.
Jouve
,
V.
Balan
,
F.
Fournel
,
P.
Lamontagne
,
S.
Cheramy
, and
L. D.
Cioccio
, “
Robustness and reliability achievements for direct hybrid bonding integration: A review
,” in
Proceedings of the 6th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)
(
IEEE
,
2019
), p.
11
.
49.
S.
Lhostis
,
A.
Farcy
,
E.
Deloffre
,
F.
Lorut
,
S.
Mermoz
,
Y.
Henrion
,
L.
Berthier
,
F.
Bailly
,
D.
Scevola
,
F.
Guyader
,
F.
Gigon
,
C.
Besset
,
S.
Pellissier
,
L.
Gay
,
N.
Hotellier
,
A. L.
Le Berrigo
,
S.
Moreau
,
V.
Balan
,
F.
Fournel
,
A.
Jouve
,
S.
Cheramy
,
M.
Arnoux
,
B.
Rebhan
,
G. A.
Maier
, and
L.
Chitu
, “
Reliable 300 μm wafer level hybrid bonding for 3D stacked CMOS image sensors
,” in
Proceedings of the 66th Electronic Components and Technology Conference (ECTC)
(
IEEE
,
2016
), pp.
869
876
.
50.
Y.
Beilliard
,
S. D.
Moreau
,
L.
Cioccio
,
P.
Coudrain
,
G.
Romano
,
A.
Nowodzinski
,
F.
Aussenac
,
P. H.
Jouneau
,
E.
Rolland
, and
T.
Signamarcheix
, “
Advances toward reliable high density Cu-Cu interconnects by Cu-SiO2 direct hybrid bonding
,” in
Proceedings of the International 3D Systems Integration Conference (3DIC)
(
IEEE
,
2014
).
51.
J.
Jourdon
,
S.
Lhostis
,
S.
Moreau
,
J.
Chossat
,
M.
Arnoux
,
C.
Sart
,
Y.
Henrion
,
P.
Lamontagne
,
L.
Arnaud
,
N.
Bresson
,
V.
Balan
,
C.
Euvrard
,
Y.
Exbrayat
,
D.
Scevola
,
E.
Deloffre
,
S.
Mermoz
,
A.
Martin
,
H.
Bilgen
,
F.
Andre
,
C.
Charles
,
D.
Bouchu
,
A.
Farcy
,
S.
Guillaumet
,
A.
Jouve
,
H.
Fremont
, and
S.
Cheramy
, “
Hybrid bonding for 3D stacked image sensors: Impact of pitch shrinkage on interconnect robustness
,” in
Proceedings of the International Electron Devices Meeting (IEDM)
(
IEEE
,
2019
), pp.
7.3.1
7.3.4
.
52.
S.
Moreau
,
Y.
Beilliard
,
P.
Coudrain
,
D.
Bouchu
,
L.
Di Cioccio
, and
L.
Arnaud
, “
Electromigration in hybrid bonding interconnects for 3-D IC impact of the diffusion barrier
,” in
Proceedings of the 17th Electronics Packaging and Technology Conference (EPTC)
(
IEEE
,
2016
), pp.
12
17
.
53.
S.
Moreau
and
A.
Fraczkiewicz
, “
Correlation between electromigration-related void volumes and time-to-failure, the high-resolution x-ray tomography's vital support
,”
J. Vac. Sci. Technol. B
38
(
4
),
044004
(
2020
).
54.
S.
Moreau
,
A.
Fraczkiewicz
,
D.
Bouchu
,
P.
Bleuet
,
P.
Cloetens
,
J. C.
Da Silva
,
H.
Manzanarez
,
F.
Lorut
, and
S.
Lhostis
, “
Correlation between electromigration-related void volumes and time-to-failure by high resolution x-ray tomography and modeling
,”
IEEE Electron Device Lett.
40
(
11
),
1808
1811
(
2019
).
55.
L.
Arnaud
,
S.
Moreau
,
A.
Jouve
,
I.
Jani
,
D.
Lattard
,
F.
Fournel
,
C.
Euvrard
,
Y.
Exbrayat
,
V.
Balan
,
N.
Bresson
,
S.
Lhostis
,
J.
Jourdon
,
E.
Deloffre
,
S.
Guillaumet
,
A.
Farcy
,
S.
Gousseau
, and
M.
Arnoux
, “
Fine pitch 3D interconnections with hybrid bonding technology: From process robustness to reliability
,” in
Proceedings of the International Reliability Physics Symposium (IRPS)
(
IEEE
,
2018
), pp.
4D.41
4D.47
.
56.
S.
Moreau
,
D.
Bouchu
,
V.
Balan
,
A. L. L.
Berrigo
,
A.
Jouve
,
Y.
Henrion
,
C.
Besset
,
D.
Scevola
,
S.
Lhostis
,
F.
Guyader
,
E.
Deloffre
,
S.
Mermoz
, and
J.
Pruvost
, “
Mass transport-induced failure of hybrid bonding-based integration for advanced image sensor applications
,” in
Proceedings of the 66th Electronic Components and Technology Conference (ECTC)
(
IEEE
,
2016
), pp.
1940
1945
.
57.
R.
Taïbi
,
L.
Di Cioccio
,
C.
Chappaz
,
M.
Francou
,
J.
Dechamp
,
P.
Larre
,
S.
Moreau
,
L. L.
Chapelon
, and
R.
Fortunier
, “
Investigation of stress induced voiding and electromigration phenomena on direct copper bonding interconnects for 3D integration
,” in
Proceedings of the International Electron Devices Meeting
(
IEEE
,
2011
), pp.
135
138
.
58.
P.
Coudrain
,
D.
Bouchu
,
R.
Taïbi
, and
L. D.
Ci
, “
Mass transport-induced failure in direct copper (Cu) bonding interconnects for 3-D integration
,” in
Proceedings of the International Reliability Physics Symposium
(
IEEE
,
2014
), pp.
3
8
.
59.
I. H.
Tseng
,
K. C.
Shie
,
B.
Tzu-Hung Lin
,
C. C.
Chang
, and
C.
Chen
, “
Electromigration in 2 μm redistribution lines and Cu-Cu bonds with highly <111>-oriented nanotwinned Cu
,” in
Proceedings of the 70th Electronic Components and Technology Conference (ECTC)
(
IEEE
,
2020
), pp.
479
484
.
60.
X.
Gu
and
Y. C.
Chan
, “
Thermomigration and electromigration in Sn58Bi solder joints
,”
J. Appl. Phys.
105
(
9
),
093537
(
2009
).
61.
Y. A.
Shen
,
S.
Zhou
,
J.
Li
,
K. N.
Tu
, and
H.
Nishikawa
, “
Thermomigration induced microstructure and property changes in Sn-58Bi solders
,”
Mater. Des.
166
,
107619
(
2019
).
62.
J.
Sun
,
G.
Xu
,
F.
Guo
,
Z.
Xia
,
Y.
Lei
,
Y.
Shi
,
X.
Li
, and
X.
Wang
, “
Effects of electromigration on resistance changes in eutectic SnBi solder joints
,”
J. Mater. Sci.
46
(
10
),
3544
3549
(
2011
).
63.
L. T.
Chen
and
C. M.
Chen
, “
Electromigration study in the eutectic SnBi solder joint on the Ni/Au metallization
,”
J. Mater. Res.
21
(
4
),
962
969
(
2006
).
64.
C. M.
Chen
,
L. T.
Chen
, and
Y. S.
Lin
, “
Electromigration-induced Bi segregation in eutectic SnBi solder joint
,”
J. Electron. Mater.
36
(
2
),
168
172
(
2007
).
65.
X.
Zhao
,
M.
Muraoka
, and
M.
Saka
, “
Length-dependent electromigration behavior of Sn58Bi solder and critical length of electromigration
,”
J. Electron. Mater.
46
(
2
),
1287
1292
(
2017
).
66.
F.
Wang
,
L.
Liu
,
D.
Li
, and
M.
Wu
, “
Electromigration behaviors in Sn–58Bi solder joints under different current densities and temperatures
,”
J. Mater. Sci.: Mater. Electron.
29
(
24
),
21157
21169
(
2018
).
67.
Z. J.
Zhang
and
M. L.
Huang
, “
Abnormal migration behavior and segregation mechanism of Bi atoms undergoing liquid–solid electromigration
,”
J. Mater. Sci.
54
(
10
),
7975
7986
(
2019
).
68.
F.
Wang
,
L.
Zhou
,
Z.
Zhang
,
J.
Wang
,
X.
Wang
, and
M.
Wu
, “
Effect of Sn-Ag-Cu on the improvement of electromigration behavior in Sn-58Bi solder joint
,”
J. Electron. Mater.
46
(
10
),
6204
6213
(
2017
).
69.
X.
Zhao
,
M.
Saka
,
M.
Muraoka
,
M.
Yamashita
, and
H.
Hokazono
, “
Electromigration behaviors and effects of addition elements on the formation of a Bi-rich layer in Sn58Bi-based solders
,”
J. Electron. Mater.
43
(
11
),
4179
4185
(
2014
).
70.
C. C.
Ming
and
C. C.
Huang
, “
Effects of silver doping on electromigration of eutectic SnBi solder
,”
J. Alloys Compd.
461
(
1–2
),
235
241
(
2008
).
71.
H.
Sun
,
Y. C.
Chan
, and
F.
Wu
, “
Influence of the aggregated Ag3Sn on the improvement of electromigration phenomenon in the doped Sn58Bi solder joints
,”
J. Mater. Sci.: Mater. Electron.
26
(
7
),
5129
5134
(
2015
).
72.
C. M.
Chen
,
C. C.
Huang
,
C. N.
Liao
, and
K. M.
Liou
, “
Effects of copper doping on microstructural evolution in eutectic SnBi solder stripes under annealing and current stressing
,”
J. Electron. Mater.
36
(
7
),
760
765
(
2007
).
73.
Z.
Hou
,
X.
Zhao
,
Y.
Gu
,
C.
Tan
,
Y.
Huo
,
H.
li
,
S.
Shi
, and
Y.
Liu
, “
Enhancement mechanism of Te doping on microstructure, wettability and mechanical properties of Sn–Bi-based solder
,”
Mater. Sci. Eng., A
848
,
143445
(
2022
).
74.
N.
Jiang
,
L.
Zhang
,
Z. Q.
Liu
,
L.
Sun
,
M. Y.
Xiong
,
M.
Zhao
, and
K. K.
Xu
, “
Influences of doping Ti nanoparticles on microstructure and properties of Sn58Bi solder
,”
J. Mater. Sci.: Mater. Electron.
30
(
19
),
17583
17590
(
2019
).
75.
C. L.
Kao
,
T. C.
Chen
,
Y. S.
Lai
, and
Y. T.
Chiu
, “
Investigation of electromigration reliability of redistribution lines in wafer-level chip-scale packages
,”
Microelectron. Reliab.
54
(
11
),
2471
2478
(
2014
).
76.
C. L.
Liang
,
Y. S.
Lin
,
C. L.
Kao
,
D.
Tarng
,
S. B.
Wang
,
Y. C.
Hung
,
G. T.
Lin
, and
K. L.
Lin
, “
Athermal and thermal coupling electromigration effects on the microstructure and failure mechanism in advanced fine-pitch Cu interconnects under extremely high current density
,”
Mater. Chem. Phys.
256
,
123680
(
2020
).
77.
C. L.
Liang
,
Y. S.
Lin
,
C. L.
Kao
,
D.
Tarng
,
S. B.
Wang
,
Y. C.
Hung
, and
K. L.
Lin
, “
Electromigration failure study of a fine-pitch 2 μm/2 μm L/S Cu redistribution line embedded in polyimide for advanced high-density fan-out packaging
,” in
Proceedings of the 70th Electronic Components and Technology Conference (ECTC)
(
IEEE
,
2020
), pp.
361
366
.
78.
L.
Lu
,
Y.
Shen
,
X.
Chen
,
L.
Qian
, and
K.
Lu
, “
Ultrahigh strength and high electrical conductivity in copper
,”
Science
304
(
5669
),
422
426
(
2004
).
79.
I. H.
Tseng
,
P. N.
Hsu
,
W. Y.
Hsu
,
D. P.
Tran
,
B. T. H.
Lin
,
C. C.
Chang
,
K. N.
Tu
, and
C.
Chen
, “
Effect of oxidation on electromigration in 2-μm Cu redistribution lines capped with polyimide
,”
Results Phys.
31
,
2
7
(
2021
).
80.
H.
Kudo
,
R.
Kasai
,
J.
Suyama
,
M.
Takeda
,
Y.
Okazaki
,
H.
Iida
,
D.
Kitayama
,
K.
Sakamoto
,
H.
Sato
,
S.
Yamada
,
M.
Akazawa
, and
S.
Kuramochi
, “
Demonstration of high electromigration resistance of enhanced sub-2 micron-scale Cu redistribution layer for advanced fine-pitch packaging
,” in
Proceedings of the IEEE CPMT Symposium Japan (ICSJ)
(
IEEE
,
2017
), pp.
5
8
.
81.
C. L.
Liang
,
M. Y.
Tsai
,
Y. S.
Lin
,
I. T.
Lin
,
S. W.
Yang
,
M. L.
Huang
,
J. K.
Fang
, and
K. L.
Lin
, “
The dynamic behavior of electromigration in a novel Cu tall pillar/Cu via interconnect for fan-out packaging
,” in
Proceedings of the 71st Electronic Components and Technology Conference (ECTC)
(
IEEE
,
2021
), pp.
327
333
.
82.
L.
Lu
,
X.
Chen
,
X.
Huang
, and
K.
Lu
, “
Revealing the maximum strength in nanotwinned copper
,”
Science
323
(
5914
),
607
610
(
2009
).
83.
H. Y.
Hsiao
,
C. M.
Liu
,
H. W.
Lin
,
T. C.
Liu
,
C. L.
Lu
,
Y. S.
Huang
,
C.
Chen
, and
K. N.
Tu
, “
Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper
,”
Science
336
(
6084
),
1007
1010
(
2012
).
You do not currently have access to this content.