Photonic crystals enable modulation of light waves in space, time, and frequency domains; in particular, chiral photonic crystals are uniquely suitable for polarization rotation and switching of complex vector fields. Current development of chiral photonic crystals, nevertheless, are still confronted with limitations of one form or the other such as large optical losses, limited or absence of tunability, narrow operation bandwidth, and/or insufficient optical thickness for practical implementation. In this work, we show that cholesteric liquid crystals as 1D tunable chiral photonic crystals are promising alternatives to not only address all these issues and deficiencies but also enable new photonic applications in wider temporal and spectral realms. Our work entails a detailed study of the dynamical evolution of cholesteric helical self-assembly and defect formation in the bulk of thick cholesteric liquid crystals under various applied electric field conditions and a thorough exploration of how applying fields of vastly different frequencies can eliminate and/or prevent the formation of unremovable defects and to control the alignment of cholesteric helices in the entire bulk. We have developed a dual-frequency field assembly technique that enables robust room-temperature fabrication of stable well-aligned cholesteric liquid crystals to unprecedented thickness (containing thousands of grating periods) demanded by many photonic applications. The resulting chiral photonic crystals exhibit useful much-sought-after capabilities impossible with other existing or developing chiral photonic crystals—compactness (single, flat, millimeter-thick optical element), high transmission, dynamic tunability, large polarization rotation, and various switching/modulation possibilities for ultrafast and continuous-wave lasers in the visible, near- and mid-infrared regimes.

1.
B. J.
Eggleton
,
C. M.
de Sterke
, and
R. E.
Slusher
,
J. Opt. Soc. Am. B
14
(
11
),
2980
2993
(
1997
).
2.
M.
Soljačić
and
J. D.
Joannopoulos
,
Nat. Mater.
3
(
4
),
211
219
(
2004
).
3.
P.
Colman
,
C.
Husko
,
S.
Combrié
,
I.
Sagnes
,
C. W.
Wong
, and
A.
De Rossi
,
Nat. Photonics
4
(
12
),
862
868
(
2010
).
4.
J. T.
Mok
,
C. M.
de Sterke
,
I. C. M.
Littler
, and
B. J.
Eggleton
,
Nat. Phys.
2
(
11
),
775
780
(
2006
).
5.
A.
Blanco
,
E.
Chomski
,
S.
Grabtchak
,
M.
Ibisate
,
S.
John
,
S. W.
Leonard
,
C.
Lopez
,
F.
Meseguer
,
H.
Miguez
,
J. P.
Mondia
, and
G. A.
Ozin
,
Nature
405
(
6785
),
437
440
(
2000
).
6.
M.
Campbell
,
D. N.
Sharp
,
M. T.
Harrison
,
R. G.
Denning
, and
A. J.
Turberfield
,
Nature
404
,
53
56
(
2000
).
7.
C.
Monat
,
M.
de Sterke
, and
B. J.
Eggleton
,
J. Opt.
12
(
10
),
104003
(
2010
).
8.
M. W.
Puckett
,
F.
Vallini
,
A.
Grieco
, and
Y.
Fainman
,
Opt. Lett.
40
(
3
),
379
382
(
2015
).
9.
G.
Skolianos
,
A.
Arora
,
M.
Bernier
, and
M.
Digonnet
,
J. Phys. D: Appl. Phys.
49
(
46
),
463001
(
2016
).
10.
C.-W.
Chen
,
C.-T.
Hou
,
C.-C.
Li
,
H.-C.
Jau
,
C.-T.
Wang
,
C.-L.
Hong
,
D.-Y.
Guo
,
C.-Y.
Wang
,
S.-P.
Chiang
,
T. J.
Bunning
,
I.-C.
Khoo
, and
T.-H.
Lin
,
Nat. Commun.
8
(
1
),
727
(
2017
).
11.
I. C.
Khoo
,
Liq. Cryst. Rev.
6
(
1
),
53
77
(
2018
).
12.
D.-Y.
Guo
,
C.-W.
Chen
,
C.-C.
Li
,
H.-C.
Jau
,
K.-H.
Lin
,
T.-M.
Feng
,
C.-T.
Wang
,
T. J.
Bunning
,
I. C.
Khoo
, and
T.-H.
Lin
,
Nat. Mater.
19
(
1
),
94
101
(
2020
).
13.
I.
Hodgkinson
,
Q. h
Wu
,
B.
Knight
,
A.
Lakhtakia
, and
K.
Robbie
,
Appl. Opt.
39
(
4
),
642
649
(
2000
).
14.
C.-W.
Chen
and
I. C.
Khoo
,
Proc. Natl. Acad. Sci. U. S. A.
118
(
16
),
e2021304118
(
2021
).
15.
Z.
Zhao
,
J.
Wang
,
S.
Li
, and
A. E.
Willner
,
Opt. Lett.
38
(
6
),
932
934
(
2013
).
16.
G.
Milione
,
M. P. J.
Lavery
,
H.
Huang
,
Y.
Ren
,
G.
Xie
,
T. A.
Nguyen
,
E.
Karimi
,
L.
Marrucci
,
D. A.
Nolan
,
R. R.
Alfano
, and
A. E.
Willner
,
Opt. Lett.
40
(
9
),
1980
1983
(
2015
).
17.
D.
Naidoo
,
F. S.
Roux
,
A.
Dudley
,
I.
Litvin
,
B.
Piccirillo
,
L.
Marrucci
, and
A.
Forbes
,
Nat. Photonics
10
(
5
),
327
332
(
2016
).
18.
A. E.
Willner
,
Light: Sci. Appl.
7
(
3
),
18002
18002
(
2018
).
19.
A. Y.
Zhu
,
W. T.
Chen
,
A.
Zaidi
,
Y.-W.
Huang
,
M.
Khorasaninejad
,
V.
Sanjeev
,
C.-W.
Qiu
, and
F.
Capasso
,
Light: Sci. Appl.
7
(
2
),
17158
17158
(
2018
).
20.
L.
Kang
,
C.-Y.
Wang
,
X.
Guo
,
X.
Ni
,
Z.
Liu
, and
D. H.
Werner
,
Nano Lett.
20
(
3
),
2047
2055
(
2020
).
21.
J. W.
Shelton
and
Y. R.
Shen
,
Phys. Rev. Lett.
26
(
10
),
538
541
(
1971
).
22.
S. K.
Saha
,
Opt. Commun.
37
(
5
),
373
377
(
1981
).
23.
S. D.
Jacobs
,
K. A.
Cerqua
,
K. L.
Marshall
,
A.
Schmid
,
M. J.
Guardalben
, and
K. J.
Skerrett
,
J. Opt. Soc. Am. B
5
(
9
),
1962
1979
(
1988
).
24.
P.-G.
De Gennes
and
J.
Prost
,
The Physics of Liquid Crystals
(
Oxford University Press
,
1993
).
25.
O. D.
Lavrentovich
and
D. K.
Yang
,
Phys. Rev. E
57
(
6
),
R6269
R6272
(
1998
).
26.
J.
Hwang
,
N. Y.
Ha
,
H. J.
Chang
,
B.
Park
, and
J. W.
Wu
,
Opt. Lett.
29
(
22
),
2644
2646
(
2004
).
27.
J.
Hwang
and
J. W.
Wu
,
Opt. Lett.
30
(
8
),
875
877
(
2005
).
28.
H.
Coles
and
S.
Morris
,
Nat. Photonics
4
(
10
),
676
685
(
2010
).
29.
S. M.
Morris
,
M. M.
Qasim
,
K. T.
Cheng
,
F.
Castles
,
D.-H.
Ko
,
D. J.
Gardiner
,
S.
Nosheen
,
T. D.
Wilkinson
,
H. J.
Coles
,
C.
Burgess
, and
L.
Hill
,
Appl. Phys. Lett.
103
,
101105
(
2013
).
30.
L.
Song
,
S.
Fu
,
Y.
Liu
,
J.
Zhou
,
V. G.
Chigrinov
, and
I. C.
Khoo
,
Opt. Lett.
38
(
23
),
5040
5042
(
2013
).
31.
R.
Barboza
,
U.
Bortolozzo
,
M. G.
Clerc
, and
S.
Residori
,
Phys. Rev. Lett.
117
,
053903
(
2016
).
32.
J.
Kobashi
,
H.
Yoshida
, and
M.
Ozaki
,
Nat. Photonics
10
(
6
),
389
392
(
2016
).
33.
Y.
Liu
,
Y.
Wu
,
C.-W.
Chen
,
J.
Zhou
,
T.-H.
Lin
, and
I. C.
Khoo
,
Opt. Express
24
(
10
),
10458
10465
(
2016
).
34.
C.-W.
Chen
,
X.
Guo
,
X.
Ni
,
T.-H.
Lin
, and
I. C.
Khoo
,
Opt. Mater. Express
7
(
6
),
2005
2011
(
2017
).
35.
Y.
Liu
,
H.
Liang
,
C.-W.
Chen
,
X.
Xie
,
W.
Hu
,
P.
Chen
,
J.
Wen
,
J.
Zhou
,
T.-H.
Lin
, and
I. C.
Khoo
,
Opt. Express
26
(
22
),
28818
28826
(
2018
).
36.
C.-W.
Chen
and
I. C.
Khoo
,
Opt. Lett.
44
(
21
),
5306
5309
(
2019
).
37.
G.
Poy
,
A. J.
Hess
,
A. J.
Seracuse
,
M.
Paul
,
S.
Žumer
, and
I. I.
Smalyukh
,
Nat. Photonics
16
(
6
),
454
461
(
2022
).
38.
W.
Helfrich
, “
Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals
,”
J. Chem. Phys.
55
(
2
),
839
842
(
1971
).
39.
Orsay Liquid Crystal Group,
AC and DC regimes of the electrohydrodynamic instabilities in nematic liquid crystals
,”
Mol. Cryst. Liq. Cryst.
12
(
3
),
251
266
(
1971
).
40.
E.
Dubois-Violette
,
P. G.
De Gennes
, and
O.
Parodi
, “
Hydrodynamic instabilities of nematic liquid crystals under AC electric fields
,”
J. Phys.
32
(
4
),
305
317
(
1971
).
41.
F.
Rondelez
,
H.
Arnould
, and
C. J.
Gerritsma
, “
Electrohydrodynamic effects in cholesteric liquid crystals under AC electric fields
,”
Phys. Rev. Lett.
28
(
12
),
735
(
1972
).
42.
H.
Arnould-Netillard
and
F.
Rondelez
, “
Electrohydrodynamic instabilities in cholesteric liquid crystals with negative dielectric anisotropy
,”
Mol. Cryst. Liq. Cryst.
26
,
11
31
(
1974
).
43.
C.-W.
Chen
,
A. N.
Brigeman
,
T.-J.
Ho
, and
I. C.
Khoo
,
Opt. Mater. Express
8
(
3
),
691
697
(
2018
).
44.
F.
Carbone
,
A.
De Luca
,
V.
Barna
,
S.
Ferjani
,
C.
Vena
,
C.
Versace
, and
G.
Strangi
, “
Coherent backscattering and dynamical light localization in liquid crystals driven throughout chaotic regimes
,”
Opt. Express
17
(
16
),
13435
13440
(
2009
).
45.
F.
Carbone
,
L.
Sorriso-Valvo
,
C.
Versace
,
G.
Strangi
, and
R.
Bartolino
, “
Anisotropy of spatiotemporal decorrelation in electrohydrodynamic turbulence
,”
Phys. Rev. Lett.
106
(
11
),
114502
(
2011
).
46.
J.
Sun
,
Y.
Chen
, and
S.-T.
Wu
,
Opt. Express
20
(
18
),
20124
20129
(
2012
).
47.
L.
Kopf
,
J. R. D.
Ruano
,
M.
Hiekkamäki
,
T.
Stolt
,
M. J.
Huttunen
,
F.
Bouchard
, and
R.
Fickler
,
Optica
8
(
6
),
930
935
(
2021
).
48.
E.
Pillinen
,
M.
Koivurova
, and
J.
Turunen
,
Opt. Lett.
47
(
8
),
2012
2015
(
2022
).
49.
L. V.
Natarajan
,
J. M.
Wofford
,
V. P.
Tondiglia
,
R. L.
Sutherland
,
H.
Koerner
,
R. A.
Vaia
, and
T. J.
Bunning
,
J. Appl. Phys.
103
(
9
),
093107
(
2008
).
50.
V. T.
Tondiglia
,
L. V.
Natarajan
,
C. A.
Bailey
,
M. M.
Duning
,
R. L.
Sutherland
,
D.
Ke-Yang
,
A.
Voevodin
,
T. J.
White
, and
T. J.
Bunning
,
J. Appl. Phys.
110
(
5
),
053109
(
2011
).
51.
T. J.
White
,
R. L.
Bricker
,
L. V.
Natarajan
,
N. V.
Tabiryan
,
L.
Green
,
Q.
Li
, and
T. J.
Bunning
,
Adv. Funct. Mater.
19
(
21
),
3484
3488
(
2009
).
52.
C.-C.
Li
,
C.-W.
Chen
,
C.-K.
Yu
,
H.-C.
Jau
,
J.-A.
Lv
,
X.
Qing
,
C.-F.
Lin
,
C.-Y.
Cheng
,
C.-Y.
Wang
,
J.
Wei
,
Y.
Yu
, and
T.-H.
Lin
,
Adv. Opt. Mater.
5
(
4
),
1600824
(
2017
).
53.
I. C.
Khoo
,
Phys. Rep.
471
(
5
),
221
267
(
2009
).
54.
J. W.
Choi
,
B.-U.
Sohn
,
E.
Sahin
,
G. F. R.
Chen
,
D. K. T.
Ng
,
B. J.
Eggleton
,
C. M. d
Sterke
, and
D. T. H.
Tan
,
Nanophotonics
11
(
10
),
2319
2328
(
2022
).
55.
Y.
Inoue
,
H.
Yoshida
,
H.
Kubo
, and
M.
Ozaki
,
Adv. Opt. Mater.
1
(
3
),
256
263
(
2013
).
56.
V.
Borshch
,
S. V.
Shiyanovskii
, and
O. D.
Lavrentovich
,
Phys. Rev. Lett.
111
(
10
),
107802
(
2013
).
57.
S. M.
Wood
,
J. A. J.
Fells
,
S. J.
Elston
, and
S. M.
Morris
,
Macromolecules
49
(
22
),
8643
8652
(
2016
).
58.
T. J.
White
,
R. L.
Bricker
,
L. V.
Natarajan
,
S. V.
Serak
,
N. V.
Tabiryan
, and
T. J.
Bunning
,
Soft Matter
5
(
19
),
3623
3628
(
2009
).
59.
M. E.
McConney
,
V. P.
Tondiglia
,
L. V.
Natarajan
,
K. M.
Lee
,
T. J.
White
, and
T. J.
Bunning
,
Adv. Opt. Mater.
1
(
6
),
417
421
(
2013
).
60.
F.
Castles
,
S.
Morris
,
J.
Hung
,
M. M.
Qasim
,
A.
Wright
,
S.
Nosheen
,
S.
Choi
,
B.
Outram
,
S.
Elston
, and
C.
Burgess
,
Nat. Mater.
13
(
8
),
817
821
(
2014
).
61.
T. J.
White
and
D. J.
Broer
,
Nat. Mater.
14
(
11
),
1087
1098
(
2015
).
62.
D.-Y.
Guo
,
L.-M.
Chang
,
C.-W.
Chen
,
C.-C.
Li
,
H.-C.
Jau
,
C.-T.
Wang
,
W. S.
Kuo
, and
T.-H.
Lin
,
Optica
8
(
3
),
364
371
(
2021
).
63.
S.
Chandrasekhar
and
J. S.
Prasad
,
Mol. Cryst. Liq. Cryst.
14
,
115
128
(
1971
).

Supplementary Material

You do not currently have access to this content.