Flexible electronics is one of the most overwhelming and promising technologies available today, receiving widespread attention from both academia and industry. As it continues to evolve, demands on flexible conductive materials are becoming increasingly prominent. Liquid metals (LMs), which combine the compliance of fluids with the electrical conductivity of metals, are excellent candidates among various material options for fabricating flexible electronics. Following more than a decade of development, LM flexible electronics has become a rather promising research field. This review aims to provide a comprehensive summary and interpretation of the typical progress in LM flexible electronics so as to promote further advancement in the area. First, modification strategies of LMs, such as oxidation and composite approaches (doped particles or mixed polymers), are systematically digested to improve their performances and increase the formability involved. Furthermore, we divide the LM flexible electronics into three major architectures (LM flexible electronics with channels, LM printed electronics, and LM/polymer flexible electronics) and introduce the core patterning methods for each type. In addition, we provide an overview of the representative applications of LM flexible electronics in the categories of soft sensors, biomedicine, flexible energy, electronic fabrics, etc. Finally, the current challenges and potential directions of LM flexible electronics are discussed. Overall, the past progress, current situation, and future outlook as outlined in full view in the present article is expected to inspire tremendous new opportunities for further fundamental research or practical explorations of LM flexible electronics in the coming time.

1.
M. L.
Hammock
,
A.
Chortos
,
B. C. K.
Tee
,
J. B. H.
Tok
, and
Z.
Bao
, “
25th anniversary article: The evolution of electronic skin (E-skin): A brief history, design considerations, and recent progress
,”
Adv. Mater.
25
(
42
),
5997
6038
(
2013
).
2.
Z.
Liu
,
J.
Xu
,
D.
Chen
, and
G.
Shen
, “
Flexible electronics based on inorganic nanowires
,”
Chem. Soc. Rev.
44
(
1
),
161
192
(
2015
).
3.
S.
Huang
,
Y.
Liu
,
Y.
Zhao
,
Z.
Ren
, and
C. F.
Guo
, “
Flexible electronics: Stretchable electrodes and their future
,”
Adv. Funct. Mater.
29
(
6
),
1805924
(
2019
).
4.
H.-R.
Lim
,
H. S.
Kim
,
R.
Qazi
,
Y.-T.
Kwon
,
J.-W.
Jeong
, and
W.-H.
Yeo
, “
Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment
,”
Adv. Mater.
32
(
15
),
1901924
(
2020
).
5.
Y.
Khan
,
A.
Thielens
,
S.
Muin
,
J.
Ting
,
C.
Baumbauer
, and
A. C.
Arias
, “
A new frontier of printed electronics: Flexible hybrid electronics
,”
Adv. Mater.
32
(
15
),
1905279
(
2020
).
6.
A.
Kamyshny
and
S.
Magdassi
, “
Conductive nanomaterials for 2D and 3D printed flexible electronics
,”
Chem. Soc. Rev.
48
(
6
),
1712
1740
(
2019
).
7.
Y.
Sun
,
R. B.
Sills
,
X.
Hu
,
Z. W.
Seh
,
X.
Xiao
,
H.
Xui
,
W.
Luo
,
H.
Jin
,
Y.
Xin
,
T.
Li
,
Z.
Zhang
,
J.
Zhou
,
W.
Cai
,
Y.
Huang
, and
Y.
Cui
, “
A bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices
,”
Nano Lett.
15
(
6
),
3899
3906
(
2015
).
8.
P.
Wang
,
M.
Hu
,
H.
Wang
,
Z.
Chen
,
Y.
Feng
,
J.
Wang
,
W.
Ling
, and
Y.
Huang
, “
The evolution of flexible electronics: From nature, beyond nature, and to nature
,”
Adv. Sci.
7
(
20
),
2001116
(
2020
).
9.
W.
Heng
,
S.
Solomon
, and
W.
Gao
, “
Flexible electronics and devices as human-machine interfaces for medical robotics
,”
Adv. Mater.
34
(
16
),
2107902
(
2022
).
10.
Y.
Ma
,
Y.
Zhang
,
S.
Cai
,
Z.
Han
,
X.
Liu
,
F.
Wang
,
Y.
Cao
,
Z.
Wang
,
H.
Li
,
Y.
Chen
, and
X.
Feng
, “
Flexible hybrid electronics for digital healthcare
,”
Adv. Mater.
32
(
15
),
1902062
(
2020
).
11.
A.
Nathan
,
A.
Ahnood
,
M. T.
Cole
,
S.
Lee
,
Y.
Suzuki
,
P.
Hiralal
,
F.
Bonaccorso
,
T.
Hasan
,
L.
Garcia-Gancedo
,
A.
Dyadyusha
,
S.
Haque
,
P.
Andrew
,
S.
Hofmann
,
J.
Moultrie
,
D.
Chu
,
A. J.
Flewitt
,
A. C.
Ferrari
,
M. J.
Kelly
,
J.
Robertson
,
G. a J.
Amaratunga
, and
W. I.
Milne
, “
Flexible electronics: The next ubiquitous platform
,”
Proc. IEEE
100
,
1486
1517
(
2012
).
12.
D.-Y.
Khang
,
H.
Jiang
,
Y.
Huang
, and
J. A.
Rogers
, “
A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates
,”
Science
311
(
5758
),
208
212
(
2006
).
13.
D.-H.
Kim
,
J.-H.
Ahn
,
W. M.
Choi
,
H.-S.
Kim
,
T.-H.
Kim
,
J.
Song
,
Y. Y.
Huang
,
Z.
Liu
,
C.
Lu
, and
J. A.
Rogers
, “
Stretchable and foldable silicon integrated circuits
,”
Science
320
(
5875
),
507
511
(
2008
).
14.
D.-H.
Kim
,
N.
Lu
,
R.
Ma
,
Y.-S.
Kim
,
R.-H.
Kim
,
S.
Wang
,
J.
Wu
,
S. M.
Won
,
H.
Tao
,
A.
Islam
,
K. J.
Yu
,
T.-I.
Kim
,
R.
Chowdhury
,
M.
Ying
,
L.
Xu
,
M.
Li
,
H.-J.
Chung
,
H.
Keum
,
M.
Mccormick
,
P.
Liu
,
Y.-W.
Zhang
,
F. G.
Omenetto
,
Y.
Huang
,
T.
Coleman
, and
J. A.
Rogers
, “
Epidermal electronics
,”
Science
333
(
6044
),
838
843
(
2011
).
15.
Z.
Song
,
T.
Ma
,
R.
Tang
,
Q.
Cheng
,
X.
Wang
,
D.
Krishnaraju
,
R.
Panat
,
C. K.
Chan
,
H.
Yu
, and
H.
Jiang
, “
Origami lithium-ion batteries
,”
Nat. Commun.
5
(
1
),
3140
(
2014
).
16.
T. C.
Shyu
,
P. F.
Damasceno
,
P. M.
Dodd
,
A.
Lamoureux
,
L.
Xu
,
M.
Shlian
,
M.
Shtein
,
S. C.
Glotzer
, and
N. A.
Kotov
, “
A kirigami approach to engineering elasticity in nanocomposites through patterned defects
,”
Nat. Mater.
14
(
8
),
785
789
(
2015
).
17.
C.
Wang
,
C.
Wang
,
Z.
Huang
, and
S.
Xu
, “
Materials and structures toward soft electronics
,”
Adv. Mater.
30
(
50
),
1801368
(
2018
).
18.
N.
Matsuhisa
,
D.
Inoue
,
P.
Zalar
,
H.
Jin
,
Y.
Matsuba
,
A.
Itoh
,
T.
Yokota
,
D.
Hashizume
, and
T.
Someya
, “
Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes
,”
Nat. Mater.
16
(
8
),
834
840
(
2017
).
19.
S.
Hong
,
J.
Lee
,
K.
Do
,
M.
Lee
,
J. H.
Kim
,
S.
Lee
, and
D.-H.
Kim
, “
Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices
,”
Adv. Funct. Mater.
27
(
48
),
1704353
(
2017
).
20.
C.
Wang
,
K.
Xia
,
H.
Wang
,
X.
Liang
,
Z.
Yin
, and
Y.
Zhang
, “
Advanced carbon for flexible and wearable electronics
,”
Adv. Mater.
31
(
9
),
1801072
(
2019
).
21.
Y.
Shi
,
L.
Peng
,
Y.
Ding
,
Y.
Zhao
, and
G.
Yu
, “
Nanostructured conductive polymers for advanced energy storage
,”
Chem. Soc. Rev.
44
(
19
),
6684
6696
(
2015
).
22.
X.
Fan
,
W.
Nie
,
H.
Tsai
,
N.
Wang
,
H.
Huang
,
Y.
Cheng
,
R.
Wen
,
L.
Ma
,
F.
Yan
, and
Y.
Xia
, “
Pedot:Pss for flexible and stretchable electronics: Modifications, strategies, and applications
,”
Adv. Science
6
(
19
),
1900813
(
2019
).
23.
C.-C.
Kim
,
H.-H.
Lee
,
K. H.
Oh
, and
J.-Y.
Sun
, “
Highly stretchable, transparent ionic touch panel
,”
Science
353
(
6300
),
682
687
(
2016
).
24.
J.
Liu
, “
Liquid metal machine is evolving to soft robotics
,”
Sci. China Technol. Sci.
59
(
11
),
1793
1794
(
2016
).
25.
S.
Chen
,
H.-Z.
Wang
,
R.-Q.
Zhao
,
W.
Rao
, and
J.
Liu
, “
Liquid metal composites
,”
Matter
2
(
6
),
1446
1480
(
2020
).
26.
X.
Wang
,
R.
Guo
, and
J.
Liu
, “
Liquid metal based soft robotics: Materials, designs, and applications
,”
Adv. Mater. Technol.
4
(
2
),
1800549
(
2019
).
27.
S.
Chen
,
R.
Zhao
,
X.
Sun
,
H.
Wang
,
L.
Li
, and
J.
Liu
, “
Toxicity and biocompatibility of liquid metals
,”
Adv. Healthcare Mater.
12
(
3
),
2201924
(
2022
).
28.
J.
Yan
,
Y.
Lu
,
G.
Chen
,
M.
Yang
, and
Z.
Gu
, “
Advances in liquid metals for biomedical applications
,”
Chem. Soc. Rev.
47
(
8
),
2518
2533
(
2018
).
29.
M.
Zhang
,
S.
Yao
,
W.
Rao
, and
J.
Liu
, “
Transformable soft liquid metal micro/nanomaterials
,”
Mater. Sci. Eng., R
138
,
1
35
(
2019
).
30.
X.
Sun
,
X.
Wang
,
B.
Yuan
, and
J.
Liu
, “
Liquid metal–enabled cybernetic electronics
,”
Mater. Today Phys.
14
,
100245
(
2020
).
31.
X.
Sun
,
B.
Yuan
,
H.
Wang
,
L.
Fan
,
M.
Duan
,
X.
Wang
,
R.
Guo
, and
J.
Liu
, “
Nano-biomedicine based on liquid metal particles and allied materials
,”
Adv. NanoBiomed Res.
1
(
4
),
2000086
(
2021
).
32.
S.
Mei
,
Y.
Gao
,
H.
Li
,
Z.
Deng
, and
J.
Liu
, “
Thermally induced porous structures in printed gallium coating to make transparent conductive film
,”
Appl. Phys. Lett.
102
(
4
),
041905
(
2013
).
33.
S. A.
Idrus-Saidi
,
J.
Tang
,
S.
Lambie
,
J.
Han
,
M.
Mayyas
,
M. B.
Ghasemian
,
F.-M.
Allioux
,
S.
Cai
,
P.
Koshy
,
P.
Mostaghimi
,
K. G.
Steenbergen
,
A. S.
Barnard
,
T.
Daeneke
,
N.
Gaston
, and
K.
Kalantar-Zadeh
, “
Liquid metal synthesis solvents for metallic crystals
,”
Science
378
(
6624
),
1118
1124
(
2022
).
34.
S.
Chen
and
J.
Liu
, “
Pervasive liquid metal printed electronics: From concept incubation to industry
,”
iScience
24
(
1
),
102026
(
2021
).
35.
K.
Nan
,
S.
Babaee
,
W. W.
Chan
,
J. L. P.
Kuosmanen
,
V. R.
Feig
,
Y.
Luo
,
S. S.
Srinivasan
,
C. M.
Patterson
,
A. M.
Jebran
, and
G.
Traverso
, “
Low-cost gastrointestinal manometry via silicone-liquid-metal pressure transducers resembling a quipu
,”
Nat. Biomed. Eng.
6
(
10
),
1092
1104
(
2022
).
36.
H.
Wang
,
S.
Chen
,
X.
Zhu
,
B.
Yuan
,
X.
Sun
,
J.
Zhang
,
X.
Yang
,
Y.
Wei
, and
J.
Liu
, “
Phase transition science and engineering of gallium-based liquid metal
,”
Matter
5
(
7
),
2054
2085
(
2022
).
37.
J.
Yang
,
W.
Cheng
, and
K.
Kalantar-Zadeh
, “
Electronic skins based on liquid metals
,”
Proc. IEEE
107
(
10
),
2168
2184
(
2019
).
38.
X.
Wang
and
J.
Liu
, “
Recent advancements in liquid metal flexible printed electronics: Properties, technologies, and applications
,”
Micromachines
7
(
12
),
206
(
2016
).
39.
S. W.
Lee
,
J.
Jang
,
Y.
Kim
,
S.
Lee
,
K.
Lee
,
H.
Han
,
H.
Lee
,
J. W.
Oh
,
H.
Kim
,
T.
Kim
,
M. D.
Dickey
, and
C.
Park
, “
Intrinsically stretchable ionoelastomer junction logic gate synchronously deformable with liquid metal
,”
Appl. Phys. Rev.
9
(
4
),
041404
(
2022
).
40.
T.
Gan
,
Q.
Xiao
,
S.
Handschuh-Wang
,
X.
Huang
,
H.
Wang
,
X.
Deng
,
S.
Hu
,
B.
Wang
,
Q.
Wu
, and
X.
Zhou
, “
Conformally adhesive, large-area, solidlike, yet transient liquid metal thin films and patterns via gelatin-regulated droplet deposition and sintering
,”
ACS Appl. Mater. Interfaces
14
(
37
),
42744
42756
(
2022
).
41.
S.
Liu
,
D. S.
Shah
, and
R.
Kramer-Bottiglio
, “
Highly stretchable multilayer electronic circuits using biphasic gallium-indium
,”
Nat. Mater.
20
(
6
),
851
858
(
2021
).
42.
A.
Leber
,
C.
Dong
,
R.
Chandran
,
T.
Das Gupta
,
N.
Bartolomei
, and
F.
Sorin
, “
Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations
,”
Nat. Electron.
3
(
6
),
316
326
(
2020
).
43.
M. D.
Bartlett
,
N.
Kazem
,
M. J.
Powell-Palm
,
X.
Huang
,
W.
Sun
,
J. A.
Malen
, and
C.
Majidi
, “
High thermal conductivity in soft elastomers with elongated liquid metal inclusions
,”
Proc. Natl. Acad. Sci. U. S. A
114
(
9
),
2143
2148
(
2017
).
44.
S.
Chen
,
Z.
Deng
, and
J.
Liu
, “
High performance liquid metal thermal interface materials
,”
Nanotechnology
32
(
9
),
092001
(
2021
).
45.
L.-C.
Jia
,
Y.-F.
Jin
,
J.-W.
Ren
,
L.-H.
Zhao
,
D.-X.
Yan
, and
Z.-M.
Li
, “
Highly thermally conductive liquid metal-based composites with superior thermostability for thermal management
,”
J. Mater. Chem. C
9
(
8
),
2904
2911
(
2021
).
46.
X.
Wang
,
M.
Zhao
,
L.
Zhang
,
K.
Li
,
D.
Wang
,
L.
Zhang
,
A.
Zhang
, and
Y.
Xu
, “
Liquid metal bionic instant self-healing flexible electronics with full recyclability and high reliability
,”
Chem. Eng. J.
431
,
133965
(
2022
).
47.
R.
Guo
,
X.
Sun
,
B.
Yuan
,
H.
Wang
, and
J.
Liu
, “
Magnetic liquid metal (Fe-Egain) based multifunctional electronics for remote self-healing materials, degradable electronics, and thermal transfer printing
,”
Adv. Sci.
6
(
20
),
1901478
(
2019
).
48.
Z.
Zhang
,
L.
Tang
,
C.
Chen
,
H.
Yu
,
H.
Bai
,
L.
Wang
,
M.
Qin
,
Y.
Feng
, and
W.
Feng
, “
Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple sensations as artificial flexible sensors
,”
J. Mater. Chem. A
9
(
2
),
875
883
(
2021
).
49.
P.
Won
,
S.
Jeong
,
C.
Majidi
, and
S. H.
Ko
, “
Recent advances in liquid-metal-based wearable electronics and materials
,”
iScience
24
(
7
),
102698
(
2021
).
50.
Y.-G.
Park
,
G.-Y.
Lee
,
J.
Jang
,
S. M.
Yun
,
E.
Kim
, and
J.-U.
Park
, “
Liquid metal-based soft electronics for wearable healthcare
,”
Adv. Healthcare Mater.
10
(
17
),
2002280
(
2021
).
51.
Z.
Zou
,
Y.
Chen
,
S.
Yuan
,
N.
Luo
,
J.
Li
, and
Y.
He
, “
3D printing of liquid metals: Recent advancements and challenges
,”
Adv. Funct. Mater.
33
(
10
),
2213312
(
2022
).
52.
Y.
Zhao
,
Y.
Ohm
,
J.
Liao
,
Y.
Luo
,
H.-Y.
Cheng
,
P.
Won
,
P.
Roberts
,
M. R.
Carneiro
,
M. F.
Islam
,
J. H.
Ahn
,
L. M.
Walker
, and
C.
Majidi
, “
A self-healing electrically conductive organogel composite
,”
Nat. Electron.
6
,
206
215
(
2023
).
53.
C.
Amy
,
D.
Budenstein
,
M.
Bagepalli
,
D.
England
,
F.
Deangelis
,
G.
Wilk
,
C.
Jarrett
,
C.
Kelsall
,
J.
Hirschey
,
H.
Wen
,
A.
Chavan
,
B.
Gilleland
,
C.
Yuan
,
W. C.
Chueh
,
K. H.
Sandhage
,
Y.
Kawajiri
, and
A.
Henry
, “
Pumping liquid metal at high temperatures up to 1,673 kelvin
,”
Nature
550
(
7675
),
199
203
(
2017
).
54.
S.
Xu
and
J.
Liu
, “
Metal-based direct hydrogen generation as unconventional high density energy
,”
Front. Energy
13
(
1
),
27
53
(
2019
).
55.
T.
Daeneke
,
K.
Khoshmanesh
,
N.
Mahmood
,
I. A.
De Castro
,
D.
Esrafilzadeh
,
S. J.
Barrow
,
M. D.
Dickey
, and
K.
Kalantar-Zadeh
, “
Liquid metals: Fundamentals and applications in chemistry
,”
Chem. Soc. Rev.
47
(
11
),
4073
4111
(
2018
).
56.
C.
Ladd
,
J.-H.
So
,
J.
Muth
, and
M. D.
Dickey
, “
3D printing of free standing liquid metal microstructures
,”
Adv. Mater.
25
(
36
),
5081
5085
(
2013
).
57.
D.
Wang
,
X.
Wang
, and
W.
Rao
, “
Precise regulation of Ga-based liquid metal oxidation
,”
Acc. Mater. Res.
2
(
11
),
1093
1103
(
2021
).
58.
K.
Doudrick
,
S.
Liu
,
E. M.
Mutunga
,
K. L.
Klein
,
V.
Damle
,
K. K.
Varanasi
, and
K.
Rykaczewski
, “
Different shades of oxide: From nanoscale wetting mechanisms to contact printing of gallium-based liquid metals
,”
Langmuir
30
(
23
),
6867
6877
(
2014
).
59.
S.-Y.
Tang
,
C.
Tabor
,
K.
Kalantar-Zadeh
, and
M. D.
Dickey
, “
Gallium liquid metal: The devil's Elixir
,”
Annu. Rev. Mater. Res.
51
(
1
),
381
408
(
2021
).
60.
M. J.
Regan
,
H.
Tostmann
,
P. S.
Pershan
,
O. M.
Magnussen
,
E.
Dimasi
,
B. M.
Ocko
, and
M.
Deutsch
, “
X-ray study of the oxidation of liquid-gallium surfaces
,”
Phys. Rev. B
55
(
16
),
10786
10790
(
1997
).
61.
M.
Jia
and
J. T.
Newberg
, “
Liquid-gas interfacial chemistry of gallium-indium eutectic in the presence of oxygen and water vapor
,”
J. Phys. Chem. C
123
(
47
),
28688
28694
(
2019
).
62.
Y.
Gao
,
H.
Li
, and
J.
Liu
, “
Direct writing of flexible electronics through room temperature liquid metal ink
,”
PLoS One
7
(
9
),
e45485
(
2012
).
63.
X.
Wang
,
L.
Fan
,
J.
Zhang
,
X.
Sun
,
H.
Chang
,
B.
Yuan
,
R.
Guo
,
M.
Duan
, and
J.
Liu
, “
Printed conformable liquid metal e‐skin‐enabled spatiotemporally controlled bioelectromagnetics for wireless multisite tumor therapy
,”
Adv. Funct. Mater.
29
(
51
),
1907063
(
2019
).
64.
M. D.
Dickey
, “
Emerging applications of liquid metals featuring surface oxides
,”
ACS Appl. Mater. Interfaces
6
(
21
),
18369
18379
(
2014
).
65.
M.
Liao
,
H.
Liao
,
J.
Ye
,
P.
Wan
, and
L.
Zhang
, “
Polyvinyl alcohol-stabilized liquid metal hydrogel for wearable transient epidermal sensors
,”
ACS Appl. Mater. Interfaces
11
(
50
),
47358
47364
(
2019
).
66.
E. J.
Markvicka
,
M. D.
Bartlett
,
X.
Huang
, and
C.
Majidi
, “
An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics
,”
Nat. Mater.
17
(
7
),
618
624
(
2018
).
67.
A.
Hirsch
,
L.
Dejace
,
H. O.
Michaud
, and
S. P.
Lacour
, “
Harnessing the rheological properties of liquid metals to shape soft electronic conductors for wearable applications
,”
Acc. Chem. Res.
52
(
3
),
534
544
(
2019
).
68.
H.
Wang
,
B.
Yuan
,
S.
Liang
,
R.
Guo
,
W.
Rao
,
X.
Wang
,
H.
Chang
,
Y.
Ding
,
J.
Liu
, and
L.
Wang
, “
PLUS-M: A porous liquid-metal enabled ubiquitous soft material
,”
Mater. Horiz.
5
(
2
),
222
229
(
2018
).
69.
J.
Jeong
,
J.
Seo
,
S. K.
Chung
,
J. B.
Lee
, and
D.
Kim
, “
Magnetic field-induced recoverable dynamic morphological change of gallium-based liquid metal
,”
J. Microelectromech. Syst.
29
(
5
),
1208
1215
(
2020
).
70.
Y. Y.
Lu
,
Z. X.
Che
,
F. Y.
Sun
,
S.
Chen
,
H.
Zhou
,
P. J.
Zhang
,
Y.
Yu
,
L.
Sheng
, and
J.
Liu
, “
Mussel-inspired multifunctional integrated liquid metal-based magnetic suspensions with rheological, magnetic, electrical, and thermal reinforcement
,”
ACS Appl. Mater. Interfaces
13
(
4
),
5256
5265
(
2021
).
71.
K.
Hong
,
M.
Choe
,
S.
Kim
,
H. M.
Lee
,
B. J.
Kim
, and
S.
Park
, “
An ultrastretchable electrical switch fiber with a magnetic liquid metal core for remote magnetic actuation
,”
Polymers
13
(
15
),
2407
(
2021
).
72.
S.
Kim
,
S.
Kim
,
K.
Hong
,
M. D.
Dickey
, and
S.
Park
, “
Liquid-metal-coated magnetic particles toward writable, nonwettable, stretchable circuit boards, and directly assembled liquid metal-elastomer conductors
,”
ACS Appl. Mater. Interfaces
14
(
32
),
37110
37119
(
2022
).
73.
L.
Cao
,
D.
Yu
,
Z.
Xia
,
H.
Wan
,
C.
Liu
,
T.
Yin
, and
Z.
He
, “
Ferromagnetic liquid metal putty‐like material with transformed shape and reconfigurable polarity
,”
Adv. Mater.
32
(
17
),
2000827
(
2020
).
74.
X.
He
,
M.
Ni
,
J.
Wu
,
S.
Xuan
, and
X.
Gong
, “
Hard-magnetic liquid metal droplets with excellent magnetic field dependent mobility and elasticity
,”
J. Mater. Sci. Technol.
92
,
60
68
(
2021
).
75.
H.
Chang
,
R.
Guo
,
Z.
Sun
,
H.
Wang
,
Y.
Hou
,
Q.
Wang
,
W.
Rao
, and
J.
Liu
, “
Direct writing and repairable paper flexible electronics using nickel–liquid metal ink
,”
Adv. Mater. Interfaces
5
(
20
),
1800571
(
2018
).
76.
R.
Guo
,
X. L.
Wang
,
H.
Chang
,
W. Z.
Yu
,
S. T.
Liang
,
W.
Rao
, and
J.
Liu
, “
Ni-GaIn amalgams enabled rapid and customizable fabrication of wearable and wireless healthcare electronics
,”
Adv. Eng. Mater.
20
(
10
),
1800054
(
2018
).
77.
Y.-H.
Wu
,
Z.-F.
Deng
,
Z.-F.
Peng
,
R.-M.
Zheng
,
S.-Q.
Liu
,
S.-T.
Xing
,
J.-Y.
Li
,
D.-Q.
Huang
, and
L.
Liu
, “
A novel strategy for preparing stretchable and reliable biphasic liquid metal
,”
Adv. Funct. Mater.
29
(
36
),
1903840
(
2019
).
78.
X.
He
,
J.
Wu
,
T.
Hu
,
S.
Xuan
, and
X.
Gong
, “
A 3D-printed coaxial microfluidic device approach for generating magnetic liquid metal droplets with large size controllability
,”
Microfluid. Nanofluid.
24
(
4
),
30
(
2020
).
79.
J. B.
Tang
,
X.
Zhao
,
J.
Li
,
R.
Guo
,
Y.
Zhou
, and
J.
Liu
, “
Gallium-based liquid metal amalgams: Transitional-state metallic mixtures (TransM2ixes) with enhanced and tunable electrical, thermal, and mechanical properties
,”
ACS Appl. Mater. Interfaces
9
(
41
),
35977
35987
(
2017
).
80.
F.
Li
,
S.
Kuang
,
X.
Li
,
J.
Shu
,
W.
Li
,
S.-Y.
Tang
, and
S.
Zhang
, “
Magnetically- and electrically-controllable functional liquid metal droplets
,”
Adv. Mater. Technol.
4
(
3
),
1800694
(
2019
).
81.
Q.
Li
,
J.
Lin
,
T. Y.
Liu
,
S. J.
Dong
,
H.
Zheng
, and
J.
Liu
, “
Supermetallophobic functional coatings based on silicate clays and a method to pattern liquid metals
,”
ACS Appl. Electron. Mater.
2
(
7
),
2229
2241
(
2020
).
82.
Y.
Hou
,
P.
Zhang
,
D.
Wang
,
J.
Liu
, and
W.
Rao
, “
Liquid metal hybrid platform-mediated ice–fire dual noninvasive conformable melanoma therapy
,”
ACS Appl. Mater. Interfaces
12
(
25
),
27984
27993
(
2020
).
83.
R.
Guo
,
B.
Cui
,
X.
Zhao
,
M.
Duan
,
X.
Sun
,
R.
Zhao
,
L.
Sheng
,
J.
Liu
, and
J.
Lu
, “
Cu–EGaIn enabled stretchable e-skin for interactive electronics and CT assistant localization
,”
Mater. Horiz.
7
(
7
),
1845
1853
(
2020
).
84.
X. L.
Wang
,
W. H.
Yao
,
R.
Guo
,
X. H.
Yang
,
J. B.
Tang
,
J.
Zhang
,
W. P.
Gao
,
V.
Timchenko
, and
J.
Liu
, “
Soft and moldable Mg-doped liquid metal for conformable skin tumor photothermal therapy
,”
Adv. Healthcare Mater.
7
(
14
),
1800318
(
2018
).
85.
Y.
Sohn
and
K.
Chu
, “
Flexible hybrid conductor comprising eutectic Ga-In liquid metal and Ag nanowires for the application of electronic skin
,”
Mater. Lett.
265
,
127223
(
2020
).
86.
D.
Wu
,
D.
Liu
,
X.
Tian
,
C.
Lei
,
X.
Chen
,
S.
Zhang
,
F.
Chen
,
K.
Wu
, and
Q.
Fu
, “
A universal mechanochemistry allows on-demand synthesis of stable and processable liquid metal composites
,”
Small Methods
6
(
7
),
2200246
(
2022
).
87.
H.
Chang
,
P.
Zhang
,
R.
Guo
,
Y. T.
Cui
,
Y.
Hou
,
Z. Q.
Sun
, and
W.
Rao
, “
Recoverable liquid metal paste with reversible rheological characteristic for electronics printing
,”
ACS Appl. Mater. Interfaces
12
(
12
),
14125
14135
(
2020
).
88.
C. H.
Wang
,
Y.
Gong
,
B. V.
Cunning
,
S.
Lee
,
Q.
Le
,
S. R.
Joshi
,
O.
Buyukcakir
,
H. Y.
Zhang
,
W. K.
Seong
,
M.
Huang
,
M. H.
Wang
,
J.
Lee
,
G. H.
Kim
, and
R. S.
Ruoff
, “
A general approach to composites containing nonmetallic fillers and liquid gallium
,”
Sci. Adv.
7
(
1
),
eabe3767
(
2021
).
89.
T.
Lim
and
H.
Zhang
, “
Multilayer carbon nanotube/gold nanoparticle composites on gallium-based liquid metals for electrochemical biosensing
,”
ACS Appl. Nano Mater.
4
(
11
),
12690
12701
(
2021
).
90.
C.
Zeng
,
C.
Ma
, and
J.
Shen
, “
High thermal conductivity in diamond induced carbon fiber-liquid metal mixtures
,”
Composites, Part B
238
,
109902
(
2022
).
91.
G.-H.
Lee
,
H.
Woo
,
C.
Yoon
,
C.
Yang
,
J.-Y.
Bae
,
W.
Kim
,
D. H.
Lee
,
H.
Kang
,
S.
Han
,
S.-K.
Kang
,
S.
Park
,
H.-R.
Kim
,
J.-W.
Jeong
, and
S.
Park
, “
A personalized electronic tattoo for healthcare realized by on-the-spot assembly of an intrinsically conductive and durable liquid-metal composite
,”
Adv. Mater.
34
(
32
),
2204159
(
2022
).
92.
A. B. M.
Tahidul Haque
,
R.
Tutika
,
M.
Gao
,
A.
Martinez
,
J.
Mills
,
J.
Arul Clement
,
J.
Gao
,
M.
Tabrizi
,
M.
Ravi Shankar
,
Q.
Pei
, and
M. D.
Bartlett
, “
Conductive liquid metal elastomer thin films with multifunctional electro-mechanical properties
,”
Multifunct. Mater.
3
(
4
),
044001
(
2020
).
93.
L. X.
Tang
,
L.
Mou
,
W.
Zhang
, and
X. Y.
Jiang
, “
Large-scale fabrication of highly elastic conductors on a broad range of surfaces
,”
ACS Appl. Mater. Interfaces
11
(
7
),
7138
7147
(
2019
).
94.
L. X.
Tang
,
L.
Mou
,
J.
Shang
,
J. B.
Dou
,
W.
Zhang
, and
X. Y.
Jiang
, “
Metal-hygroscopic polymer conductors that can secrete solders for connections in stretchable devices
,”
Mater. Horiz.
7
(
4
),
1186
1194
(
2020
).
95.
G.
Yun
,
S.-Y.
Tang
,
H.
Lu
,
T.
Cole
,
S.
Sun
,
J.
Shu
,
J.
Zheng
,
Q.
Zhang
,
S.
Zhang
,
M. D.
Dickey
, and
W.
Li
, “
Liquid metal hybrid composites with high-sensitivity and large dynamic range enabled by micro- and macrostructure engineering
,”
ACS Appl. Polym. Mater.
3
(
10
),
5302
5315
(
2021
).
96.
C.
Zhang
,
F.-M.
Allioux
,
M. A.
Rahim
,
J.
Han
,
J.
Tang
,
M. B.
Ghasemian
,
S.-Y.
Tang
,
M.
Mayyas
,
T.
Daeneke
,
P.
Le-Clech
,
R. B.
Kaner
,
D.
Esrafilzadeh
, and
K.
Kalantar-Zadeh
, “
Nucleation and growth of polyaniline nanofibers onto liquid metal nanoparticles
,”
Chem. Mater.
32
(
11
),
4808
4819
(
2020
).
97.
V.
Vallem
,
V.
Aggarwal
, and
M. D.
Dickey
, “
Stretchable liquid metal films with high surface area and strain invariant resistance
,”
Adv. Mater. Technol.
8
(
5
),
2201233
(
2022
).
98.
S.-H.
Chiu
,
M.
Baharfar
,
Y.
Chi
,
M. S.
Widjajana
,
Z.
Cao
,
F.-M.
Allioux
,
J.
Tang
,
M. A.
Rahim
, and
K.
Kalantar-Zadeh
, “
Exploring electrical conductivity of thiolated micro- and nanoparticles of gallium
,”
Adv. Intell. Syst.
(published online, 2023).
99.
L.
Ding
,
C.
Hang
,
S. J.
Yang
,
J.
Qi
,
R. H.
Dong
,
Y.
Zhang
,
H. S.
Sun
, and
X. Y.
Jiang
, “
In situ deposition of skin-adhesive liquid metal particles with robust wear resistance for epidermal electronics
,”
Nano Lett.
22
(
11
),
4482
4490
(
2022
).
100.
Z. J.
Farrell
,
C. J.
Thrasher
,
A. E.
Flynn
, and
C. E.
Tabor
, “
Silanized liquid-metal nanoparticles for responsive electronics
,”
ACS Appl. Nano Mater.
3
(
7
),
6297
6303
(
2020
).
101.
X.
Li
,
M.
Li
,
L.
Zong
,
X.
Wu
,
J.
You
,
P.
Du
, and
C.
Li
, “
Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible conductive devices
,”
Adv. Funct. Mater.
28
(
39
),
1804197
(
2018
).
102.
S.
Cai
,
F.-M.
Allioux
,
J.
Tang
,
J.
Han
,
J.
Zhang
,
Y.
He
,
S.
Merhebi
,
M. J.
Christoe
,
M.
Mayyas
,
E. H. H.
Wong
,
C.
Boyer
,
R.
Neff
, and
K.
Kalantar-Zadeh
, “
Soft liquid metal infused conductive sponges
,”
Adv. Mater. Technol.
7
(
8
),
2101500
(
2022
).
103.
C. Y.
Cao
,
X.
Huang
,
D.
Lv
,
L. Q.
Ai
,
W. L.
Chen
,
C. S.
Hou
,
B.
Yi
,
J. D.
Luo
, and
X.
Yao
, “
Ultrastretchable conductive liquid metal composites enabled by adaptive interfacial polarization
,”
Mater. Horiz.
8
(
12
),
3399
3408
(
2021
).
104.
J. J.
Yan
,
M. H.
Malakooti
,
Z.
Lu
,
Z. Y.
Wang
,
N.
Kazem
,
C. F.
Pan
,
M. R.
Bockstaller
,
C.
Majidi
, and
K.
Matyjaszewski
, “
Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization
,”
Nat. Nanotechnol.
14
(
7
),
684
690
(
2019
).
105.
X.
Li
,
P. C.
Zhu
,
S. C.
Zhang
,
X. C.
Wang
,
X. P.
Luo
,
Z. W.
Leng
,
H.
Zhou
,
Z. F.
Pan
, and
Y. C.
Mao
, “
A self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid metal paper for multifunctional E-skin
,”
ACS Nano
16
(
4
),
5909
5919
(
2022
).
106.
P.
Yi
,
H.
Zou
,
Y.
Yu
,
X.
Li
,
Z.
Li
,
G.
Deng
,
C.
Chen
,
M.
Fang
,
J.
He
,
X.
Sun
,
X.
Liu
,
J.
Shui
, and
R.
Yu
, “
MXene-reinforced liquid metal/polymer fibers via interface engineering for wearable multifunctional textiles
,”
ACS Nano
16
(
9
),
14490
14502
(
2022
).
107.
D.
Pei
,
S.
Yu
,
P.
Liu
,
Y.
Wu
,
X.
Zhang
,
Y.
Chen
,
M.
Li
, and
C.
Li
, “
Reversible wet‐adhesive and self‐healing conductive composite elastomer of liquid metal
,”
Adv. Funct. Mater.
32
(
35
),
2204257
(
2022
).
108.
P.
Wu
,
Z.
Wang
,
X.
Yao
,
J.
Fu
, and
Y.
He
, “
Recyclable conductive nanoclay for direct in situ printing flexible electronics
,”
Mater. Horiz.
8
(
7
),
2006
2017
(
2021
).
109.
Z. J.
Ma
,
Q. Y.
Huang
,
Q.
Xu
,
Q. N.
Zhuang
,
X.
Zhao
,
Y. H.
Yang
,
H.
Qiu
,
Z. L.
Yang
,
C.
Wang
,
Y.
Chai
, and
Z. J.
Zheng
, “
Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics
,”
Nat. Mater.
20
(
6
),
859
868
(
2021
).
110.
M. A. H.
Khondoker
and
D.
Sameoto
, “
Fabrication methods and applications of microstructured gallium based liquid metal alloys
,”
Smart Mater. Struct.
25
(
9
),
093001
(
2016
).
111.
J. W.
Boley
,
E. L.
White
,
G. T. C.
Chiu
, and
R. K.
Kramer
, “
Direct writing of gallium-indium alloy for stretchable electronics
,”
Adv. Funct. Mater.
24
(
23
),
3501
3507
(
2014
).
112.
S.
Kim
,
J.
Oh
,
D.
Jeong
, and
J.
Bae
, “
Direct wiring of eutectic gallium–indium to a metal electrode for soft sensor systems
,”
ACS Appl. Mater. Interfaces
11
(
22
),
20557
20565
(
2019
).
113.
J.
Yang
and
J.
Liu
, “
Direct printing and assembly of FM radio at the user end via liquid metal printer
,”
Circuit World
40
(
4
),
134
140
(
2014
).
114.
Z.
Yang
,
D.
Yang
,
X.
Zhao
,
Q.
Zhao
,
M.
Zhu
,
Y.
Liu
,
Y.
Wang
,
W.
Lu
, and
D.
Qi
, “
From liquid metal to stretchable electronics: Overcoming the surface tension
,”
Sci. China Mater.
65
(
8
),
2072
2088
(
2022
).
115.
H.
Wang
,
Y.
Zhang
,
X.
He
,
F.
Zuo
,
Y.
Yang
,
P.
Yan
,
B.
Luo
, and
S.
He
, “
Wettability of liquid metals on PEDOT:PSS for soft electronics
,”
Appl. Surf. Sci.
609
,
155410
(
2023
).
116.
E. S.
Elton
,
T. C.
Reeve
,
L. E.
Thornley
,
I. D.
Joshipura
,
P. H.
Paul
,
A. J.
Pascall
, and
J. R.
Jeffries
, “
Dramatic effect of oxide on measured liquid metal rheology
,”
J. Rheol.
64
(
1
),
119
128
(
2020
).
117.
A.
Zavabeti
,
J. Z.
Ou
,
B. J.
Carey
,
N.
Syed
,
R.
Orrell-Trigg
,
E.
Mayes
,
C.
Xu
,
O.
Kavehei
,
A. P.
O'mullane
,
R. B.
Kaner
et al, “
A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides
,”
Science
358
(
6361
),
332
335
(
2017
).
118.
S.
Houshyar
,
A.
Rifai
,
R.
Zizhou
,
C.
Dekiwadia
,
M. A.
Booth
,
S.
John
,
K.
Fox
, and
V. K.
Truong
, “
Liquid metal polymer composite: Flexible, conductive, biocompatible, and antimicrobial scaffold
,”
J. Biomed. Mater. Res., Part B
110
(
5
),
1131
1139
(
2022
).
119.
S.-Y.
Tang
and
R.
Qiao
, “
Liquid metal particles and polymers: A soft–soft system with exciting properties
,”
Acc. Mater. Res.
2
(
10
),
966
978
(
2021
).
120.
R.
Abbasi
,
M.
Mayyas
,
M. B.
Ghasemian
,
F.
Centurion
,
J.
Yang
,
M.
Saborio
,
F.-M.
Allioux
,
J.
Han
,
J.
Tang
,
M. J.
Christoe
,
K. M.
Mohibul Kabir
,
K.
Kalantar-Zadeh
, and
M. A.
Rahim
, “
Photolithography-enabled direct patterning of liquid metals
,”
J. Mater. Chem. C
8
(
23
),
7805
7811
(
2020
).
121.
L. Y.
Zhou
,
J.
Fu
, and
Y.
He
, “
A review of 3D printing technologies for soft polymer materials
,”
Adv. Funct. Mater.
30
(
28
),
2000187
(
2020
).
122.
Y.
Peng
,
H.
Liu
,
Y.
Xin
, and
J.
Zhang
, “
Rheological conductor from liquid metal-polymer composites
,”
Matter
4
(
9
),
3001
3014
(
2021
).
123.
M. D.
Dickey
,
R. C.
Chiechi
,
R. J.
Larsen
,
E. A.
Weiss
,
D. A.
Weitz
, and
G. M.
Whitesides
, “
Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature
,”
Adv. Funct. Mater.
18
(
7
),
1097
1104
(
2008
).
124.
A.
Fassler
and
C.
Majidi
, “
3D structures of liquid-phase gain alloy embedded in PDMS with freeze casting
,”
Lab Chip
13
(
22
),
4442
4450
(
2013
).
125.
Q.
Gao
,
H.
Li
,
J.
Zhang
,
Z.
Xie
,
J.
Zhang
, and
L.
Wang
, “
Microchannel structural design for a room-temperature liquid metal based super-stretchable sensor
,”
Sci. Rep.
9
,
5908
(
2019
).
126.
Y.
Lin
,
O.
Gordon
,
M. R.
Khan
,
N.
Vasquez
,
J.
Genzer
, and
M. D.
Dickey
, “
Vacuum filling of complex microchannels with liquid metal
,”
Lab Chip
17
(
18
),
3043
3050
(
2017
).
127.
J.
Park
,
S.
Wang
,
M.
Li
,
C.
Ahn
,
J. K.
Hyun
,
D. S.
Kim
,
D. K.
Kim
,
J. A.
Rogers
,
Y.
Huang
, and
S.
Jeon
, “
Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors
,”
Nat. Commun.
3
,
916
(
2012
).
128.
R.
Wang
,
L.
Gui
,
L.
Zhang
,
Z.
He
,
M.
Gao
,
S.
Chen
,
X.
Zhou
,
Y.
Cui
, and
Z.
Deng
, “
Porous membrane‐enabled fast liquid metal patterning in thin blind‐ended microchannels
,”
Adv. Mater. Technol.
4
(
9
),
1900256
(
2019
).
129.
K.
Khoshmanesh
,
S. Y.
Tang
,
J. Y.
Zhu
,
S.
Schaefer
,
A.
Mitchell
,
K.
Kalantar-Zadeh
, and
M. D.
Dickey
, “
Liquid metal enabled microfluidics
,”
Lab Chip
17
(
6
),
974
993
(
2017
).
130.
L.
Zhu
,
B.
Wang
,
S.
Handschuh-Wang
, and
X.
Zhou
, “
Liquid metal-based soft microfluidics
,”
Small
16
(
9
),
1903841
(
2019
).
131.
K.
Munirathinam
,
J.
Park
,
Y.-J.
Jeong
, and
D.-W.
Lee
, “
Galinstan-based flexible microfluidic device for wireless human-sensor applications
,”
Sens. Actuators, A
315
,
112344
(
2020
).
132.
W.
Zhang
,
J.
Chen
,
X.
Li
, and
Y.
Lu
, “
Liquid metal-polymer microlattice metamaterials with high fracture toughness and damage recoverability
,”
Small
16
(
46
),
e2004190
(
2020
).
133.
T.
Lu
,
L.
Finkenauer
,
J.
Wissman
, and
C.
Majidi
, “
Rapid prototyping for soft-matter electronics
,”
Adv. Funct. Mater.
24
(
22
),
3351
3356
(
2014
).
134.
Q.
Wu
,
F.
Zhu
,
Z.
Wu
,
Y.
Xie
,
J.
Qian
,
J.
Yin
, and
H.
Yang
, “
Suspension printing of liquid metal in yield-stress fluid for resilient 3D constructs with electromagnetic functions
,”
npj Flexible Electron.
6
(
1
),
50
(
2022
).
135.
Y.-Z.
Yu
,
J.-R.
Lu
, and
J.
Liu
, “
3D printing for functional electronics by injection and package of liquid metals into channels of mechanical structures
,”
Mater. Des.
122
,
80
89
(
2017
).
136.
B. A.
Gozen
,
A.
Tabatabai
,
O. B.
Ozdoganlar
, and
C.
Majidi
, “
High-density soft-matter electronics with micron-scale line width
,”
Adv. Mater.
26
(
30
),
5211
5216
(
2014
).
137.
Y.
Yu
,
F.
Liu
,
R.
Zhang
, and
J.
Liu
, “
Suspension 3D printing of liquid metal into self-healing hydrogel
,”
Adv. Mater. Technol.
2
(
11
),
1700173
(
2017
).
138.
X.
Wang
,
X.
Liu
,
P.
Bi
,
Y.
Zhang
,
L.
Li
,
J.
Guo
,
Y.
Zhang
,
X.
Niu
,
Y.
Wang
,
L.
Hu
, and
Y.
Fan
, “
Electrochemically enabled embedded three-dimensional printing of freestanding gallium wire-like structures
,”
ACS Appl. Mater. Interfaces
12
(
48
),
53966
53972
(
2020
).
139.
L.
Wang
and
J.
Liu
, “
Compatible hybrid 3D printing of metal and nonmetal inks for direct manufacture of end functional devices
,”
Sci. China Technol. Sci.
57
(
11
),
2089
2095
(
2014
).
140.
Q.
Zhang
,
Y.
Zheng
, and
J.
Liu
, “
Direct writing of electronics based on alloy and metal (dream) ink: A newly emerging area and its impact on energy, environment and health sciences
,”
Front. Energy
6
(
4
),
311
340
(
2012
).
141.
A.
Tabatabai
,
A.
Fassler
,
C.
Usiak
, and
C.
Majidi
, “
Liquid-phase gallium-indium alloy electronics with microcontact printing
,”
Langmuir
29
(
20
),
6194
6200
(
2013
).
142.
E. P.
Yalcintas
,
K. B.
Ozutemiz
,
T.
Cetinkaya
,
L.
Dalloro
,
C.
Majidi
, and
O. B.
Ozdoganlar
, “
Soft electronics manufacturing using microcontact printing
,”
Adv. Funct. Mater.
29
(
51
),
1906551
(
2019
).
143.
Q.
Zhang
,
Y. X.
Gao
, and
J.
Liu
, “
Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics
,”
Appl. Phys. A
116
(
3
),
1091
1097
(
2014
).
144.
G.
Li
,
X.
Wu
, and
D. W.
Lee
, “
A galinstan-based inkjet printing system for highly stretchable electronics with self-healing capability
,”
Lab Chip
16
(
8
),
1366
1373
(
2016
).
145.
Q.
Wang
,
Y.
Yu
,
J.
Yang
, and
J.
Liu
, “
Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing
,”
Adv. Mater.
27
(
44
),
7109
7116
(
2015
).
146.
B.
Ma
,
C.
Xu
,
J.
Chi
,
J.
Chen
,
C.
Zhao
, and
H.
Liu
, “
A versatile approach for direct patterning of liquid metal using magnetic field
,”
Adv. Funct. Mater.
29
(
28
),
1901370
(
2019
).
147.
J.
Zhang
,
B.
Ma
,
G. S.
Chen
,
Y.
Chen
,
C. T.
Xu
,
Q.
Hao
,
C.
Zhao
, and
H.
Liu
, “
Surface-embedded liquid metal electrodes with abrasion resistance via direct magnetic printing
,”
ACS Appl. Mater. Interfaces
14
(
47
),
53405
53412
(
2022
).
148.
D.
Foresti
,
K. T.
Kroll
,
R.
Amissah
,
F.
Sillani
,
K. A.
Homan
,
D.
Poulikakos
, and
J. A.
Lewis
, “
Acoustophoretic printing
,”
Sci. Adv.
4
(
8
),
eaat1659
(
2018
).
149.
Y.
Zheng
,
Z. Z.
He
,
Y. X.
Gao
, and
J.
Liu
, “
Direct desktop printed-circuits-on-paper flexible electronics
,”
Sci. Rep.
3
,
1786
(
2013
).
150.
Y. G.
Park
,
H. S.
An
,
J. Y.
Kim
, and
J. U.
Park
, “
High-resolution, reconfigurable printing of liquid metals with three-dimensional structures
,”
Sci. Adv.
5
(
6
),
eaaw2844
(
2019
).
151.
S. H.
Jeong
,
A.
Hagman
,
K.
Hjort
,
M.
Jobs
,
J.
Sundqvist
, and
Z.
Wu
, “
Liquid alloy printing of microfluidic stretchable electronics
,”
Lab Chip
12
(
22
),
4657
4664
(
2012
).
152.
M.
Wang
,
C.
Ma
,
P. C.
Uzabakiriho
,
X.
Chen
,
Z.
Chen
,
Y.
Cheng
,
Z.
Wang
, and
G.
Zhao
, “
Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics
,”
ACS Nano
15
(
12
),
19364
19376
(
2021
).
153.
L.
Wang
and
J.
Liu
, “
Pressured liquid metal screen printing for rapid manufacture of high resolution electronic patterns
,”
RSC Adv.
5
(
71
),
57686
57691
(
2015
).
154.
R.
Guo
,
J.
Tang
,
S.
Dong
,
J.
Lin
,
H.
Wang
,
J.
Liu
, and
W.
Rao
, “
One‐step liquid metal transfer printing: Toward fabrication of flexible electronics on wide range of substrates
,”
Adv. Mater. Technol.
3
(
12
),
1800265
(
2018
).
155.
R.
Guo
,
S. Y.
Yao
,
X. Y.
Sun
, and
J.
Liu
, “
Semi-liquid metal and adhesion-selection enabled rolling and transfer (smart) printing: A general method towards fast fabrication of flexible electronics
,”
Sci. China Mater.
62
(
7
),
982
994
(
2019
).
156.
Y.
Cui
,
F.
Liang
,
Z.
Yang
,
S.
Xu
,
X.
Zhao
,
Y.
Ding
,
Z.
Lin
, and
J.
Liu
, “
Metallic bond-enabled wetting behavior at the liquid Ga/CuGa2 interfaces
,”
ACS Appl. Mater. Interfaces
10
(
11
),
9203
9210
(
2018
).
157.
J.
Tang
,
X.
Zhao
,
J.
Li
,
Y.
Zhou
, and
J.
Liu
, “
Liquid metal phagocytosis: Intermetallic wetting induced particle internalization
,”
Adv. Sci.
4
(
5
),
1700024
(
2017
).
158.
L.
Johnston
,
J.
Yang
,
J.
Han
,
K.
Kalantar-Zadeh
, and
J.
Tang
, “
Intermetallic wetting enabled high resolution liquid metal patterning for 3D and flexible electronics
,”
J. Mater. Chem. C
10
(
3
),
921
931
(
2022
).
159.
G.
Li
and
D.-W.
Lee
, “
An advanced selective liquid-metal plating technique for stretchable biosensor applications
,”
Lab Chip
17
(
20
),
3415
3421
(
2017
).
160.
H.
Zhu
,
S.
Wang
,
M.
Zhang
,
T.
Li
,
G.
Hu
, and
D.
Kong
, “
Fully solution processed liquid metal features as highly conductive and ultrastretchable conductors
,”
npj Flexible Electron.
5
(
1
),
25
(
2021
).
161.
X.
Ma
,
M.
Zhang
,
J.
Zhang
,
S.
Wang
,
S.
Cao
,
Y.
Li
,
G.
Hu
, and
D.
Kong
, “
Highly permeable and ultrastretchable liquid metal micromesh for skin-attachable electronics
,”
ACS Mater. Lett.
4
(
4
),
634
641
(
2022
).
162.
C.
Xiao
,
J.
Feng
,
H.
Xu
,
R.
Xu
, and
T.
Zhou
, “
Scalable strategy to directly prepare 2D and 3D liquid metal circuits based on laser-induced selective metallization
,”
ACS Appl. Mater. Interfaces
14
(
17
),
20000
20013
(
2022
).
163.
C.
Pan
,
K.
Kumar
,
J.
Li
,
E. J.
Markvicka
,
P. R.
Herman
, and
C.
Majidi
, “
Visually imperceptible liquid-metal circuits for transparent, stretchable electronics with direct laser writing
,”
Adv. Mater.
30
(
12
),
e1706937
(
2018
).
164.
K. B.
Ozutemiz
,
C.
Majidi
, and
O. B.
Ozdoganlar
, “
Scalable manufacturing of liquid metal circuits
,”
Adv. Mater. Technol.
7
(
11
),
2200295
(
2022
).
165.
J. H.
Kim
,
S.
Kim
,
H.
Kim
,
S.
Wooh
,
J.
Cho
,
M. D.
Dickey
,
J. H.
So
, and
H. J.
Koo
, “
Imbibition-induced selective wetting of liquid metal
,”
Nat. Commun.
13
(
1
),
4763
(
2022
).
166.
M.-G.
Kim
,
D. K.
Brown
, and
O.
Brand
, “
Nanofabrication for all-soft and high-density electronic devices based on liquid metal
,”
Nat. Commun.
11
(
1
),
1002
(
2020
).
167.
Y.
Jiang
,
S.
Su
,
H.
Peng
,
H.
Sing Kwok
,
X.
Zhou
, and
S.
Chen
, “
Selective wetting/dewetting for controllable patterning of liquid metal electrodes for all-printed device application
,”
J. Mater. Chem. C
5
(
47
),
12378
12383
(
2017
).
168.
Y.-H.
Wu
,
S.-T.
Xing
,
R.-M.
Zheng
,
S.-Q.
Liu
,
Z.-F.
Deng
,
H.-Z.
Liu
,
P.-P.
Wang
, and
L.
Liu
, “
Interface design for enhancing the wettability of liquid metal to polyacrylate for intrinsically soft electronics
,”
J. Mater. Chem. C
6
(
25
),
6755
6763
(
2018
).
169.
S.
Zhang
,
B.
Wang
,
J. J.
Jiang
,
K.
Wu
,
C. F.
Guo
, and
Z. G.
Wu
, “
High-fidelity conformal printing of 3D liquid alloy circuits for soft electronics
,”
ACS Appl. Mater. Interfaces
11
(
7
),
7148
7156
(
2019
).
170.
Y. Y.
Yao
,
Y. J.
Ding
,
H. P.
Li
,
S.
Chen
,
R.
Guo
, and
J.
Liu
, “
Multi-substrate liquid metal circuits printing via superhydrophobic coating and adhesive patterning
,”
Adv. Eng. Mater.
21
(
7
),
1801363
(
2019
).
171.
W.
Jung
,
G. R.
Koirala
,
J. S.
Lee
,
J. U.
Kim
,
B.
Park
,
Y. J.
Jo
,
C.
Jeong
,
H.
Hong
,
K.
Kwon
,
Y.-S.
Ye
,
J.
Kim
,
K.
Lee
, and
T.-I.
Kim
, “
Solvent-assisted filling of liquid metal and its selective dewetting for the multilayered 3D interconnect in stretchable electronics
,”
ACS Nano
16
(
12
),
21471
21481
(
2022
).
172.
M.-G.
Kim
,
H.
Alrowais
,
S.
Pavlidis
, and
O.
Brand
, “
Size-scalable and high-density liquid-metal-based soft electronic passive components and circuits using soft lithography
,”
Adv. Funct. Mater.
27
(
3
),
1604466
(
2017
).
173.
Y.
Zhang
,
H.
Duan
,
G.
Li
,
M.
Peng
,
X.
Ma
,
M.
Li
, and
S.
Yan
, “
Construction of liquid metal-based soft microfluidic sensors via soft lithography
,”
J. Nanobiotechnol.
20
(
1
),
246
(
2022
).
174.
M. J.
Ford
,
D. K.
Patel
,
C.
Pan
,
S.
Bergbreiter
, and
C.
Majidi
, “
Controlled assembly of liquid metal inclusions as a general approach for multifunctional composites
,”
Adv. Mater.
32
(
46
),
2002929
(
2020
).
175.
S.
Veerapandian
,
W.
Jang
,
J. B.
Seol
,
H. B.
Wang
,
M.
Kong
,
K.
Thiyagarajan
,
J.
Kwak
,
G.
Park
,
G.
Lee
,
W.
Suh
,
I.
You
,
M. E.
Kilic
,
A.
Giri
,
L.
Beccai
,
A.
Soon
, and
U.
Jeong
, “
Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines
,”
Nat. Mater.
20
(
4
),
533
540
(
2021
).
176.
G. H.
Lee
,
Y. R.
Lee
,
H.
Kim
,
D. A.
Kwon
,
H.
Kim
,
C.
Yang
,
S. Q.
Choi
,
S.
Park
,
J. W.
Jeong
, and
S.
Park
, “
Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics
,”
Nat. Commun.
13
(
1
),
2643
(
2022
).
177.
A.
Haake
,
R.
Tutika
,
G. M.
Schloer
,
M. D.
Bartlett
, and
E. J.
Markvicka
, “
On-demand programming of liquid metal-composite microstructures through direct ink write 3D printing
,”
Adv. Mater.
34
(
20
),
e2200182
(
2022
).
178.
L.
An
,
H.
Jiang
,
D. D. C.
Branco
,
X.
Liu
,
J.
Xu
, and
G. J.
Cheng
, “
Self-packaged high-resolution liquid metal nano-patterns
,”
Matter
5
(
3
),
1016
1030
(
2022
).
179.
W.
Lee
,
H.
Kim
,
I.
Kang
,
H.
Park
,
J.
Jung
,
H.
Lee
,
H.
Park
,
J. S.
Park
,
J. M.
Yuk
,
S.
Ryu
,
J.-W.
Jeong
, and
J.
Kang
, “
Universal assembly of liquid metal particles in polymers enables elastic printed circuit board
,”
Science
378
(
6620
),
637
641
(
2022
).
180.
M. A.
Rahim
,
F.
Centurion
,
J.
Han
,
R.
Abbasi
,
M.
Mayyas
,
J.
Sun
,
M. J.
Christoe
,
D.
Esrafilzadeh
,
F.-M.
Allioux
,
M. B.
Ghasemian
,
J.
Yang
,
J.
Tang
,
T.
Daeneke
,
S.
Mettu
,
J.
Zhang
,
M. H.
Uddin
,
R.
Jalili
, and
K.
Kalantar-Zadeh
, “
Polyphenol-induced adhesive liquid metal inks for substrate-independent direct pen writing
,”
Adv. Funct. Mater.
31
(
10
),
2007336
(
2021
).
181.
J. W.
Boley
,
E. L.
White
, and
R. K.
Kramer
, “
Mechanically sintered gallium-indium nanoparticles
,”
Adv. Mater.
27
(
14
),
2355
2360
(
2015
).
182.
J.
Xu
,
H.
Guo
,
H.
Ding
,
Q.
Wang
,
Z.
Tang
,
Z.
Li
, and
G.
Sun
, “
Printable and recyclable conductive ink based on a liquid metal with excellent surface wettability for flexible electronics
,”
ACS Appl. Mater. Interfaces
13
(
6
),
7443
7452
(
2021
).
183.
Y.
Huang
,
B.
Yu
,
L.
Zhang
,
N.
Ning
, and
M.
Tian
, “
Highly stretchable conductor by self-assembling and mechanical sintering of a 2D liquid metal on a 3D polydopamine-modified polyurethane sponge
,”
ACS Appl. Mater. Interfaces
11
(
51
),
48321
48330
(
2019
).
184.
B. W.
Deng
and
G. J.
Cheng
, “
Pulsed laser modulated shock transition from liquid metal nanoparticles to mechanically and thermally robust solid-liquid patterns
,”
Adv. Mater.
31
(
14
),
1807811
(
2019
).
185.
M.
Zhang
,
G.
Li
,
L.
Huang
,
P.
Ran
,
J.
Huang
,
M.
Yu
,
H.
Yuqian
,
J.
Guo
,
Z.
Liu
, and
X.
Ma
, “
Versatile fabrication of liquid metal nano-ink based flexible electronic devices
,”
Appl. Mater. Today
22
,
100903
(
2021
).
186.
H. Z.
Wang
,
Y. Y.
Yao
,
Z. Z.
He
,
W.
Rao
,
L.
Hu
,
S.
Chen
,
J.
Lin
,
J. Y.
Gao
,
P. J.
Zhang
,
X. Y.
Sun
,
X. J.
Wang
,
Y. T.
Cui
,
Q.
Wang
,
S. J.
Dong
,
G. Z.
Chen
, and
J.
Liu
, “
A highly stretchable liquid metal polymer as reversible transitional insulator and conductor
,”
Adv. Mater.
31
(
23
),
1901337
(
2019
).
187.
S.
Chen
,
H. Z.
Wang
,
X. Y.
Sun
,
Q.
Wang
,
X. J.
Wang
,
L. B.
Chen
,
L. J.
Zhang
,
R.
Guo
, and
J.
Liu
, “
Generalized way to make temperature tunable conductor-insulator transition liquid metal composites in a diverse range
,”
Mater. Horiz.
6
(
9
),
1854
1861
(
2019
).
188.
H.
Hu
,
H.
Huang
,
M.
Li
,
X.
Gao
,
L.
Yin
,
R.
Qi
,
R. S.
Wu
,
X.
Chen
,
Y.
Ma
,
K.
Shi
,
C.
Li
,
T. M.
Maus
,
B.
Huang
,
C.
Lu
,
M.
Lin
,
S.
Zhou
,
Z.
Lou
,
Y.
Gu
,
Y.
Chen
,
Y.
Lei
,
X.
Wang
,
R.
Wang
,
W.
Yue
,
X.
Yang
,
Y.
Bian
,
J.
Mu
,
G.
Park
,
S.
Xiang
,
S.
Cai
,
P. W.
Corey
,
J.
Wang
, and
S.
Xu
, “
A wearable cardiac ultrasound imager
,”
Nature
613
(
7945
),
667
675
(
2023
).
189.
B.
Chen
,
Y.
Cao
,
Q.
Li
,
Z.
Yan
,
R.
Liu
,
Y.
Zhao
,
X.
Zhang
,
M.
Wu
,
Y.
Qin
,
C.
Sun
,
W.
Yao
,
Z.
Cao
,
P. M.
Ajayan
,
M. O. L.
Chee
,
P.
Dong
,
Z.
Li
,
J.
Shen
, and
M.
Ye
, “
Liquid metal-tailored gluten network for protein-based e-skin
,”
Nat. Commun.
13
(
1
),
1206
(
2022
).
190.
Y.
Ren
,
X.
Sun
, and
J.
Liu
, “
Advances in liquid metal-enabled flexible and wearable sensors
,”
Micromachines
11
(
2
),
200
(
2020
).
191.
M.
Baharfar
and
K.
Kalantar-Zadeh
, “
Emerging role of liquid metals in sensing
,”
ACS Sens.
7
(
2
),
386
408
(
2022
).
192.
Y.
Wu
,
Y.
Zhou
,
W.
Asghar
,
Y.
Liu
,
F.
Li
,
D.
Sun
,
C.
Hu
,
Z.
Wu
,
J.
Shang
,
Z.
Yu
,
R.-W.
Li
, and
H.
Yang
, “
Liquid metal-based strain sensor with ultralow detection limit for human–machine interface applications
,”
Adv. Intell. Syst.
3
(
10
),
2000235
(
2021
).
193.
X.
Wang
,
R.
Guo
,
B.
Yuan
,
Y.
Yao
,
F.
Wang
, and
J.
Liu
, “
Ni-doped liquid metal printed highly stretchable and conformable strain sensor for multifunctional human-motion monitoring
,” in
40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
, 18–21 July (IEEE,
2018
), pp.
3276
3279
.
194.
Y.
Tao
,
F.
Han
,
C.
Shi
,
R.
Yang
,
Y.
Chen
, and
Y.
Ren
, “
Liquid metal-based flexible and wearable sensor for functional human-machine interface
,”
Micromachines
13
(
9
),
1429
(
2022
).
195.
B.
Feng
,
X.
Jiang
,
G. S.
Zou
,
W. G.
Wang
,
T. M.
Sun
,
H.
Yang
,
G. L.
Zhao
,
M. Y.
Dong
,
Y.
Xiao
,
H. W.
Zhu
, and
L.
Liu
, “
Nacre-inspired, liquid metal-based ultrasensitive electronic skin by spatially regulated cracking strategy
,”
Adv. Funct. Mater.
31
(
29
),
2102359
(
2021
).
196.
L. N.
Mao
,
T. S.
Pan
,
J. X.
Guo
,
Y. Z.
Ke
,
J.
Zhu
,
H. Y.
Cheng
, and
Y.
Lin
, “
Reconfigurable, stretchable strain sensor with the localized controlling of substrate modulus by two-phase liquid metal cells
,”
Nanomaterials
12
(
5
),
882
(
2022
).
197.
T.
Hu
,
S.
Xuan
,
L.
Ding
, and
X.
Gong
, “
Liquid metal circuit based magnetoresistive strain sensor with discriminating magnetic and mechanical sensitivity
,”
Sens. Actuators, B
314
,
128095
(
2020
).
198.
S. L.
Wang
,
X.
Xu
,
Z.
Han
,
H.
Li
,
Q.
Wang
, and
B.
Yao
, “
Highly stretchable liquid-metal based strain sensor with high sensitivity for human activity monitoring
,”
Mater. Lett.
308
,
131277
(
2022
).
199.
Y.
Dong
,
C.
Wang
,
Z.
Hu
,
S.
Mao
,
X.
Wei
,
Y.
Fu
,
J.
Li
, and
J.
Han
, “
A sandwich-structure, low-temperature sensitive and recyclable liquid metal organic hydrogel for a wearable strain sensor
,”
J. Appl. Polym. Sci.
139
(
47
),
e53174
(
2022
).
200.
P.
Bhuyan
,
D.
Cho
,
M.
Choe
,
S.
Lee
, and
S.
Park
, “
Liquid metal patterned stretchable and soft capacitive sensor with enhanced dielectric property enabled by graphite nanofiber fillers
,”
Polymers
14
(
4
),
710
(
2022
).
201.
C.
Huang
,
X.
Wang
,
Q.
Cao
,
D.
Zhang
,
S.
Ding
,
H.
Xie
, and
J.-Z.
Jiang
, “
Soft and stretchable liquid metal–elastomer composite for wearable electronics
,”
ACS Appl. Mater. Interfaces
14
(
33
),
38196
38204
(
2022
).
202.
R.
Tang
,
Q.
Meng
,
Z.
Wang
,
C.
Lu
,
M.
Zhang
,
C.
Li
,
Y.
Li
,
X.
Shen
, and
Q.
Sun
, “
Multifunctional ternary hybrid hydrogel sensor prepared via the synergistic stabilization effect
,”
ACS Appl. Mater. Interfaces
13
(
48
),
57725
57734
(
2021
).
203.
Y.
Zhang
,
S.
Liu
,
Y.
Miao
,
H.
Yang
,
X.
Chen
,
X.
Xiao
,
Z.
Jiang
,
X.
Chen
,
B.
Nie
, and
J.
Liu
, “
Highly stretchable and sensitive pressure sensor array based on icicle-shaped liquid metal film electrodes
,”
ACS Appl. Mater. Interfaces
12
(
25
),
27961
27970
(
2020
).
204.
L.
Zhang
,
M.
Gao
,
R.
Wang
,
Z.
Deng
, and
L.
Gui
, “
Stretchable pressure sensor with leakage-free liquid-metal electrodes
,”
Sensors
19
(
6
),
1316
(
2019
).
205.
S.
He
,
C.
Zhou
,
H.
Chen
,
X.
Liu
,
H.
Li
,
W.
Ma
,
X.
Su
, and
T.
Han
, “
Super soft conductors based on liquid metal/cotton composites
,”
J. Mater. Chem. C
8
(
10
),
3553
3561
(
2020
).
206.
S.
Baek
,
D.-J.
Won
,
J. G.
Kim
, and
J.
Kim
, “
Development and analysis of a capacitive touch sensor using a liquid metal droplet
,”
J. Micromech. Microeng.
25
(
9
),
095015
(
2015
).
207.
R.
Matsukawa
,
D.
Kobayashi
,
H.
Mitsui
, and
T.
Ikuno
, “
Environment-friendly paper-based flexible pressure sensors with carbon nanotubes and liquid metal
,”
Appl. Phys. Express
13
(
2
),
027001
(
2020
).
208.
Y.
Li
,
Y.
Cui
,
M.
Zhang
,
X.
Li
,
R.
Li
,
W.
Si
,
Q.
Sun
,
L.
Yu
, and
C.
Huang
, “
Ultrasensitive pressure sensor sponge using liquid metal modulated nitrogen-doped graphene nanosheets
,”
Nano Lett.
22
(
7
),
2817
2825
(
2022
).
209.
O.
Gul
,
K.
Kim
,
J.
Gu
,
J.
Choi
,
D. D.
Henriquez
,
J.
Ahn
, and
I.
Park
, “
Sensitivity-controllable liquid-metal-based pressure sensor for wearable applications
,”
ACS Appl. Electron. Mater.
3
(
9
),
4027
4036
(
2021
).
210.
X. M.
Shi
and
C. H.
Cheng
, “
Artificial hair cell sensors using liquid metal alloy as piezoresistors
,” in
38th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE NEMS 2013)
(IEEE,
2013
), pp.
978
981
.
211.
X.
Zhou
,
Y.
He
, and
J.
Zeng
, “
Liquid metal antenna-based pressure sensor
,”
Smart Mater. Struct.
28
(
2
),
025019
(
2019
).
212.
S. D.
Hossain
,
A.
Arif
,
B.
Lohani
, and
R. C.
Roberts
, “
Flexible EGaIn liquid metal microstrip patch antenna based pressure sensor
,” in
IEEE Sensors
, 31 October−3 November,
2021
.
213.
J.
Yang
,
T.
Zhou
,
L.
Zhang
,
D.
Zhu
,
S.
Handschuh-Wang
,
Z.
Liu
,
T.
Kong
,
Y.
Liu
,
J.
Zhang
, and
X.
Zhou
, “
Defect-free, high resolution patterning of liquid metals using reversibly sealed, reusable polydimethylsiloxane microchannels for flexible electronic applications
,”
J. Mater. Chem. C
5
(
27
),
6790
6797
(
2017
).
214.
S.
Hamaguchi
,
T.
Kawasetsu
,
T.
Horii
,
H.
Ishihara
,
R.
Niiyama
,
K.
Hosoda
, and
M.
Asada
, “
Soft inductive tactile sensor using flow-channel enclosing liquid metal
,”
IEEE Rob. Autom. Lett.
5
(
3
),
4028
4034
(
2020
).
215.
Y.
Gao
,
H.
Ota
,
E. W.
Schaler
,
K.
Chen
,
A.
Zhao
,
W.
Gao
,
H. M.
Fahad
,
Y.
Leng
,
A.
Zheng
,
F.
Xiong
,
C.
Zhang
,
L. C.
Tai
,
P.
Zhao
,
R. S.
Fearing
, and
A.
Javey
, “
Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring
,”
Adv. Mater.
29
(
39
),
1701985
(
2017
).
216.
W.
Babatain
,
U.
Buttner
,
N.
El-Atab
, and
M. M.
Hussain
, “
Graphene and liquid metal integrated multifunctional wearable platform for monitoring motion and human–machine interfacing
,”
ACS Nano
16
,
20305
20317
(
2022
).
217.
M.
Varga
,
C.
Ladd
,
S.
Ma
,
J.
Holbery
, and
G.
Tröster
, “
On-skin liquid metal inertial sensor
,”
Lab Chip
17
(
19
),
3272
3278
(
2017
).
218.
W.
Babatain
,
N.
El-Atab
, and
M. M.
Hussain
, “
Graphene coated liquid metal droplet-enabled dual-axis integrated accelerometer
,”
Adv. Mater. Technol.
8
(
1
),
2201094
(
2023
).
219.
V.
Sivan
,
S.-Y.
Tang
,
A. P.
O'mullane
,
P.
Petersen
,
N.
Eshtiaghi
,
K.
Kalantar-Zadeh
, and
A.
Mitchell
, “
Liquid metal marbles
,”
Adv. Funct. Mater.
23
(
2
),
144
152
(
2013
).
220.
L.
Mou
,
Y.
Xia
, and
X.
Jiang
, “
Liquid metal-polymer conductor-based wireless, battery-free epidermal patch
,”
Biosens. Bioelectron.
197
,
113765
(
2022
).
221.
X.
Chen
,
H.
Wan
,
R.
Guo
,
X.
Wang
,
Y.
Wang
,
C.
Jiao
,
K.
Sun
, and
L.
Hu
, “
A double-layered liquid metal-based electrochemical sensing system on fabric as a wearable detector for glucose in sweat
,”
Microsyst. Nanoeng.
8
(
1
),
48
(
2022
).
222.
Y.
Wang
,
Y.
Lu
,
D.
Mei
, and
L.
Zhu
, “
Liquid metal-based wearable tactile sensor for both temperature and contact force sensing
,”
IEEE Sens. J.
21
(
2
),
1694
1703
(
2021
).
223.
C.
Wang
,
J.
Li
,
Z.
Fang
,
Z.
Hu
,
X.
Wei
,
Y.
Cao
,
J.
Han
, and
Y.
Li
, “
Temperature-stress bimodal sensing conductive hydrogel-liquid metal by facile synthesis for smart wearable sensor
,”
Macromol. Rapid Commun.
43
(
1
),
2100543
(
2022
).
224.
H.
Chen
,
I.
Furfaro
, and
S. P.
Lacour
, “
Bioinspired liquid metal based sensing system for compliance detection
,” in
IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS)
(IEEE,
2021
), pp.
51
54
.
225.
J. H.
Oh
,
J. Y.
Woo
,
S.
Jo
, and
C.-S.
Han
, “
Pressure-conductive rubber sensor based on liquid-metal-PDMS composite
,”
Sens. Actuators, A
299
,
111610
(
2019
).
226.
Y.
Li
,
Y.
Luo
,
S.
Nayak
,
Z.
Liu
,
O.
Chichvarina
,
E.
Zamburg
,
X.
Zhang
,
Y.
Liu
,
C. H.
Heng
, and
A. V.-Y.
Thean
, “
A stretchable-hybrid low-power monolithic ECG patch with microfluidic liquid-metal interconnects and stretchable carbon-black nanocomposite electrodes for wearable heart monitoring
,”
Adv. Electron. Mater.
5
(
2
),
1800463
(
2019
).
227.
X. M.
Yuan
,
P. C.
Wu
,
Q.
Gao
,
J.
Xu
,
B.
Guo
, and
Y.
He
, “
Multifunctionally wearable monitoring with gelatin hydrogel electronics of liquid metals
,”
Mater. Horiz.
9
(
3
),
961
972
(
2022
).
228.
K.
Kim
,
J.
Choi
,
Y.
Jeong
,
I.
Cho
,
M.
Kim
,
S.
Kim
,
Y.
Oh
, and
I.
Park
, “
Highly sensitive and wearable liquid metal-based pressure sensor for health monitoring applications: Integration of a 3D-printed microbump array with the microchannel
,”
Adv. Healthcare Mater.
8
(
22
),
1900978
(
2019
).
229.
X.
Qu
,
J.
Xue
,
Y.
Liu
,
W.
Rao
,
Z.
Liu
, and
Z.
Li
, “
Fingerprint-shaped triboelectric tactile sensor
,”
Nano Energy
98
,
107324
(
2022
).
230.
K.
Xu
,
Y.
Fujita
,
Y.
Lu
,
S.
Honda
,
M.
Shiomi
,
T.
Arie
,
S.
Akita
, and
K.
Takei
, “
A wearable body condition sensor system with wireless feedback alarm functions
,”
Adv. Mater.
33
(
18
),
2008701
(
2021
).
231.
H.
An
,
L.
Chen
,
X.
Liu
,
X.
Wang
,
Y.
Liu
,
Z.
Wu
,
B.
Zhao
, and
H.
Zhang
, “
High-sensitivity liquid-metal-based contact lens sensor for continuous intraocular pressure monitoring
,”
J. Micromech. Microeng.
31
(
3
),
035006
(
2021
).
232.
Z.-N.
Zhao
,
J.
Lin
,
J.
Zhang
,
Y.
Yu
,
B.
Yuan
,
C.-C.
Fan
,
L.
Wang
, and
J.
Liu
, “
Liquid metal enabled flexible electronic system for eye movement tracking
,”
IEEE Sens. J.
18
(
6
),
2592
2598
(
2018
).
233.
R.
Guo
,
X.
Sun
,
S.
Yao
,
M.
Duan
,
H.
Wang
,
J.
Liu
, and
Z.
Deng
, “
Semi-liquid-metal-(Ni-EGaIn)-based ultraconformable electronic tattoo
,”
Adv. Mater. Technol.
4
(
8
),
1900183
(
2019
).
234.
J.
Zhang
,
L.
Sheng
,
C.
Jin
, and
J.
Liu
, “
Liquid metal as connecting or functional recovery channel for the transected sciatic nerve
,” arXiv:14045931 (
2014
).
235.
C.
Jin
,
J.
Zhang
,
X.
Li
,
X.
Yang
,
J.
Li
, and
J.
Liu
, “
Injectable 3-D fabrication of medical electronics at the target biological tissues
,”
Sci. Rep.
3
(
1
),
3442
(
2013
).
236.
R.
Guo
and
J.
Liu
, “
Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions
,”
J. Micromech. Microeng.
27
(
10
),
104002
(
2017
).
237.
R.
Tang
,
C.
Zhang
,
B.
Liu
,
C.
Jiang
,
L.
Wang
,
X.
Zhang
,
Q.
Huang
,
J.
Liu
, and
L.
Li
, “
Towards an artificial peripheral nerve: Liquid metal-based fluidic cuff electrodes for long-term nerve stimulation and recording
,”
Biosens. Bioelectron.
216
,
114600
(
2022
).
238.
K.
Murakami
,
R.
Tochinai
,
D.
Tachibana
,
Y.
Isano
,
R.
Matsuda
,
F.
Nakamura
,
Y.
Kurotaki
,
Y.
Isoda
,
M.
Yamane
,
Y.
Sugita
,
J.
Fukuda
,
K.
Ueno
,
N.
Miki
,
O.
Fuchiwaki
, and
H.
Ota
, “
Direct wiring of liquid metal on an ultrasoft substrate using a polyvinyl alcohol lift-off method
,”
ACS Appl. Mater. Interfaces
14
(
5
),
7241
7251
(
2022
).
239.
F.
Liu
,
Y.
Yu
,
L.
Yi
, and
J.
Liu
, “
Liquid metal as reconnection agent for peripheral nerve injury
,”
Sci. Bull.
61
(
12
),
939
947
(
2016
).
240.
X.
Wen
,
B.
Wang
,
S.
Huang
,
T. L.
Liu
,
M.-S.
Lee
,
P.-S.
Chung
,
Y. T.
Chow
,
I. W.
Huang
,
H. G.
Monbouquette
,
N. T.
Maidment
, and
P.-Y.
Chiou
, “
Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery
,”
Biosens. Bioelectron.
131
,
37
45
(
2019
).
241.
F.
Li
,
S.
Gao
,
Y.
Lu
,
W.
Asghar
,
J.
Cao
,
C.
Hu
,
H.
Yang
,
Y.
Wu
,
S.
Li
,
J.
Shang
,
M.
Liao
,
Y.
Liu
, and
R.-W.
Li
, “
Bio-inspired multi-mode pain-perceptual system (MMPPS) with noxious stimuli warning, damage localization, and enhanced damage protection
,”
Adv. Sci.
8
(
10
),
2004208
(
2021
).
242.
L. X.
Tang
,
J.
Shang
, and
X. Y.
Jiang
, “
Multilayered electronic transfer tattoo that can enable the crease amplification effect
,”
Sci. Adv.
7
(
3
),
eabe3778
(
2021
).
243.
P. A.
Lopes
,
H.
Paisana
,
A. T.
De Almeida
,
C.
Majidi
, and
M.
Tavakoli
, “
Hydroprinted electronics: Ultrathin stretchable Ag-In-Ga e-skin for bioelectronics and human-machine interaction
,”
ACS Appl. Mater. Interfaces
10
(
45
),
38760
38768
(
2018
).
244.
X.
Sun
,
B.
Yuan
,
W.
Rao
, and
J.
Liu
, “
Amorphous liquid metal electrodes enabled conformable electrochemical therapy of tumors
,”
Biomaterials
146
,
156
167
(
2017
).
245.
J.
Li
,
C.
Guo
,
Z.
Wang
,
K.
Gao
,
X.
Shi
, and
J.
Liu
, “
Electrical stimulation towards melanoma therapy via liquid metal printed electronics on skin
,”
Clin. Transl. Med.
5
(
1
),
21
21
(
2016
).
246.
N. L.
Yang
,
W.
Li
,
F.
Gong
,
L.
Cheng
,
Z. L.
Dong
,
S.
Bai
,
Z. S.
Xiao
,
C. F.
Ni
, and
Z.
Liu
, “
Injectable nonmagnetic liquid metal for eddy-thermal ablation of tumors under alternating magnetic field
,”
Small Methods
4
(
9
),
2000147
(
2020
).
247.
X.
Sun
,
T.
Wu
,
M.
Duan
,
B.
Yuan
,
X.
Zhu
,
H.
Wang
, and
J.
Liu
, “
Flexible skin patch enabled tumor hybrid thermophysical therapy and adaptive anti‐tumor immune response
,”
Adv. Healthcare Mater.
12
(
7
),
2202872
(
2023
).
248.
D.
Wang
,
W.
Xie
,
Q.
Gao
,
H.
Yan
,
J.
Zhang
,
J.
Lu
,
B.
Liaw
,
Z.
Guo
,
F.
Gao
,
L.
Yin
,
G.
Zhang
, and
L.
Zhao
, “
Non-magnetic injectable implant for magnetic field-driven thermochemotherapy and dual stimuli-responsive drug delivery: Transformable liquid metal hybrid platform for cancer theranostics
,”
Small
15
(
16
),
1900511
(
2019
).
249.
S.
Cheng
,
C.
Hang
,
L.
Ding
,
L.
Jia
,
L.
Tang
,
L.
Mou
,
J.
Qi
,
R.
Dong
,
W.
Zheng
,
Y.
Zhang
, and
X.
Jiang
, “
Electronic blood vessel
,”
Matter
3
(
5
),
1664
1684
(
2020
).
250.
L.
Gu
,
S.
Poddar
,
Y.
Lin
,
Z.
Long
,
D.
Zhang
,
Q.
Zhang
,
L.
Shu
,
X.
Qiu
,
M.
Kam
,
A.
Javey
, and
Z.
Fan
, “
A biomimetic eye with a hemispherical perovskite nanowire array retina
,”
Nature
581
(
7808
),
278
282
(
2020
).
251.
X.
Gong
,
Q.
Yang
,
C.
Zhi
, and
P. S.
Lee
, “
Stretchable energy storage devices: From materials and structural design to device assembly
,”
Adv. Energy Mater.
11
(
15
),
2003308
(
2021
).
252.
K.
Dong
,
X.
Peng
,
R.
Cheng
,
C.
Ning
,
Y.
Jiang
,
Y.
Zhang
, and
Z. L.
Wang
, “
Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures
,”
Adv. Mater.
34
(
21
),
2109355
(
2022
).
253.
D. G.
Mackanic
,
T.-H.
Chang
,
Z.
Huang
,
Y.
Cui
, and
Z.
Bao
, “
Stretchable electrochemical energy storage devices
,”
Chem. Soc. Rev.
49
(
13
),
4466
4495
(
2020
).
254.
P.
Li
and
J.
Liu
, “
Harvesting low grade heat to generate electricity with thermosyphon effect of room temperature liquid metal
,”
Appl. Phys. Lett.
99
(
9
),
094106
(
2011
).
255.
F.
Suarez
,
D. P.
Parekh
,
C.
Ladd
,
D.
Vashaee
,
M. D.
Dickey
, and
M. C.
Oeztuerk
, “
Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics
,”
Appl. Energy
202
,
736
745
(
2017
).
256.
D.
Yu
,
Y.
Liao
,
Y.
Song
,
S.
Wang
,
H.
Wan
,
Y.
Zeng
,
T.
Yin
,
W.
Yang
, and
Z.
He
, “
A super-stretchable liquid metal foamed elastomer for tunable control of electromagnetic waves and thermal transport
,”
Adv. Sci.
7
(
12
),
2000177
(
2020
).
257.
M. H.
Malakooti
,
N.
Kazem
,
J.
Yan
,
C.
Pan
,
E. J.
Markvicka
,
K.
Matyjaszewski
, and
C.
Majidi
, “
Liquid metal supercooling for low-temperature thermoelectric wearables
,”
Adv. Funct. Mater.
29
(
45
),
1906098
(
2019
).
258.
Y.
Sargolzaeiaval
,
V. P.
Ramesh
,
T. V.
Neumann
,
V.
Misra
,
D.
Vashaee
,
M. D.
Dickey
, and
M. C.
Ozturk
, “
Flexible thermoelectric generators for body heat harvesting—Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects
,”
Appl. Energy
262
,
114370
(
2020
).
259.
C.
Pan
,
D.
Liu
,
M. J.
Ford
, and
C.
Majidi
, “
Ultrastretchable, wearable triboelectric nanogenerator based on sedimented liquid metal elastomer composite
,”
Adv. Mater. Technol.
5
(
11
),
2000754
(
2020
).
260.
B.
Zhang
,
Z.
Wu
,
Z.
Lin
,
H.
Guo
,
F.
Chun
,
W.
Yang
, and
Z. L.
Wang
, “
All-in-one 3D acceleration sensor based on coded liquid-metal triboelectric nanogenerator for vehicle restraint system
,”
Mater. Today
43
,
37
44
(
2021
).
261.
L. E.
Helseth
, “
Interdigitated electrodes based on liquid metal encapsulated in elastomer as capacitive sensors and triboelectric nanogenerators
,”
Nano Energy
50
,
266
272
(
2018
).
262.
S.
Wang
,
L.
Ding
,
X.
Fan
,
W.
Jiang
, and
X.
Gong
, “
A liquid metal-based triboelectric nanogenerator as stretchable electronics for safeguarding and self-powered mechanosensing
,”
Nano Energy
53
,
863
870
(
2018
).
263.
Q.
Ye
,
Y.
Wu
,
Y.
Qi
,
L.
Shi
,
S.
Huang
,
L.
Zhang
,
M.
Li
,
W.
Li
,
X.
Zeng
,
H.
Wo
,
X.
Wang
,
S.
Dong
,
S.
Ramakrishna
, and
J.
Luo
, “
Effects of liquid metal particles on performance of triboelectric nanogenerator with electrospun polyacrylonitrile fiber films
,”
Nano Energy
61
,
381
388
(
2019
).
264.
Y.
Wang
,
X.
Wang
,
M.
Xue
,
Q.
Li
,
Y.
Zhang
,
D.
Liu
,
J.
Liu
, and
W.
Rao
, “
All-in-one energiser design: Smart liquid metal-air battery
,”
Chem. Eng. J.
409
,
128160
(
2021
).
265.
Y.
Ding
,
X.
Guo
,
Y.
Qian
,
L.
Xue
,
A.
Dolocan
, and
G.
Yu
, “
Room-temperature all-liquid-metal batteries based on fusible alloys with regulated interfacial chemistry and wetting
,”
Adv. Mater.
32
(
30
),
2002577
(
2020
).
266.
J.
Zhu
,
Y.
Wu
,
X.
Huang
,
L.
Huang
,
M.
Cao
,
G.
Song
,
X.
Guo
,
X.
Sui
,
R.
Ren
, and
J.
Chen
, “
Self-healing liquid metal nanoparticles encapsulated in hollow carbon fibers as a free-standing anode for lithium-ion batteries
,”
Nano Energy
62
,
883
889
(
2019
).
267.
C.
Wei
,
H.
Fei
,
Y.
Tian
,
Y.
An
,
G.
Zeng
,
J.
Feng
, and
Y.
Qian
, “
Room-temperature liquid metal confined in mxene paper as a flexible, freestanding, and binder-free anode for next-generation lithium-ion batteries
,”
Small
15
(
46
),
1903214
(
2019
).
268.
Y.
Han
,
L. E.
Simonsen
, and
M. H.
Malakooti
, “
Printing liquid metal elastomer composites for high‐performance stretchable thermoelectric generators
,”
Adv. Energy Mater.
12
(
34
),
2201413
(
2022
).
269.
M.
Zadan
,
D. K.
Patel
,
A. P.
Sabelhaus
,
J.
Liao
,
A.
Wertz
,
L.
Yao
, and
C.
Majidi
, “
Liquid crystal elastomer with integrated soft thermoelectrics for shape memory actuation and energy harvesting
,”
Adv. Mater.
34
(
23
),
e2200857
(
2022
).
270.
Z. L.
Wang
,
J.
Chen
, and
L.
Lin
, “
Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
,”
Energy Environ. Sci.
8
(
8
),
2250
2282
(
2015
).
271.
Z.
Liu
,
H.
Li
,
B.
Shi
,
Y.
Fan
,
Z. L.
Wang
, and
Z.
Li
, “
Wearable and implantable triboelectric nanogenerators
,”
Adv. Funct. Mater.
29
(
20
),
1808820
(
2019
).
272.
W.
Tang
,
T.
Jiang
,
F. R.
Fan
,
A. F.
Yu
,
C.
Zhang
,
X.
Cao
, and
Z. L.
Wang
, “
Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%
,”
Adv. Funct. Mater.
25
(
24
),
3718
3725
(
2015
).
273.
W.
Wang
,
X.
Zhu
, and
L.
Fu
, “
Touch ablation of lithium dendrites via liquid metal for high-rate and long-lived batteries
,”
CCS Chem.
3
(
1
),
686
695
(
2021
).
274.
H.-S.
Nam
and
D. J.
Srolovitz
, “
Molecular dynamics simulation of Ga penetration along grain boundaries in Al: A dislocation climb mechanism
,”
Phys. Rev. Lett.
99
(
2
),
025501
(
2007
).
275.
W.
Liang
,
L.
Hong
,
H.
Yang
,
F.
Fan
,
Y.
Liu
,
H.
Li
,
J.
Li
,
J. Y.
Huang
,
L.-Q.
Chen
,
T.
Zhu
, and
S.
Zhang
, “
Nanovoid formation and annihilation in gallium nanodroplets under lithiation-delithiation cycling
,”
Nano Lett.
13
(
11
),
5212
5217
(
2013
).
276.
Z.
Xing
,
J.
Fu
,
S.
Chen
,
J.
Gao
,
R.
Zhao
, and
J.
Liu
, “
Perspective on gallium-based room temperature liquid metal batteries
,”
Front. Energy
16
(
1
),
23
48
(
2022
).
277.
M.
Zhu
,
T.
Kikutani
,
T.
Liu
,
S.
Ramakrishna
, and
G.
Tao
,
Fiber Changes Our Life
(
Springer
,
2019
), pp.
1
2
.
278.
J.
Lee
,
H.
Kwon
,
J.
Seo
,
S.
Shin
,
J. H.
Koo
,
C.
Pang
,
S.
Son
,
J. H.
Kim
,
Y. H.
Jang
, and
D. E.
Kim
, “
Conductive fiber‐based ultrasensitive textile pressure sensor for wearable electronics
,”
Adv. Mater.
27
(
15
),
2433
2439
(
2015
).
279.
G.
Chen
,
X.
Xiao
,
X.
Zhao
,
T.
Tat
,
M.
Bick
, and
J.
Chen
, “
Electronic textiles for wearable point-of-care systems
,”
Chem. Rev.
122
(
3
),
3259
3291
(
2022
).
280.
H.
Wang
,
R.
Li
,
Y.
Cao
,
S.
Chen
,
B.
Yuan
,
X.
Zhu
,
J.
Cheng
,
M.
Duan
, and
J.
Liu
, “
Liquid metal fibers
,”
Adv. Fiber Mater.
4
,
987
1004
(
2022
).
281.
Y.-H.
Wu
,
R.-M.
Zhen
,
H.-Z.
Liu
,
S.-Q.
Liu
,
Z.-F.
Deng
,
P.-P.
Wang
,
S.
Chen
, and
L.
Liu
, “
Liquid metal fiber composed of a tubular channel as a high-performance strain sensor
,”
J. Mater. Chem. C
5
(
47
),
12483
12491
(
2017
).
282.
H.
Liu
,
Y.
Xin
,
Y.
Lou
,
Y.
Peng
,
L.
Wei
, and
J.
Zhang
, “
Liquid metal gradient fibers with reversible thermal programmability
,”
Mater. Horiz.
7
(
8
),
2141
2149
(
2020
).
283.
R.
Guo
,
H.
Wang
,
G.
Chen
,
B.
Yuan
,
Y.
Zhang
, and
J.
Liu
, “
Smart semiliquid metal fibers with designed mechanical properties for room temperature stimulus response and liquid welding
,”
Appl. Mater. Today
20
,
100738
(
2020
).
284.
L.-C.
Jia
,
X.-X.
Jia
,
W.-J.
Sun
,
Y.-P.
Zhang
,
L.
Xu
,
D.-X.
Yan
,
H.-J.
Su
, and
Z.-M.
Li
, “
Stretchable liquid metal-based conductive textile for electromagnetic interference shielding
,”
ACS Appl. Mater. Interfaces
12
(
47
),
53230
53238
(
2020
).
285.
R.
Guo
,
H.
Wang
,
X.
Sun
,
S.
Yao
,
H.
Chang
,
H.
Wang
,
J.
Liu
, and
Y.
Zhang
, “
Semiliquid metal enabled highly conductive wearable electronics for smart fabrics
,”
ACS Appl. Mater. Interfaces
11
(
33
),
30019
30027
(
2019
).
286.
Q.
Zhuang
,
Z.
Ma
,
Y.
Gao
,
Y.
Zhang
,
S.
Wang
,
X.
Lu
,
H.
Hu
,
C.
Cheung
,
Q.
Huang
, and
Z.
Zheng
, “
Liquid–metal‐superlyophilic and conductivity–strain‐enhancing scaffold for permeable superelastic conductors
,”
Adv. Funct. Mater.
31
(
47
),
2105587
(
2021
).
287.
C. B.
Cooper
,
K.
Arutselvan
,
Y.
Liu
,
D.
Armstrong
,
Y.
Lin
,
M. R.
Khan
,
J.
Genzer
, and
M. D.
Dickey
, “
Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers
,”
Adv. Funct. Mater.
27
(
20
),
1605630
(
2017
).
288.
L.
Zheng
,
M.
Zhu
,
B.
Wu
,
Z.
Li
,
S.
Sun
, and
P.
Wu
, “
Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing
,”
Sci. Adv.
7
(
22
),
eabg4041
(
2021
).
289.
S.
Zhu
,
J.-H.
So
,
R.
Mays
,
S.
Desai
,
W. R.
Barnes
,
B.
Pourdeyhimi
, and
M. D.
Dickey
, “
Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core
,”
Adv. Funct. Mater.
23
(
18
),
2308
2314
(
2013
).
290.
H.
Liu
,
Y.
Xin
,
H. K.
Bisoyi
,
Y.
Peng
,
J.
Zhang
, and
Q.
Li
, “
Stimuli‐driven insulator–conductor transition in a flexible polymer composite enabled by biphasic liquid metal
,”
Adv. Mater.
33
(
43
),
2104634
(
2021
).
291.
Y.
Xu
,
Y.
Su
,
X.
Xu
,
B.
Arends
,
G.
Zhao
,
D. N.
Ackerman
,
H.
Huang
,
S. P.
Reid
,
J. L.
Santarpia
,
C.
Kim
,
Z.
Chen
,
S.
Mahmoud
,
Y.
Ling
,
A.
Brown
,
Q.
Chen
,
G.
Huang
,
J.
Xie
, and
Z.
Yan
, “
Porous liquid metal-elastomer composites with high leakage resistance and antimicrobial property for skin-interfaced bioelectronics
,”
Sci. Adv.
9
(
1
),
eadf0575
(
2023
).
292.
Y.
Lu
,
D.
Yu
,
H.
Dong
,
S.
Chen
,
H.
Zhou
,
L.
Wang
,
Z.
Deng
,
Z.
He
, and
J.
Liu
, “
Dynamic leakage-free liquid metals
,”
Adv. Funct. Mater.
33
(
11
),
2210961
(
2023
).
293.
G.
Li
,
M.
Zhang
,
S.
Liu
,
M.
Yuan
,
J.
Wu
,
M.
Yu
,
L.
Teng
,
Z.
Xu
,
J.
Guo
,
G.
Li
,
Z.
Liu
, and
X.
Ma
, “
Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity
,”
Nat. Electron.
6
,
154
163
(
2023
).
294.
L. Y.
Zhou
,
J. H.
Ye
,
J. Z.
Fu
,
Q.
Gao
, and
Y.
He
, “
4D printing of high-performance thermal-responsive liquid metal elastomers driven by embedded microliquid chambers
,”
ACS Appl. Mater. Interfaces
12
(
10
),
12068
12074
(
2020
).
295.
C. P.
Ambulo
,
M. J.
Ford
,
K.
Searles
,
C.
Majidi
, and
T. H.
Ware
, “
4D-printable liquid metal-liquid crystal elastomer composites
,”
ACS Appl. Mater. Interfaces
13
(
11
),
12805
12813
(
2021
).
296.
Y.
Ren
and
J.
Liu
, “
Liquid-metal enabled droplet circuits
,”
Micromachines
9
(
5
),
218
(
2018
).
297.
Q.
Shen
,
M.
Jiang
,
R.
Wang
,
K.
Song
,
M. H.
Vong
,
W.
Jung
,
F.
Krisnadi
,
R.
Kan
,
F.
Zheng
,
B.
Fu
,
P.
Tao
,
C.
Song
,
G.
Weng
,
B.
Peng
,
J.
Wang
,
W.
Shang
,
M. D.
Dickey
, and
T.
Deng
, “
Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems
,”
Science
379
(
6631
),
488
493
(
2023
).
You do not currently have access to this content.