Shape memory polymer (SMP) and SMP composites (SMPC) can memorize the permanent shape and recover from the temporary shape to the permanent shape when stimulated by the appropriate stimuli. Because of the unique shape memory effect, coupled with its low cost, low density, high specific strength, biodegradability, biocompatibility, and other characteristics, SMP and SMPC have become possible materials to solve the problems currently faced by space deployable structures, biomedical devices, mold manufacturing, release devices, etc. This work reviews the research and developments of SMP and SMPC, including the achievements in constitutive theory, the applications, and prospects in aerospace, biomedical medicine, intelligent mold, and release devices.

1.
C.
Laschi
and
R. J.
Wood
, “
Smarter materials for smarter robots
,”
Sci. Rob.
6
(
53
),
eabh4443
(
2021
).
2.
Q. C.
Zheng
,
C. X.
Xu
,
Z. L.
Jiang
,
M.
Zhu
,
C.
Chen
, and
F. F.
Fu
, “
Smart actuators based on external stimulus response
,”
Front. Chem.
9
,
650358
(
2021
).
3.
W.
Zhao
,
L. W.
Liu
,
F. H.
Zhang
,
J. S.
Leng
, and
Y. J.
Liu
, “
Shape memory polymers and their composites in biomedical applications
,”
Mat. Sci. Eng. C-Mat.
97
,
864
883
(
2019
).
4.
Y.
Zhang
,
L. M.
Huang
,
H. J.
Song
,
C. J.
Ni
,
J. J.
Wu
,
Q.
Zhao
, and
T.
Xie
, “
4D printing of a digital shape memory polymer with tunable high performance
,”
ACS Appl. Mater. Interfaces
11
,
32408
32413
(
2019
).
5.
W.
Zhao
,
C. B.
Yue
,
L. W.
Liu
,
Y. J.
Liu
, and
J. S.
Leng
, “
Research progress of shape memory polymer and 4D printing in biomedical application
,”
Adv. Healthc. Mater.
(published online) (2022).
6.
Y.
Mao
,
F.
Chen
,
S.
Hou
,
H. J.
Qi
, and
K.
Yu
, “
A viscoelastic model for hydrothermally activated malleable covalent network polymer and its application in shape memory analysis
,”
J. Mech. Phys. Solids
127
,
239
265
(
2019
).
7.
W. S.
Miao
,
W. K.
Zou
,
B. J.
Jin
,
C. J.
Ni
,
N.
Zheng
,
Q.
Zhao
, and
T.
Xie
, “
On demand shape memory polymer via light regulated topological defects in a dynamic covalent network
,”
Nat. Commun.
11
,
4257
(
2020
).
8.
X.
Wang
,
H.
Lu
,
X.
Shi
,
K.
Yu
, and
Y. Q.
Fu
, “
A thermomechanical model of multi-shape memory effect for amorphous polymer with tunable segment compositions
,”
Compos. Part B
160
,
298
305
(
2019
).
9.
W.
Zhao
,
C. B.
Yue
,
L. W.
Liu
,
J. S.
Leng
, and
Y. J.
Liu
, “
Mechanical behavior analyses of 4D printed metamaterials structures with excellent energy absorption ability
,”
Compos. Struct.
304
,
116360
(
2023
).
10.
K.
Dong
,
C.
Zhao
,
M. Z.
Yan
,
J. N.
Wang
,
X.
Cui
,
X. J.
Yu
, and
X. L.
Xiao
, “
Recent advances of two-way shape memory polymers and four-dimensional printing under stress-free conditions
,”
Smart Mater. Struct.
29
(
2
),
023001
(
2020
).
11.
Q.
Ze
,
X.
Kuang
,
S.
Wu
,
J.
Wong
,
S. M.
Montgomery
,
R.
Zhang
, and
J. M.
Kovitz
, “
Shape memory polymers: Magnetic shape memory polymers with integrated multifunctional shape manipulation
,”
Adv. Mater.
32
(
4
),
2070025
(
2020
).
12.
T. W.
Wong
,
M.
Behl
,
N. I. S. M.
Yusoff
,
T. F.
Li
,
M. U.
Wahit
,
A. F.
Ismail
,
Q.
Zhao
, and
A.
Lendlein
, “
Bio-based composites from plant based precursors and hydroxyapatite with shape-memory capability
,”
Compos. Sci. Technol.
194
,
108138
(
2020
).
13.
L.
Wang
,
M. Y.
Razzaq
,
A.
Lendlein
,
T.
Rudolph
,
M.
Heuchel
,
U.
Nochel
,
U.
Mansfeld
,
Y.
Jiang
,
O. E. C.
Gould
,
M.
Behl
,
K.
Kratz
, and
A.
Lendlein
, “
Reprogrammable, magnetically controlled polymeric nanocomposite actuators
,”
Mater. Horiz.
5
(
5
),
861
867
(
2018
).
14.
W.
Zhao
,
L. W.
Liu
,
X.
Lan
,
J. S.
Leng
, and
Y. J.
Liu
, “
Thermomechanical constitutive models of shape memory polymers and their composites
,”
Appl. Mech. Rev.
75
(
2
),
020802
(
2023
).
15.
N.
Roudbarian
,
M.
Baniasadi
,
P.
Nayyeri
,
M.
Ansari
,
R.
Hedayati
, and
M.
Baghani
, “
Enhancing shape memory properties of multi-layered and multi-material polymer composites in 4D printing
,”
Smart Mater. Struct.
30
(
10
),
105006
(
2021
).
16.
X. Z.
Xin
,
L. W.
Liu
,
Y. J.
Liu
, and
J. S.
Leng
, “
Prediction of effective thermomechanical behavior of shape memory polymer composite with micro-damage interface
,”
Compos. Commun.
25
,
100727
(
2021
).
17.
C. J.
Zeng
,
L. W.
Liu
,
J. S.
Leng
, and
Y. J.
Liu
, “
Compression behavior and energy absorption of 3D printed continuous fiber reinforced composite honeycomb structures with shape memory effects
,”
Addit. Manuf.
38
,
101842
(
2021
).
18.
Z. X.
Liu
,
X.
Lan
,
W. F.
Bian
,
L. W.
Liu
,
Q. F.
Li
,
Y. J.
Liu
, and
J. S.
Leng
, “
Design, material properties and performances of a smart hinge based on shape memory polymer composites
,”
Compos. Part B
193
,
108056
(
2020
).
19.
T. Z.
Liu
,
L. W.
Liu
,
M.
Yu
,
Q. F.
Li
,
C. J.
Zeng
,
X.
Lan
,
Y. J.
Liu
, and
J. S.
Leng
, “
Integrative hinge based on shape memory polymer composites: Material, design, properties and application
,”
Compos. Struct.
206
(
15
),
164
176
(
2018
).
20.
W.
Zhao
,
Z. P.
Huang
,
L. W.
Liu
,
W. B.
Wang
,
J. S.
Leng
, and
Y. J.
Liu
, “
Porous bone tissue scaffold concept based on shape memory PLA/Fe3O4
,”
Compos. Sci. Technol.
203
,
108563
(
2021
).
21.
W.
Zhao
,
Z. P.
Huang
,
L. W.
Liu
,
W. B.
Wang
,
J. S.
Leng
, and
Y. J.
Liu
, “
Bionic design and performance research of tracheal stent based on shape memory polycaprolactone
,”
Compos. Sci. Technol.
229
,
109671
(
2022
).
22.
H. Y.
Du
,
L. W.
Liu
,
J. S.
Leng
,
H. X.
Peng
,
F.
Scarpa
, and
Y. J.
Liu
, “
Shape memory polymer S-shaped mandrel for composite air duct manufacturing
,”
Compos. Struct.
133
,
930
938
(
2015
).
23.
L. W.
Liu
,
W.
Zhao
,
X.
Lan
,
Y. J.
Liu
, and
J. S.
Leng
, “
Soft intelligent material and its applications in aerospace
,”
J. Harbin Inst. Technol.
48
(
05
),
1
17
(
2016
).
24.
H.
Meng
and
G. Q.
Li
, “
A review of stimuli-responsive shape memory polymer composites
,”
Polymer
54
(
9
),
2199
(
2013
).
25.
J. G.
Pang
,
G.
Wang
,
M.
Qu
, and
X. Y.
Shi
, “
Progress on mechanism, characterization and multiple shape memory effect of shape memory polymer
,”
Cailiao Gongcheng
46
(
5
),
64
71
(
2018
).
26.
H.
Xiao
,
C.
Ma
,
X.
Le
,
L.
Wang
,
W.
Lu
,
P.
Theato
,
T.
Hu
,
J.
Zhang
, and
T. A.
Chen
, “
A multiple shape memory hydrogel induced by reversible physical interactions at ambient condition
,”
Polymers
9
(
4
),
138
(
2017
).
27.
T.
Xie
, “
Tunable polymer multi-shape memory effect
,”
Nature
464
,
267
270
(
2010
).
28.
C.
Zeng
,
H.
Seino
,
J.
Ren
, and
N.
Yoshie
, “
Polymers with multishape memory controlled by local glass transition temperature
,”
ACS Appl. Mater. Interfaces
6
,
2753
(
2014
).
29.
I.
Bellin
,
S.
Kelch
,
R.
Langer
, and
A.
Lendlein
, “
Polymeric triple-shape materials
,”
Proc. Natl. Acad. Sci. U.S.A.
103
(
48
),
18043
18047
(
2006
).
30.
A. H.
Torbati
,
H. B.
Nejad
,
M.
Ponce
,
J. P.
Sutton
, and
P. T.
Mather
, “
Properties of triple shape memory composites prepared via polymerization-induced phase separation
,”
Soft Matter
10
,
3112
(
2014
).
31.
X.
Yang
,
L.
Wang
,
W. X.
Wang
,
H. M.
Chen
,
G.
Yang
, and
S.
Zhou
, “
Triple shape memory effect of star-shaped polyurethane
,”
ACS Appl. Mater. Interfaces
6
,
6545
(
2014
).
32.
W.
Li
,
Y.
Liu
, and
J.
Leng
, “
Selectively actuated multi-shape memory effect of a polymer multicomposite
,”
J. Mater. Chem. A
3
(
48
),
24532
(
2015
).
33.
A.
Maimaitiming
,
M.
Zhang
,
H.
Tan
,
M.
Wang
, and
G. Z.
Wu
, “
High-strength triple shape memory elastomers from radiation-vulcanized polyolefin elastomer/polypropylene blends
,”
ACS Appl. Polym. Mater.
1
(
7
),
1735
1748
(
2019
).
34.
S. M.
Lai
,
P. Y.
You
,
Y. T.
Chiu
, and
C. W.
Kuo
, “
Triple-shape memory properties of thermoplastic polyurethane/olefin block copolymer/polycaprolactone blends
,”
J. Polym. Res.
24
(
10
),
161
(
2017
).
35.
Y.
Zhang
,
W.
Li
,
R.
Wu
, and
W.
Wang
, “
PU/PMMA composites synthesized by reaction induced phase separation: A general approach to achieve a shape memory effect
,”
RSC Adv.
7
(
54
),
33701
33707
(
2017
).
36.
I. S.
Kolesov
and
H. J.
Radusch
, “
Multiple shape-memory behavior and thermal-mechanical properties of peroxide cross-linked blends of linear and short-chain branched polyethylenes
,”
Express Polym. Lett.
2
,
461
(
2008
).
37.
R.
Hoeher
,
T.
Raidt
,
C.
Krumm
,
M.
Meuris
,
F.
Katzenberg
, and
J. C.
Tiller
, “
Tunable multiple-shape memory polyethylene blends
,”
Macromol. Chem. Phys.
214
,
2725
(
2013
).
38.
Y.
Gao
,
W.
Liu
, and
S.
Zhu
, “
Thermoplastic polyolefin elastomer blends for multiple and reversible shape memory polymers
,”
Ind. Eng. Chem. Res.
58
(
42
),
19495
19502
(
2019
).
39.
J.
Li
,
T.
Liu
,
S.
Xia
,
Y.
Pan
,
Z.
Zheng
,
X.
Ding
, and
Y.
Peng
, “
A versatile approach to achieve quintuple-shape memory effect by semi-interpenetrating polymer networks containing broadened glass transition and crystalline segments
,”
J. Mater. Chem.
21
(
33
),
12213
(
2011
).
40.
J.
Wu
,
C.
Yuan
,
Z.
Ding
,
M.
Isakov
,
Y. Q.
Mao
,
T. J.
Wang
,
M. L.
Dunn
, and
H. J.
Qi
, “
Multi-shape active composites by 3D printing of digital shape memory polymers
,”
Sci. Rep.
6
,
24224
(
2016
).
41.
M.
Behl
,
K.
Kratz
, and
A.
Lendlein
, “
Reversible bidirectional shape-memory polymers
,”
Adv. Mater.
25
(
32
),
4466
4469
(
2013
).
42.
M.
Behl
,
K.
Kratz
,
U.
Noechel
,
T.
Sauter
, and
A.
Lendlein
, “
Temperature-memory polymer actuators
,”
Proc. Natl. Acad. Sci. U.S.A.
110
(
31
),
12555
12559
(
2013
).
43.
J.
Hu
,
Y.
Zhu
,
H.
Huang
, and
H. H.
Huang
, “
Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications
,”
Prog. Polym. Sci.
37
,
1720
1763
(
2012
).
44.
K.
Hiraoka
,
N.
Tagawa
, and
K.
Baba
, “
Shape-memory effect controlled by the crosslinking topology in uniaxially-deformed smectic C* Elastomers
,”
Macromol. Chem. Phys.
209
,
298
307
(
2008
).
45.
Z.
Pei
,
E. M.
Terentjev
,
Q. M.
Chen
,
E. M.
Terentjev
,
Y.
Wei
, and
Y.
Ji
, “
Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds
,”
Nat. Mater.
13
,
36
41
(
2014
).
46.
A.
Agrawal
,
T. H.
Yun
, and
R.
Verduzco
, “
Shape-responsive liquid crystal elastomer bilayers
,”
Soft Matter
10
,
1411
1415
(
2014
).
47.
T.
Chung
,
A.
Romo-Uribe
, and
P. T.
Mather
, “
Two-way reversible shape memory in a semicrystalline network
,”
Macromolecules
41
,
184
192
(
2008
).
48.
J.
Zhou
,
S. A.
Turner
, and
S. S.
Sheiko
, “
Shapeshifting: Reversible shape memory in semicrystalline elastomers
,”
Macromolecules
47
,
1768
1776
(
2014
).
49.
B. W.
Li
,
Y. J.
Liu
, and
J. S.
Leng
, “
Light-actuated reversible shape memory effect of a polymer composite
,”
Compos. Part A
110
,
70
75
(
2018
).
50.
Q. J.
Ze
,
X.
Kuang
,
S.
Wu
,
J.
Wong
,
S. M.
Montgomery
,
R. D.
Zhang
,
J. M.
Kovitz
,
F. Y.
Yang
,
H. J.
Qi
, and
R. K.
Zhao
, “
Magnetic shape memory polymers with integrated multifunctional shape manipulations
,”
Adv. Mater.
32
(
4
),
1906657
(
2019
).
51.
Y.
Gao
,
W.
Liu
, and
S.
Zhu
, “
Polyolefin thermoplastics for multiple shape and reversible shape memory
,”
ACS Appl. Mater. Interfaces
9
(
5
),
4882
4889
(
2017
).
52.
X. L.
Wu
,
H.
Zheng
,
Y. J.
Liu
, and
J. S.
Leng
, “
Thermomechanical property of epoxy shape memory polymers
,”
Int J Mod Phys B.
24
,
2386
2391
(
2009
).
53.
J. S.
Leng
,
F.
Xie
,
X. L.
Wu
, and
Y. J.
Liu
, “
Effect of γ-radiation on the properties of epoxy-based shape memory polymers
,”
J. Intell. Mater. Syst. Struct.
25
(
10
),
1256
1263
(
2014
).
54.
J.
Ivens
,
M.
Urbanus
, and
C. D.
Smet
, “
Shape recovery in a thermoset shape memory polymer and its fabric-reinforced composites
,”
Express Polym. Lett.
5
(
3
),
254
261
(
2011
).
55.
N.
Zheng
,
G. Q.
Fang
,
Z. L.
Cao
,
Q.
Zhao
, and
T.
Xie
, “
High strain epoxy shape memory polymer
,”
Polym. Chem.
6
(
16
),
3046
3053
(
2015
).
56.
T.
Xie
and
I. A.
Rousseau
, “
Facile tailoring of thermal transition temperature of epoxy shape memory epoxy
,”
Polymer
50
(
8
),
1852
1856
(
2009
).
57.
I. A.
Rousseau
and
T.
Xie
, “
Shape memory epoxy: Composition, structure, properties and shape memory performances
,”
J. Mater. Chem. A
20
(
17
),
3431
3441
(
2010
).
58.
A. B.
Leonardi
,
L. A.
Fasce
,
I. A.
Zucchi
,
C. E.
Hoppe
, and
E. R.
Soule
, “
Shape memory epoxies based on networks with chemical and physical crosslinks
,”
Eur. Polym. J.
47
(
3
),
362
369
(
2011
).
59.
R.
Biju
and
C. P. R.
Nair
, “
Synthesis and characterization of shape memory epoxy-anhydride system
,”
J. Polym. Res.
20
(
2
),
82
(
2013
).
60.
L.
Santo
,
F.
Quadrini
,
E. A.
Squeo
,
F.
Dolce
,
G.
Mascetti
,
D.
Bertolotto
,
W.
Villadei
,
P. L.
Ganga
, and
V.
Zolesi
, “
Behavior of shape memory epoxy foams in microgravity: Experimental results of STS-134 mission
,”
Microgravity Sci. Technol.
24
(
4
),
287
296
(
2012
).
61.
K.
Gall
,
M. L.
Dunn
,
Y.
Liu
,
D.
Finch
,
M.
Lake
, and
N. A.
Munshi
, “
Shape memory polymer nanocomposites
,”
Acta Mater.
50
(
20
),
5115
5126
(
2002
).
62.
S. C.
Arzberger
,
N. A.
Munshi
,
M. S.
Lake
,
J.
Wintergerst
,
S.
Varlese
, and
M. P.
Ulmer
, “
Elastic memory composite technology for thin lightweight space-and ground-based deployable mirrors
,” in
Proceedings of the Optical Materials and Structures Technologies Conference
,
San Diego
(
M. P. Ulmer Composite Technology Development
,
2003
), pp.
143
154
.
63.
F.
Xie
,
L. N.
Huang
,
J. S.
Leng
, and
Y. J.
Liu
, “
Thermoset shape memory polymers and their composites
,”
J. Intell. Mater. Syst. Struct.
27
(
18
),
2433
2455
(
2016
).
64.
J.
Sun
,
Y. J.
Liu
, and
J. S.
Leng
, “
Mechanical properties of shape memory polymer composites enhanced by elastic fibers and their application in variable stiffness morphing skins
,”
J. Intell. Mater. Syst. Struct.
26
(
15
),
2020
2027
(
2015
).
65.
M. C.
Everhart
,
J. B.
Stahl
,
E. W.
Traxler
, and
E.
Havens
, “
Shape memory polymer configurative tooling
,”
Proc. SPIE
5388
,
87
94
(
2004
).
66.
G. P.
Tandon
,
K.
Goecke
, and
K.
Cable
, “
Durability assessment of styrene- and epoxy-based shape memory polymer resins
,” J. Intell.
Mater. Syst. Struct.
20
(
17
),
2127
2143
(
2009
).
67.
F. K.
Li
,
A.
Perrenoud
, and
R. C.
Larock
, “
Thermophysical and mechanical properties of novel polymers prepared by the cationic copolymerization of fish oils, styrene and divinylbenzene
,”
Polymer
42
(
26
),
10133
10145
(
2001
).
68.
C.
Meiorin
,
M. I.
Aranguren
, and
M. A.
Mosiewicki
, “
Smart structural thermosets from the cationic copolymerization of a vegetable oil
,”
J. Intell. Mater. Syst. Struct.
124
(
6
),
5071
5078
(
2012
).
69.
F.
Xie
,
L. N.
Huang
,
Y. J.
Liu
, and
J. S.
Leng
, “
Synthesis and characterization of high temperature cyanate-based shape memory polymers with functional polybutadiene/acrylonitrile
,”
Polymer
55
(
23
),
5873
5879
(
2014
).
70.
F.
Xie
,
X. B.
Gong
,
L. N.
Huang
,
L. W.
Liu
,
J. S.
Leng
, and
Y. J.
Liu
, “
Effects of accelerated aging on thermal, mechanical, and shape memory properties of a cyanate-based shape memory polymer: II Atomic oxygen
,”
Polym. Degrad. Stab.
186
,
109515
(
2021
).
71.
M. C.
Everhart
,
D. M.
Nickerson
, and
R. D.
Hreha
, “
High-temperature reusable shape memory polymer mandrel
,”
Proc. SPIE
6171
,
61710K
(
2006
).
72.
R.
Biju
and
C. P.
Reghunadhan Nair
, “
Effect phenol end functional switching segments on the shape memory properties of epoxy-cyanate ester system
,”
J. Intell. Mater. Syst. Struct.
131
(
23
),
41196
(
2014
).
73.
R.
Biju
,
C.
Gouri
, and
C. P.
Reghunadhan Nair
, “
Shape memory polymers based on cyanate ester-epoxy-poly (tetramethyleneoxide) co-reacted system
,”
Eur. Polym. J.
48
(
3
),
499
511
(
2012
).
74.
K.
Wang
,
G. M.
Zhu
,
Y. K.
Wang
, and
F.
Ren
, “
Thermal and shape memory properties of cyanate/polybutadiene epoxy/polysebacic polyanhydride copolymer
,”
J. Intell. Mater. Syst. Struct.
132
(
23
),
42045
(
2015
).
75.
Y. M.
Zhao
,
D. D.
Zhang
, and
L.
Guo
, “
Shape memory behavior of bisphenol a-type cyanate ester/carboxyl-terminated liquid nitrile rubber coreacted system
,”
Colloid Polym. Sci.
292
(
10
),
2707
2713
(
2014
).
76.
X. L.
Xiao
,
D. Y.
Kong
,
X. Y.
Qiu
,
W. B.
Zhang
,
F. H.
Zhang
,
L. W.
Liu
,
Y. J.
Liu
,
S.
Zhang
,
Y.
Hu
, and
J. S.
Leng
, “
Shape memory polymers with adjustable high glass transition temperatures
,”
Macromolecules
48
(
11
),
3582
3589
(
2015
).
77.
X. L.
Xiao
,
X. Y.
Qiu
,
D. Y.
Kong
,
W. B.
Zhang
,
Y. J.
Liu
, and
J. S.
Leng
, “
Optically transparent high temperature shape memory polymers
,”
Soft Matter
12
(
11
),
2894
2900
(
2016
).
78.
X. L.
Xiao
,
D. Y.
Kong
,
X. Y.
Qiu
,
W. B.
Zhang
,
Y. J.
Liu
,
S.
Zhang
,
F. H.
Zhang
,
Y.
Hu
, and
J. S.
Leng
, “
Shape memory polymers with high and low temperature resistant properties
,”
Sci. Rep.
5
,
14137
(
2015
).
79.
H.
Koerner
,
R. J.
Strong
,
M. L.
Smith
,
D. H.
Wang
,
L. S.
Tan
,
K. M.
Lee
,
T. J.
White
, and
R. A.
Vaia
, “
Polymer design for high temperature shape memory: Low crosslink density polyimides
,”
Polymer
54
(
1
),
391
402
(
2013
).
80.
Q. H.
Wang
,
Y. K.
Bai
,
Y.
Chen
,
J. P.
Ju
,
F.
Zheng
, and
T. M.
Wang
, “
High performance shape memory polyimides based on π-π interactions
,”
J. Mater. Chem. A
3
(
1
),
352
359
(
2015
).
81.
Q. W.
Zhang
,
H. Q.
Wei
,
Y. J.
Liu
,
J. S.
Leng
, and
S. Y.
Du
, “
Triple shape memory effects of bismaleimide based thermosetting polymer networks prepared via heterogeneous crosslinking structures
,”
RSC Adv.
6
(
13
),
10233
10241
(
2016
).
82.
R.
Biju
and
C. P.
Reghunadhan Nair
, “
High transition temperature shape memory polymer composites based on bismaleimide resin
,”
High Perform. Polym.
25
(
4
),
464
474
(
2013
).
83.
A. J. W.
McClung
,
J. A.
Shumaker
,
J. W.
Baur
,
S. D.
Reed
, and
S. A.
Matthys
, “
Bismaleimide based shape memory polymers: Correlation between chemical composition and mechanical properties
,” AIAA Paper No. 2011-2112,
2011
, pp.
4
11
.
84.
W.
Huang
,
B.
Yang
,
Y.
Zhao
, and
Z.
Ding
, “
Thermomoisture responsive polyurethane shape-memory polymer and composites: A review
,”
J. Mater. Chem. A
20
(
17
),
3367
3381
(
2010
).
85.
H.
Koeren
,
G.
Price
,
N.
Pearce
,
M.
Alexander
, and
R. A.
Vaia
, “
Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers
,”
Nat. Mater.
3
(
2
),
115
120
(
2004
).
86.
J. S.
Leng
,
X.
Lan
,
Y. J.
Liu
, and
S. Y.
Du
, “
Electroactive thermoset shape memory polymer nanocomposite filled with nanocarbon powders
,”
Smart Mater. Struct.
18
(
7
),
074003
074008
(
2009
).
87.
X.
Qi
,
H.
Xiu
,
Y.
Wei
,
Y.
Zhou
,
Y. L.
Guo
,
R.
Huang
,
H. W.
Bai
, and
Q.
Fu
, “
Enhanced shape memory property of polylactide/thermoplastic poly(ether)urethane composites via carbon black self-networking induced co-continuous structure
,”
Compos. Sci. Technol.
139
,
8
16
(
2017
).
88.
Q. Q.
Ni
,
C. S.
Zhang
,
Y.
Fu
,
G. Z.
Dai
, and
T.
Kimura
, “
Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites
,”
Compos. Struct.
81
(
2
),
176
184
(
2007
).
89.
F. P.
Du
,
E. Z.
Ye
, and
W.
Yang
, “
Electroactive shape memory polymer based on optimized multiwalled carbon nanotubes/polyvinyl alcohol nanocomposites
,”
Compos. Part B
68
(
2
),
170
175
(
2015
).
90.
X.
Li
,
L.
Wang
,
Z.
Zhang
,
D. Y.
Kong
,
X. L.
Ao
, and
X. L.
Xiao
, “
Electroactive high-temperature shape memory polymers with high recovery stress induced by ground carbon fibers
,”
Macromol. Chem. Phys.
220
,
1900164
(
2019
).
91.
P. R.
Buckley
,
G. H.
Mckinley
,
T. S.
Wilson
,
W.
Small
,
W. J.
Benett
,
J. P.
Bearinger
,
M. W.
McElfresh
, and
D. J.
Maitland
, “
Inductively heated shape memory polymer for the magnetic actuation of medical devices
,”
IEEE Trans. Biomed. Eng.
53
(
10
),
2075
2083
(
2006
).
92.
F.
Cao
and
S.
Jana
, “
Nanoclay-tethered shape memory polyurethane nanocomposites
,”
Polymer
48
(
13
),
3790
3800
(
2007
).
93.
T.
Ohki
,
Q. Q.
Ni
, and
N.
Ohsako
, “
Nanoclay-tethered shape memory polyurethancomposites with shape memory polymer
,”
Compos. Part A
35
(
9
),
1065
1073
(
2004
).
94.
Y. K.
Wang
,
G. M.
Zhu
,
Y. S.
Tang
,
T. T.
Liu
,
J. Q.
Xie
, and
F.
Ren
, “
Short glass fiber reinforced radiation crosslinked shape memory SBS/LLDPE blends
,”
J. Intell. Mater. Syst. Struct.
131
(
17
),
40691
(
2014
).
95.
M.
Fejos
,
G.
Romhany
,
J.
Karger
, and
J.
Reinf
, “
Shape memory characteristics of woven glass fiber fabric reinforced epoxy composite in flexure
,”
Plast. Compos.
31
(
22
),
1532
1537
(
2012
).
96.
Y.
Liu
,
K.
Gall
,
M. L.
Dunn
, and
P.
McCluskey
, “
Thermomechanics of shape memory polymer nanocomposites
,”
Mech. Mater.
36
(
10
),
929
940
(
2004
).
97.
K.
Gall
,
M. L.
Dunn
,
Y.
Liu
,
G.
Stefanic
, and
D.
Balzar
, “
Internal stress storage in shape memory polymer nanocomposites
,”
Appl. Phys. Lett.
85
(
2
),
290
(
2004
).
98.
C.
Likitaporn
,
P.
Mora
,
S.
Tiptipakorn
, and
S. J.
Rimdusit
, “
Recovery stress enhancement in shape memory composites from silicon carbide whisker–filled benzoxazine-epoxy polymer alloy
,”
J. Intell. Mater. Syst. Struct.
29
(
3
),
388
396
(
2017
).
99.
H. B.
Lu
,
Y. T.
Yao
,
W. M.
Huang
,
J. S.
Leng
, and
D.
Hui
, “
Significantly improving infrared light-induced shape recovery behavior of shape memory polymeric nanocomposite via a synergistic effect of carbon nanotube and boron nitride
,”
Compos. Part B
62
,
256
261
(
2014
).
100.
M. J.
Duncan
,
M. F.
Metzeger
,
D.
Schumann
,
A.
Lee
, and
T. S.
Wilson
, “
Photothermal properties of shape memory polymers micro-actuators for treating stroke
,”
Lasers Surg. Med.
30
(
1
),
1
11
(
2002
).
101.
M. V.
Biyani
,
M.
Jorfi
, and
C.
Weder
, “
Light-stimulated mechanically switchable, photopatternable cellulose nanocomposites
,”
Polym. Chem.
5
(
19
),
5716
5724
(
2014
).
102.
A.
Lendlein
,
H. Y.
Jiang
,
O.
Junger
, and
R.
Langer
, “
Light-induced shape-memory polymers
,”
Nature
434
,
879
882
(
2005
).
103.
L.
Yu
and
H. F.
Yu
, “
Light-powered tumbler movement of graphene oxide/polymer nanocomposites
,”
ACS Appl. Mater. Interfaces
7
(
6
),
3834
3839
(
2015
).
104.
H. J.
Zhang
and
Y.
Zhao
, “
Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles
,”
ACS Appl. Mater. Interfaces
5
(
24
),
13069
13075
(
2013
).
105.
Y. W.
Zheng
,
J.
Li
,
E.
Lee
, and
S.
Yang
, “
Light-induced shape recovery of deformed shape memory polymer micropillar arrays with gold nanorods
,”
RSC Adv.
5
(
39
),
30495
30499
(
2015
).
106.
L.
Valentini
,
M.
Cardinali
, and
J.
Kenny
, “
Hotpress transferring of graphene nanoplatelets on polyurethane block copolymers film for electroactive shape memory devices
,”
J. Polym. Sci., Part B
52
(
16
),
1100
1106
(
2014
).
107.
Z. W.
Wang
,
J.
Zhao
,
M.
Chen
,
M. H.
Yang
,
L. Y.
Tang
,
Z. M.
Dang
,
F. H.
Chen
,
M. M.
Huang
, and
X.
Dong
, “
Dually actuated triple shape memory polymers of cross-linked polycyclooctene-carbon nanotube/polyethylene nanocomposites
,”
ACS Appl. Mater. Interfaces
6
(
22
),
20051
20059
(
2014
).
108.
J.
Alam
,
M.
Alam
,
M.
Raja
,
Z.
Abduljaleel
, and
L. A.
Dass
, “
MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behavior
,”
Int. J. Mol. Sci.
15
(
11
),
19924
19937
(
2014
).
109.
N. G.
Sahoo
,
Y. C.
Jung
, and
J. W.
Cho
, “
Electroactive shape memory effect of polyurethane composites filled with carbon nanotubes and conducting polymer
,”
Mater. Manuf. Process.
22
(
4
),
419
423
(
2007
).
110.
K. L.
Dagnon
,
A. E.
Way
,
S. O.
Carson
,
J.
Silva
,
J.
Maia
, and
S. J.
Rowan
, “
Controlling the rate of water-induced switching in mechanically dynamic cellulose nanocrystal composites
,”
Macromolecules
46
(
20
),
8203
8212
(
2013
).
111.
H. B.
Lu
,
W. M.
Huang
, and
J. S.
Leng
, “
Functionally graded and self-assembled carbon nanofiber and boron nitride in nanopaper for electrical actuation of shape memory nanocomposites
,”
Compos. Part B
62
(
3
),
1
4
(
2014
).
112.
J. S.
Leng
,
X.
Lan
,
Y. J.
Liu
,
S. Y.
Du
,
W. M.
Huang
,
N.
Liu
,
S. J.
Phee
, and
Q.
Yuan
, “
Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains
,”
Appl. Phys. Lett.
92
(
1
),
014104
(
2008
).
113.
H.
Kalita
and
N.
Karak
, “
Hyperbranched polyurethane/Fe3O4 thermosetting nanocomposites as shape memory materials
,”
Polym. Bull.
70
(
11
),
2953
2965
(
2013
).
114.
Y.
Zhu
,
J. L.
Hu
,
H. S.
Luo
,
R. J.
Young
,
L. B.
Deng
,
S.
Zhang
,
Y.
Fan
, and
G. D.
Ye
, “
Rapidly switchable water-sensitive shape-memory cellulose/elastomer nanocomposites
,”
Soft Matter
8
(
8
),
2509
2517
(
2012
).
115.
S. Y.
Gu
,
K.
Chang
, and
S. P.
Jin
, “
Dual-induced self-expandable stent based on biodegradable shape memory polyurethane nanocomposites (PCLAU/Fe3O4) triggered around body temperature
,”
J. Appl. Polym. Sci.
135
,
45686
(
2018
).
116.
H.
Kalita
and
N.
Karak
, “
Hyperbranched polyurethane/Fe3O4 nanoparticles decorated multiwalled carbon nanotube thermosetting nanocomposites as microwave actuated shape memory materials
,”
J. Mater. Res.
28
(
16
),
2132
2141
(
2013
).
117.
K.
Yu
,
Y.
Liu
, and
J.
Leng
, “
Shape memory polymer/CNT composites and their microwave induced shape memory behaviors
,”
RSC Adv.
4
(
6
),
2961
2968
(
2014
).
118.
H.
Du
,
Z.
Song
,
J.
Wang
,
Z. H.
Liang
,
Y. H.
Shen
, and
F.
You
, “
Microwave-induced shape-memory effect of silicon carbide/poly(vinyl alcohol) composite
,”
Sens. Actuators, A
228
,
1
8
(
2015
).
119.
J. R.
Kumpfer
and
S. J.
Rowan
, “
Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers
,”
J. Am. Chem. Soc.
133
(
32
),
12866
12874
(
2011
).
120.
Y.
Zhang
,
X.
Jiang
,
R. L.
Wu
, and
W.
Wang
, “
Multi-stimuli responsive shape memory polymers synthesized by using reaction-induced phase separation
,”
J. Intell. Mater. Syst. Struct.
133
(
24
),
43534
(
2016
).
121.
Z.
Tang
,
H. L.
Kang
,
Q. Y.
Wei
,
B. C.
Guo
,
L. Q.
Zhang
, and
D. M.
Jia
, “
Incorporation of graphene into polyester/carbon nanofibers composites or better multi-stimuli responsive shape memory performances
,”
Carbon
64
,
487
498
(
2013
).
122.
W. B.
Li
,
Y. J.
Liu
, and
J. S.
Leng
, “
Shape memory polymer nanocomposite with multi-stimuli response and two-way reversible shape memory behavior
,”
RSC Adv.
4
(
106
),
61847
61854
(
2014
).
123.
W. B.
Li
,
Y. J.
Liu
, and
J. S.
Leng
, “
Programmable and shape-memorizing information carriers
,”
ACS Appl. Mater. Interfaces
9
(
51
),
44792
44798
(
2017
).
124.
Z.
He
,
T.
Xie
, and
J. Z.
Hilt
, “
Remote controlled multishape polymer nanocomposites with selective radiofrequency actuations
,”
Adv. Mater.
23
,
3192
3196
(
2011
).
125.
L.
Yu
,
Q.
Wang
,
H.
Yang
,
J.
Sun
,
C. Y.
Li
,
C.
Zou
,
Z. M.
He
,
Z. D.
Wang
,
L.
Zhou
,
L. Y.
Zhanga
, and
H.
Yang
, “
Multi-shape-memory effects in a wavelength-selective multicomposite
,”
J. Mater. Chem. A
3
,
13953
13961
(
2015
).
126.
E. A.
Pieczyska
,
W. K.
Nowacki
,
H.
Tobushi
, and
S.
Hayashi
, “
Thermomechanical properties of shape memory polymer subjected to tension in various conditions
,”
QIRT J.
6
(
2
),
189
205
(
2009
).
127.
N.
Sahoo
,
Y.
Jung
,
H.
Yoo
, and
J. W.
Cho
, “
Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape memory properties of polyurethane nanocomposites
,”
Compos. Sci. Technol.
67
(
9
),
1920
1929
(
2007
).
128.
C.
Zhang
and
Q. Q.
Ni
, “
Bending behavior of shape memory polymer based laminates
,”
Compos. Struct.
78
(
2
),
153
161
(
2007
).
129.
S. H.
Lee
,
M. K.
Jang
,
H. S.
Kim
, and
B. M.
Kim
, “
Shape memory effects of molded flexible polyurethane foam
,”
Smart Mater. Struct.
16
(
6
),
2486
2491
(
2007
).
130.
Y. Y.
Liu
,
C. M.
Han
,
H. F.
Tan
, and
X. W.
Du
, “
Thermal, mechanical and shape memory properties of shape memory epoxy resin
,”
Mater. Sci. Eng., A
527
(
10–11
),
2510
2514
(
2010
).
131.
J. S.
Leng
,
X. L.
Wu
, and
Y. J.
Liu
, “
Effect of a linear monomer on the thermomechanical properties of epoxy shape-memory polymer
,”
Smart Mater. Struct.
18
,
095031
(
2009
).
132.
K. K.
Westbrook
,
F.
Castro
,
K. N.
Long
,
A. J.
Slifka
, and
H. J.
Qi
, “
Improved testing system for thermomechanical experiments on polymers using uniaxial compression equipment
,”
Polym. Test.
29
(
4
),
503
512
(
2010
).
133.
R.
Xiao
,
J.
Choi
,
N.
Lakhera
,
C. M.
Yakacki
,
C. P.
Frick
, and
T. D.
Nguyen
, “
Modeling the glass transition of amorphous networks for shape-memory behavior
,”
J. Mech. Phys. Solids
61
(
7
),
1612
1635
(
2013
).
134.
K.
Yu
,
Y.
Liu
,
Y.
Liu
,
H. X.
Peng
, and
J. S.
Leng
, “
Mechanical and shape recovery properties of shape memory polymer composite embedded with cup-stacked carbon nanotubes
,”
J. Intell. Mater. Syst. Struct.
25
(
10
),
1264
1275
(
2013
).
135.
F.
Xie
,
L. W.
Liu
,
X. B.
Gong
,
L. N.
Huang
,
J. S.
Leng
, and
Y. J.
Liu
, “
Effects of accelerated aging on thermal, mechanical and shape memory properties of cyanate-based shape memory polymer. I. Vacuum ultraviolet radiation
,”
Polym. Degrad. Stab.
138
,
91
97
(
2017
).
136.
H.
Gao
,
X.
Lan
,
L.
Liu
,
X.
Xiao
,
Y.
Liu
, and
J. S.
Leng
, “
Study on performances of colorless and transparent shape memory polyimide film in space thermal cycling, atomic oxygen and ultraviolet irradiation environments
,”
Smart Mater. Struct.
26
(
9
),
095001
(
2017
).
137.
Q.
Tan
,
F. F.
Li
,
L. W.
Liu
,
H. T.
Chu
,
Y. J.
Liu
, and
J. S.
Leng
, “
Effects of atomic oxygen on epoxy-based shape memory polymer in low earth orbit
,”
J. Intell. Mater. Syst. Struct.
29
(
6
),
1081
1087
(
2018
).
138.
W.
Zhao
,
Q.
Wang
,
L. W.
Liu
,
L. H.
Zhu
,
J. S.
Leng
, and
Y. J.
Liu
, “
Structural response measurement of shape memory polymer components using digital image correlation method
,”
Opt. Lasers Eng.
110
,
323
340
(
2018
).
139.
F. F.
Li
,
F.
Scarpa
,
X.
Lan
,
L. W.
Liu
,
Y. J.
Liu
, and
J. S.
Leng
, “
Bending shape recovery of unidirectional carbon fiber reinforced epoxy-based shape memory polymer composites
,”
Compos. Part A
116
,
169
179
(
2019
).
140.
H.
Tobushi
,
T.
Hashimoto
,
S.
Hayashi
, and
E.
Yamada
, “
Thermomechanical constitutive modeling in shape memory polymer of polyurethane series
,”
J. Intell. Mater. Syst. Struct.
8
(
8
),
711
718
(
1997
).
141.
H.
Tobushi
,
K.
Okumura
,
S.
Hayashi
, and
N.
Ito
, “
Thermomechanical constitutive model of shape memory polymer
,”
Mech. Mater.
33
(
10
),
545
554
(
2001
).
142.
B.
Zhou
,
Y. J.
Liu
, and
J. S.
Leng
, “
A macro-mechanical constitutive model for shape memory polymer
,”
Sci. China-Phys. Mech. Astron.
53
(
12
),
2266
2273
(
2010
).
143.
B.
Zhou
,
Y. J.
Liu
,
X.
Lan
,
J. S.
Leng
, and
S. H.
Yoon
, “
A glass transition model for shape memory polymer and its composite
,”
Int. J. Mod. Phys. B
23
(
6
),
1248
1253
(
2009
).
144.
J.
Morshedian
,
H. A.
Khonakdar
, and
S.
Rasouli
, “
Modeling of shape memory induction and recovery in heat‐shrinkable polymers
,”
Macromol. Theory Simul.
14
(
7
),
428
434
(
2005
).
145.
J.
Diani
,
Y.
Liu
, and
K.
Gall
, “
Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers
,”
Polym. Eng. Sci.
46
(
4
),
486
492
(
2006
).
146.
S. J.
Hong
,
W. R.
Yu
, and
J. H.
Youk
, “
Thermomechanical deformation analysis of shape memory polymers using viscoelasticity
,”
AIP Conf. Proc.
907
,
853
858
(
2007
).
147.
J. G.
Chen
,
L. W.
Liu
,
Y. J.
Liu
, and
J. S.
Leng
, “
Thermoviscoelastic shape memory behavior for epoxy-shape memory polymer
,”
Smart Mater. Struct.
23
,
055025
(
2014
).
148.
T.
Nguyen
,
H.
Jerryqi
,
F.
Castro
, and
K. N.
Long
, “
A thermoviscoelastic model for amorphous shape memory polymers: Incorporating structural and stress relaxation
,”
J. Mech. Phys. Solids
56
(
9
),
2792
2814
(
2008
).
149.
S.
Reese
and
S.
Govindjee
, “
A theory of finite viscoelasticity and numerical aspects
,”
Int. J. Solids Struct.
35
,
3455
3482
(
1998
).
150.
K. K.
Westbrook
,
P. H.
Kao
,
F.
Castro
,
Y. F.
Ding
, and
H. J.
Qi
, “
A 3D finite deformation constitutive model for amorphous shape memory polymers: A multi-branch modeling approach for nonequilibrium relaxation processes
,”
Mech. Mater.
43
(
12
),
853
869
(
2011
).
151.
K.
Yu
,
A. J. W.
Mcclung
,
G. P.
Tandon
,
J. W.
Baur
, and
H. J.
Qi
, “
A thermomechanical constitutive model for an epoxy based shape memory polymer and its parameter identifications
,”
Mech. Time-Depend. Mater.
18
(
2
),
453
474
(
2014
).
152.
F.
Castro
,
K. K.
Westbrook
,
K. N.
Long
,
R.
Shandas
, and
H. J.
Qi
, “
Effects of thermal rates on the thermomechanical behaviors of amorphous shape memory polymers
,”
Mech. Time-Depend. Mater.
14
(
3
),
219
241
(
2010
).
153.
V.
Srivastava
,
S. A.
Chester
,
N. M.
Ames
, and
L.
Anand
, “
A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition
,”
Int. J. Plast.
26
(
8
),
1138
1182
(
2010
).
154.
V.
Srivastava
,
S. A.
Chester
, and
L.
Anand
, “
Thermally actuated shape-memory polymers: Experiments, theory, and numerical simulations
,”
J. Mech. Phys. Solids
58
(
8
),
1100
1124
(
2010
).
155.
J. P.
Gu
,
H. Y.
Sun
, and
C. Q.
Fang
, “
A finite deformation constitutive model for thermally activated amorphous shape memory polymers
,”
J. Intell. Mater. Syst. Struct.
26
(
12
),
1530
1538
(
2015
).
156.
J. P.
Gu
,
J. S.
Leng
, and
H. Y.
Sun
, “
A constitutive model for amorphous shape memory polymers based on thermodynamics with internal state variables
,”
Mech. Mater.
111
,
1
14
(
2017
).
157.
C. Q.
Fang
,
J. S.
Leng
,
H. Y.
Sun
, and
J. P.
Gu
, “
A multi-branch thermoviscoelastic model based on fractional derivatives for free recovery behaviors of shape memory polymers
,”
Mech. Mater.
120
,
34
42
(
2018
).
158.
H.
Zeng
,
J. S.
Leng
,
J. P.
Gu
,
C. X.
Yin
, and
H. Y.
Sun
, “
Modeling the strain rate-, hold time-, and temperature-dependent cyclic behaviors of amorphous shape memory polymers
,”
Smart Mater. Struct.
27
(
7
),
075050
(
2018
).
159.
H.
Zeng
,
J. S.
Leng
,
J. P.
Gu
, and
H. Y.
Sun
, “
A thermoviscoelastic model incorporated with uncoupled structural and stress relaxation mechanisms for amorphous shape memory polymers
,”
Mech. Mater.
124
,
18
25
(
2018
).
160.
Y. P.
Liu
,
K.
Gall
,
M. L.
Dunn
,
A. R.
Greenberg
, and
J.
Diani
, “
Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling
,”
Int. J. Plast.
22
(
2
),
279
313
(
2006
).
161.
Y. C.
Chen
and
D. C.
Lagoudas
, “
A constitutive theory for shape memory polymers. I. Large deformations
,”
J. Mech. Phys. Solids
56
(
5
),
1752
1765
(
2008
).
162.
Y. C.
Chen
and
D. C.
Lagoudas
, “
A constitutive theory for shape memory polymers. II. A linearized model for small deformations
,”
J. Mech. Phys. Solids
56
(
5
),
1766
1778
(
2008
).
163.
H. J.
Qi
,
T. D.
Nguyen
,
F.
Castro
,
C. M.
Yakackia
, and
R.
Shandas
, “
Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers
,”
J. Mech. Phys. Solids
56
(
5
),
1730
1751
(
2008
).
164.
G.
Barot
and
I. J.
Rao
, “
Constitutive modeling of the mechanics associated with crystallizable shape memory polymers
,”
Z. Angew. Math. Phys.
57
(
4
),
652
681
(
2006
).
165.
W.
Zhao
,
L. W.
Liu
,
J. S.
Leng
, and
Y. J.
Liu
, “
Thermo-mechanical behavior prediction of shape memory polymers based on multiplicative decompositions of the deformation gradient
,”
Mech. Mater.
143
,
103263
(
2020
).
166.
P.
Gilormini
and
J.
Diani
, “
On modeling shape memory polymers as thermoelastic two-phase composite materials
,”
C.R. Mec.
340
(
4–5
),
338
348
(
2012
).
167.
X.
Guo
,
L.
Liu
,
B.
Zhou
,
Y. J.
Liu
, and
J. S.
Leng
, “
Constitutive model for shape memory polymer based on the viscoelasticity and phase transition theories
,”
J. Intell. Mater. Syst. Struct.
27
(
3
),
314
323
(
2015
).
168.
M.
Bodaghi
,
A.
Damanpack
, and
W.
Liao
, “
Triple shape memory polymers by 4D printing
,”
Smart Mater. Struct.
27
,
065010
(
2018
).
169.
Y. X.
Li
,
Y. H.
He
, and
Z. S.
Liu
, “
A viscoelastic constitutive model for shape memory polymers based on multiplicative decompositions of the deformation gradient
,”
Int. J. Plast.
91
,
300
317
(
2017
).
170.
Z. D.
Wang
,
D. F.
Li
,
Z. Y.
Xiong
, and
R. N.
Chang
, “
Modeling thermomechanical behaviors of shape memory polymer
,”
J. Intell. Mater. Syst. Struct.
113
(
1
),
651
656
(
2009
).
171.
S.
Reese
,
M.
Böl
, and
D.
Christ
, “
Finite element-based multi-phase modeling of shape memory polymer stents
,”
Comput. Meth. Appl. Mech. Eng.
199
(
21–22
),
1276
1286
(
2010
).
172.
B. L.
Volk
,
D. C.
Lagoudas
,
Y.
Chen
, and
K. S.
Whitley
, “
Analysis of the finite deformation response of shape memory polymers. I. Thermomechanical characterization
,”
Smart Mater. Struct.
19
(
7
),
75005
(
2010
).
173.
B. L.
Volk
,
D. C.
Lagoudas
, and
D. J.
Maitland
, “
Characterizing and modeling the free recovery and constrained recovery behavior of a polyurethane shape memory polymer
,”
Smart Mater. Struct.
20
(
9
),
094004
(
2011
).
174.
B. L.
Volk
,
D. C.
Lagoudas
, and
Y.
Chen
, “
Thermomechanical characterization of the nonlinear rate-dependent response of shape memory polymers
,”
Proc. SPIE
6929
,
69291B
(
2008
).
175.
Q.
Yang
and
G.
Li
, “
Temperature and rate dependent thermomechanical modeling of shape memory polymers with physics based phase evolution law
,”
Int. J. Plast.
80
,
168
186
(
2016
).
176.
J. H.
Kim
,
T. J.
Kang
, and
W.
Yu
, “
Thermo-mechanical constitutive modeling of shape memory polyurethanes using a phenomenological approach
,”
Int. J. Plast.
26
(
2
),
204
218
(
2010
).
177.
H.
Park
,
P.
Harrison
,
Z. Y.
Guo
,
M. G.
Lee
, and
W. R.
Yu
, “
Three-dimensional constitutive model for shape memory polymers using multiplicative decomposition of the deformation gradient and shape memory strains
,”
Mech. Mater.
93
,
43
62
(
2016
).
178.
J. M.
Guo
,
J. B. A.
Liu
,
Z. Q.
Wang
,
X. F.
He
,
L. F.
Hu
,
L. Y.
Tong
, and
X. J.
Tang
, “
A thermodynamics viscoelastic constitutive model for shape memory polymers
,”
J. Alloys Compd.
705
,
146
155
(
2017
).
179.
H.
Lu
,
X.
Wang
,
Y.
Yao
, and
Y. Q.
Fu
, “
A ‘frozen volume’ transition model and working mechanism for the shape memory effect in amorphous polymers
,”
Smart Mater. Struct.
27
(
6
),
065023
(
2018
).
180.
R.
Bouaziz
,
F.
Roger
, and
K.
Prashantha
, “
Thermomechanical modeling of semi-crystalline thermoplastic shape memory polymer under large strain
,”
Smart. Mater. Struct.
26
,
055009
(
2017
).
181.
Z.
Pan
and
Z.
Liu
, “
A novel fractional viscoelastic constitutive model for shape memory polymers
,”
J. Polym. Sci., Part B
56
,
1125
1134
(
2018
).
182.
G.
Scalet
,
F.
Auricchio
,
E.
Bonetti
,
L.
Castellani
,
D.
Ferri
,
M.
Pachera
, and
F.
Scavello
, “
An experimental, theoretical and numerical investigation of shape memory polymers
,”
Int. J. Plast.
67
,
127
147
(
2015
).
183.
A. I.
Arvanitakis
, “
A constitutive level-set model for shape memory polymers and shape memory polymeric composites
,”
Arch. Appl. Mech.
89
(
9
),
1939
1951
(
2019
).
184.
Q. S.
Yang
,
X. Q.
He
,
X.
Liu
,
F. F.
Leng
, and
Y. W.
Mai
, “
The effective properties and local aggregation effect of CNT/SMP composites
,”
Compos. Part B
43
,
33
38
(
2012
).
185.
C.
Jaralia
,
M.
Madhusudan
,
S.
Vidyashankarc
, and
S.
Rajaa
, “
A new micromechanics approach to the application of Eshelby's equivalent inclusion method in three phase composites with shape memory polymer matrix
,”
Compos. Part B
152
,
17
30
(
2018
).
186.
W.
Zhao
,
L. W.
Liu
,
J. S.
Leng
, and
Y. J.
Liu
, “
Thermo-mechanical behavior prediction of particulate reinforced shape memory polymer composite
,”
Compos. Part B
179
,
107455
(
2019
).
187.
N. F.
Dow
and
B. W.
Rosen
, “
Evaluations of filament-reinforced composites for aerospace structural applications
,” Report No. ADA305442 (
General Electric Co.
,
Philadelphia, PA
,
1965
), available at https://apps.dtic.mil/sti/citations/ADA305442.
188.
S. P.
Timoshenko
and
J. M.
Gere
,
Theory of Elastic Stability
(
Courier Dover Publications
,
2009
).
189.
D.
Campbell
,
M. S.
Lake
, and
K.
Mallick
, “
A study of the compression mechanics of soft-resin composites
,” AIAA Paper No. 2004-1636, 2004.
190.
D.
Campbell
and
A.
Maji
, “
Failure mechanisms and deployment accuracy of elastic-memory composites
,”
J. Aerosp. Eng.
19
(
3
),
184
193
(
2006
).
191.
D.
Campbell
and
A.
Maji
, “
Deployment precision and mechanics of elastic memory composites
,” AIAA Paper No. 2003-1495,
2003
.
192.
Z. D.
Wang
,
Z. Y.
Xiong
,
Z. F.
Li
, and
R. N.
Chang
, “
Micromechanism of deformation in EMC laminates
,”
Mater. Sci. Eng., A
496
(
1
),
323
328
(
2008
).
193.
X.
Lan
,
L.
Liu
,
Y.
Liu
 et al., “
Post microbuckling mechanics of fiber-reinforced shape-memory polymers undergoing flexure deformation
,”
Mech. Mater.
72
,
46
60
(
2014
).
194.
Q.
Tan
,
L. W.
Liu
,
Y. J.
Liu
, and
J. S.
Leng
, “
Post buckling analysis of the shape memory polymer composite laminate bonded with alloy film
,”
Compos. Part B
53
,
218
225
(
2013
).
195.
W.
Francis
,
M.
Lake
,
M.
Schultz
,
D.
Campbell
,
M.
Dumn
, and
H. J.
Qi
, “
Elastic memory composite microbuckling mechanics: closed-form model with empirical correlation
,” AIAA Paper No. 2007-2164, 2007.
196.
W. H.
Francis
and
M. S.
Lake
, “
A review of classical fiber microbuckling analytical solutions for use with elastic memory composites
,” AIAA Paper No. 2006-1764, 2006.
197.
E. R.
Abrahamson
and
M. S.
Lake
, “
Shape memory mechanics of an elastic memory composite resin
,”
J. Intell. Mater. Syst. Struct.
14
,
623
632
(
2003
).
198.
D.
Campbell
and
A.
Maji
, “
Failure mechanisms in the folding of unidirectional soft-resin composites
,” in
Proceedings of the Society for Experimental Mechanics SEM Annual Conference and Exposition of Experimental and Applied Mechanics
(Society for Experimental Mechanics,
Charlotte, NC
,
2003
), pp.
1
10
.
199.
M. R.
Schultz
,
W. H.
Francis
,
D.
Campbell
, and
M. S.
Lake
, “
Analysis techniques for shape-memory composites structure
,” AIAA Paper No. 2007-2401,
2007
, p.
2401
.
200.
K.
Miura
and
Y.
Miyazaki
, “
Concept of the tension truss antenna
,”
AIAA J.
28
(
6
),
1098
1104
(
1990
).
201.
S. C.
Arzberger
,
M. L.
Tupper
,
M. S.
Lake
,
R.
Barrett
,
K.
Mallick
, and
C.
Hazelton
, “
Elastic memory composites (EMC) for deployable industrial and commercial applications
,”
Proc. SPIE
5762
,
35
47
(
2005
).
202.
D.
Campbell
,
M. S.
Lake
,
M. S.
Scherbarth
,
E.
Nelson
, and
R. W.
Six
, “
Elastic memory composite material: An enabling technology for future furlable space structures
,” AIAA Paper No. 2005-2362,
2005
, pp.
18
21
.
203.
M. S.
Robert
,
J. P.
Emil
,
W. T.
Eric
, and
M. H.
Jason
, “
Veritex (TM) struts for antenna application
,” AIAA Paper No. 2006-2038,
2006
, pp.
1
4
.
204.
X.
Lan
,
Y. J.
Liu
,
H. B.
Lv
,
X. H.
Wang
,
J. S.
Leng
, and
S. Y.
Du
, “
Fiber reinforced shape memory polymer composite and its application in a deployable hinge
,”
Smart Mater. Struct.
18
(
2
),
024002
(
2009
).
205.
R.
Zhang
,
X.
Guo
,
Y.
Liu
, and
J. S.
Leng
, “
Theoretical analysis and experiments of a space deployable truss structure
,”
Compos. Struct.
112
,
226
230
(
2014
).
206.
F. F.
Li
,
L. W.
Liu
,
L. Z.
Du
,
Y. J.
Liu
, and
J. S.
Leng
, “
Mechanical analysis of a tip-loaded deployable truss based on shape memory polymer composite
,”
Compos. Struct.
242
,
112196
(
2020
).
207.
Q.
Chen
,
Z.
Yao
,
Y.
Hou
, and
H.
Fang
, “
Design and testing of a space deployable mechanism
,”
AIAA Paper No. 2017-0716
,
2017
.
208.
A.
Rakow
,
K.
Hedin
, and
B.
Anthony
, “
Development of high specific power solar arrays with shape memory polymer hinge lines
,” AIAA Paper No. 2018-2206,
2018
.
209.
X.
Lan
,
L. W.
Liu
,
F. H.
Zhang
,
Z. X.
Liu
,
L. L.
Wang
,
Q. F.
Li
,
F.
Peng
,
S. D.
Hao
,
W. X.
Dai
,
X.
Wan
,
Y.
Tang
,
M.
Wang
,
Y. Y.
Hao
,
Y.
Yang
,
C.
Yang
,
Y. J.
Liu
, and
J. S.
Leng
, “
World's first spaceflight on-orbit demonstration of a flexible solar array system based on shape memory polymer composites
,”
Sci. China-Technol. Sci.
63
,
1436
1451
(
2020
).
210.
A. W.
Love
, “
Some highlights in reflector antenna development
,”
Radio Sci.
11
,
671
684
, (
1976
).
211.
J.
Huang
,
H. F.
Fang
,
R.
Lovick
, and
M.
Lou
, “
The development of large flat inflatable antenna for deep-space communications
,” AIAA Paper No. 2004-6112,
2004
.
212.
S. C.
Arzberger
,
N. A.
Munshia
,
M. S.
Lakea
,
J.
Wintergerst
,
S. J.
Varlese
, and
M. P.
Ulmer
, “
Elastic memory composite technology for thin, lightweight space and ground-based deployable mirrors
,”
Proc. SPIE
5179
,
143
154
(
2003
).
213.
S. J.
Varlese
and
L. R.
Hardaway
, “
Laminated electroformed shape memory composite for deployable light weight optics
,”
Proc. SPIE
5542
,
375
383
(
2004
).
214.
W.
Francis
,
M.
Lake
,
J.
Hinkle
, and
L.
Peterson
, “
Development of an EMC self-locking linear actuator for deployable optics
,” AIAA Paper No. 2004-1821,
2004
, pp.
19
22
.
215.
P. N.
Keller
,
M. S.
Lake
,
D.
Codell
,
R.
Barrett
,
R.
Taylor
, and
M. R.
Schultz
, “
Development of elastic memory composite stiffeners for a flexible precision reflector
,” AIAA Paper No. 2006-2179,
2006
, p.
2179
.
216.
J. K. H.
Lin
,
C. F.
Knoll
, and
C. E.
Willey
, “
Shape memory rigidizable inflatable (Ri) structures for large space systems applications
,” AIAA Paper No. 2006-1896, 2006, pp. 1–4.
217.
F. F.
Li
,
L. W.
Liu
,
X.
Lan
,
C. T.
Pan
,
Y. J.
Liu
,
J. S.
Leng
, and
Q.
Xie
, “
Ground and geostationary orbital qualification of a sunlight-stimulated substrate based on shape memory polymer composite
,”
Smart Mater. Struct.
28
(
7
),
075023
(
2019
).
218.
Z. X.
Liu
,
Q. F.
Li
,
W. F.
Bian
,
X.
Lan
,
Y. J.
Liu
, and
J. S.
Leng
, “
Preliminary test and analysis of an ultralight lenticular tube based on shape memory polymer composites
,”
Compos. Struct.
223
,
110936
(
2019
).
219.
D. W.
Zhang
,
O. J.
George
,
K. M.
Petersen
,
A. C.
Jimenez-Vergara
,
M. S.
Hahn
, and
M. A.
Grunlan
, “
A bioactive ‘self-fitting’ shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects
,”
Acta Biomater.
10
(
11
),
4597
4605
(
2014
).
220.
X.
Liu
,
K.
Zhao
,
T.
Gong
,
J.
Song
,
C. Y.
Bao
,
E.
Luo
,
J.
Weng
, and
S. B.
Zhou
, “
Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect
,”
Biomacromolecules
15
(
3
),
1019
1030
(
2014
).
221.
P.
Rychter
,
E.
Pamula
,
A.
Orchel
,
U.
Posadowska
,
M.
Krok-Borkowicz
,
A.
Kaps
,
N.
Smigiel-Gac
,
A.
Smola
,
J.
Kasperczyk
,
W.
Prochwicz
, and
P.
Dobrzynski
, “
Scaffolds with shape memory behavior for the treatment of large bone defects
,”
J. Biomed. Mater. Res. Part A
103
,
3503
(
2015
).
222.
F. S.
Senatov
,
K. V.
Niaza
,
M. Y.
Zadorozhnyy
,
A. V.
Maksimkin
,
S. D.
Kaloshkin
, and
Y. Z.
Estrin
, “
Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds
,”
J. Mech. Behav. Biomed. Mater.
57
,
139
148
(
2016
).
223.
F. H.
Zhang
,
L. L.
Wang
,
Z. C.
Zheng
,
Y. J.
Liu
, and
J. S.
Leng
, “
Magnetic programming of 4D printed shape memory composite structures
,”
Compos. Part A
125
,
105571
(
2019
).
224.
H.
Tamai
,
K.
Igaki
,
E.
Kyo
,
K.
Kosuga
,
A.
Kawashima
,
S.
Matsui
,
H.
Komori
,
T.
Tsuji
,
S.
Motohara
, and
H.
Uehata
, “
Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans
,”
Circulation
102
(
4
),
399
404
(
2000
).
225.
R. J.
Morrison
,
S. J.
Hollister
,
M. F.
Niedner
,
M. G.
Mahani
,
A. H.
Park
,
D. K.
Mehta
,
R. G.
Ohye
, and
G. E.
Greer
, “
Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients
,”
Sci. Transl. Med.
7
(
285
),
285ra64
(
2015
).
226.
D. A.
Zopf
,
C. L.
Flanagan
,
M.
Wheeler
,
J. H.
Scott
, and
E. G.
Glenn
, “
Treatment of severe porcine tracheomalacia with a 3-dimensionally printed, bioresorbable, external airway splint
,”
JAMA Otolaryngol.
140
(
1
),
66
71
(
2014
).
227.
D. A.
Zopf
,
S. J.
Hollister
,
M. E.
Nelson
,
R. G.
Ohye
, and
G. E.
Green
, “
Bioresorbable airway splint created with a three-dimensional printer
,”
Sci. Transl. Med.
368
(
21
),
2043
2045
(
2013
).
228.
M.
Zarek
,
N.
Mansour
,
S.
Shapira
, and
D.
Cohn
, “
4D printing of shape memory-based personalized endoluminal medical devices
,”
Macromol. Rapid Commun.
38
,
1600628
(
2017
).
229.
H. Q.
Wei
,
Q. W.
Zhang
,
Y. T.
Yao
,
L. W.
Liu
,
Y. J.
Liu
, and
J. S.
Leng
, “
Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite
,”
ACS Appl. Mater. Interfaces
9
(
1
),
876
883
(
2017
).
230.
T.
Kim
and
Y.
Lee
, “
Shape transformable bifurcated stents
,”
Sci. Rep.
8
,
13911
(
2018
).
231.
D.
Liu
,
T.
Xiang
,
T.
Gong
,
T.
Tian
,
X.
Liu
, and
S.
Zhou
, “
Bioinspired 3D multilayered shape memory scaffold with a hierarchically changeable micropatterned surface for efficient vascularization
,”
ACS Appl. Mater. Interfaces
9
(
23
),
19725
19735
(
2017
).
232.
W.
Zhao
,
F. H.
Zhang
,
J. S.
Leng
, and
Y. J.
Liu
, “
Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites
,”
Compos. Sci. Technol.
184
,
107866
(
2019
).
233.
W.
Zhao
,
N.
Li
,
L. W.
Liu
,
J. S.
Leng
, and
Y. J.
Liu
, “
Origami derived self-assembly stents fabricated via 4D printing
,”
Compos. Struct.
293
,
115669
(
2022
).
234.
W. M.
Huang
,
C. L.
Song
,
Y. Q.
Fu
,
C. C.
Wang
,
Y.
Zhao
,
H.
Purnawali
,
B. H.
Lu
,
C.
Tang
,
Z.
Ding
, and
J. L.
Zhang
, “
Shaping tissue with shape memory materials
,”
Adv. Drug Delivery Rev.
65
(
4
),
515
535
(
2013
).
235.
Y.
Niimi
,
J.
Song
,
M.
Madrid
, and
A.
Berenstein
, “
Endosaccular treatment of intracranial aneurysms using matrix coils-early experience and midterm follow-up
,”
Stroke
37
(
4
),
1028
1032
(
2006
).
236.
J. M.
Hampikian
,
B. C.
Heaton
,
F. C.
Tong
,
Z. Q.
Zhang
, and
C. P.
Wong
, “
Mechanical and radiographic properties of a shape memory polymer composite for intracranial aneurysm coils
,”
Mater. Sci. Eng., C
26
(
8
),
1373
1379
(
2006
).
237.
A.
Metcalfe
,
A. C.
Desfaits
,
I.
Salazkin
,
L.
Yahia
,
W. M.
Sokolowski
, and
J.
Raymond
, “
Cold hibernated elastic memory foams for endovascular interventions
,”
Biomaterials
24
,
491
(
2003
).
238.
A. D.
Lantada
,
P.
Lafont
,
I.
Rada
,
A.
Jimenez
,
J. L.
Hernandez
,
H.
Lorenzo-Yustos
, and
J.
Munoz-Garcia
, “
Active annuloplasty system for mitral valve insufficiency
,” in
Biostec, Biomedical Engineering Systems and Technologies
(
Springer
,
Berlin, Heidelberg
,
2008
), Vol.
25
, pp.
59
72
.
239.
C.
Lin
,
J.
Lv
,
Y.
Li
,
F. H.
Zhang
,
J. R.
Li
,
Y. J.
Liu
, and
L. W.
Liu
, “
4D-printed biodegradable and remotely controllable shape memory occlusion devices
,”
Adv. Funct. Mater.
29
(
51
),
1906569
(
2019
).
240.
W.
Zhao
,
L. W.
Liu
,
X.
Lan
,
B.
Su
,
J. S.
Leng
, and
Y. J.
Liu
, “
Adaptive repair device concept with shape memory polymer
,”
Smart Mater. Struct.
26
(
2
),
025027
(
2017
).
241.
M. C.
Everhart
and
J.
Stahl
, “
Reusable shape memory polymer mold
,”
Proc. SPIE
5762
,
27
34
(
2005
).
242.
L.
Zhang
,
H. Y.
Du
,
L. W.
Liu
,
Y. J.
Liu
, and
J. S.
Leng
, “
Analysis and design smart mold using shape memory polymers
,”
Compos. Part B
59
,
230
237
(
2014
).
243.
H. Y.
Du
,
L. W.
Liu
,
F. H.
Zhang
,
J. S.
Leng
, and
Y. J.
Liu
, “
Triple-shape memory effect in a styrene-based shape memory polymer: Characterization
,”
Compos. Part B
173
,
106905
(
2019
).
244.
J.
Wang
,
Q. L.
Zhao
,
H. Q.
Cui
,
Y. L.
Wang
,
H. X.
Chen
, and
X. M.
Du
, “
Tunable shape memory polymer mold for multiple microarray replications
,”
J. Mater. Chem. A
6
,
24748
(
2018
).
245.
M.
Lucy
,
R.
Hardy
,
E.
Kist
,
J.
Watson
, and
S.
Wise
, “
Report on alternative devices to pyrotechnics on spacecraft
,” National Aeronautics and Space Administration Langley Research Center, Paper No. NASA-TM-110470, 1996. https://apps.dtic.mil/sti/citations/ADA327677
246.
W.
Huang
, “
On the selection of shape memory alloys for actuators
,”
Mater. Des.
23
(
1
),
11
19
(
2002
).
247.
K.
GallMark
,
L.
Mark
,
L. J.
Harvey
, and
E.
Ricca
, “
Development of a shockless thermally actuated release nut using elastic memory composite material
,” AIAA Paper No. 2003-1582,
2003
, pp.
20191
4344
.
248.
H. Q.
Wei
,
L. W.
Liu
,
Z. C.
Zhang
,
H. Y.
Du
,
Y. J.
Liu
, and
J. S.
Leng
, “
Design and analysis of smart release devices based on shape memory polymer composites
,”
Compos. Struct.
133
,
642
651
(
2015
).
249.
H. X.
Zhao
,
X.
Lan
,
L. W.
Liu
,
Y. J.
Liu
, and
J. S.
Leng
, “
Design and analysis of shockless smart releasing device based on shape memory polymer composites
,”
Compos. Struct.
223
,
110958
(
2019
).
250.
D.
Zhang
,
L. W.
Liu
,
J. S.
Leng
, and
Y. J.
Liu
, “
Ultra-light release device integrated with screen-printed heaters for CubeSat's deployable solar arrays
,”
Compos. Struct.
232
,
111561
(
2020
).
You do not currently have access to this content.