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ABSTRACT
Structured light has become topical of late, where controlling light in all its degrees of freedom has offered novel states of light long pre-
dicted, enhanced functionality in applications, and a modern toolbox for probing fundamental science. Structuring light as single photons
and entangled states allows the spatial modes of light to be used to encode a large alphabet, accessing high dimensional Hilbert spaces for
fundamental tests of quantum mechanics and improved quantum information processing tasks. In this tutorial, we outline the basic concepts
of high dimensional quantum states expressed in a basis of spatial modes (structured light) and explain how to create, control, and detect such
quantum states in the laboratory with a focus on transverse spatial modes such as the orbital angular momentum and pixel (position) modes.
Finally, we highlight some example applications of such quantum structured light, from communications to imaging.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0138224

I. INTRODUCTION

It has become topical of late to tailor light in all its degrees
of freedom, looking beyond the intensity profile alone for so-called
structured light.1 Traditionally this has been performed with clas-
sical light, for example, amplitude, phase, and polarization con-
trol in space2 and wavelength/frequency manipulation for tempo-
ral control.3 Blending space and time together has given rise to
exotic forms of spatiotemporal light, long been predicted but only
recently observed,4–6 fueling a movement toward high-dimensional
forms of structured light.7 Creation and detection tools are numer-
ous,8 including directly from lasers, for compact sources of struc-
tured light.9 These tailored optical fields with complex structures
have found a myriad of applications, which have been extensively
reviewed to date.10,11 Perhaps the most topical example is that of
optical orbital angular momentum (OAM). The fact that light could
carry OAM has been known since at least the days of atomic physics
(accounting for the rare quadrupole transitions in atomic states),
but it was only 30 years ago (in 1992) that OAM was directly
connected to the spatial structure of light through an azimuthal
phase of the form exp(iℓϕ), winding the phase ℓ times around the
azimuth (ϕ) for ℓh of OAM per photon.12 The explosion of activity
since has been captured in recent commemorative perspectives and
reviews.11,13

The control of structured quantum states of light is far less
developed, having appeared in the spatial domain with OAM just 20

years ago.14 In this seminal work by Nobel Laureate Anton Zeilinger,
the conservation of OAM was confirmed down to the single pho-
ton level and demonstrated as qubit entangled states in several OAM
subspaces, the first demonstration of spatial mode entanglement. As
there are an infinite number of spatial modes on any given basis,
this form of quantum structured light has the potential to realize d
dimensional states15–17 for a large encoding alphabet that scales as
log2 d bits/photon and enhanced security with cloning fidelity that
scales as F = 1

2 +
1

(1+d) , making this approach attractive for quantum
information processing. Although d can be increased by degrees of
freedom such as path and time, here we will consider only spatially
structured quantum light. One good reason for the interest in this
avenue is that the classical properties of spatial modes often translate
to benefits in the quantum realm, for instance, self-healing of Bessel
structured quantum states18 and enhanced control by mixing polar-
ization and spatial modes for hybrid entanglement,19–21 analogous
to vectorial structured light.

For a long time, spatial mode entanglement remained at the
qubit (d = 2) level, mimicking polarization states, although with
multiple options for the two-dimensional subspaces through many
combinations of orthogonal spatial modes. Indeed, this analogy
allowed the easy transition of the quantum toolkit from polariza-
tion qubits to structured light qubits, for instance, quantum state
tomography (QST)22,23 and bell violation tests,24 enabled by com-
puter generated holograms. It is only in the last decade that the
true high-dimensional nature of structured quantum light has come
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to the fore, both as entangled states and as heralded single pho-
tons. Seminal contributions have demonstrated high-dimensional
Bell tests,25 high-dimensional QSTs,26 fast and accurate entangle-
ment tests27 and witnesses,28 high-dimensional quantum interfer-
ence,29 and sophisticated high-dimensional quantum state creation
tools.30–34 The application of structured quantum light in high-
dimensional quantum information processing has seen quantum
key distribution up to d = 7 in free space35,36 and d = 6 in opti-
cal fibers,37,38 quantum secret sharing up to d = 11 with Bessel
photons,39 entanglement swapping up to d = 2 with OAM,40 and
teleportation up to d = 3 with linear optics41,42 and d = 15 with
non-linear optics.43

In this tutorial, we start by briefly covering the formalism used
in working with high-dimensional structured quantum light, con-
centrating on practical tools using OAM and pixel (position) modes
as examples. We then outline some of the basics needed in order to
get started, extending from the creation step in bulk crystals to align-
ing, manipulating, detecting, and characterizing the output state,
along with some caveats needed for these considerations. Finally, we
look at some example applications ranging from imaging to secure
communications, where the advantages and challenges that come
with harnessing high-dimensional states are outlined.

II. THEORETICAL CONCEPT
A. Structured light and its degrees of freedom

In this section, we introduce the reader to the concepts of inter-
nal degrees of freedom of photons and thereafter discuss ways to
obtain high dimensional encoding in quantum structured light.

A single photon that is freely propagating through a vacuum is
an excitation of the electromagnetic field that travels at a constant
speed (c). A modern version of Thomas Young’s experiments can
readily show that such a photon has a wave-like nature and has a
probability amplitude, or equivalently, its wavefunction, that is dis-
tributed through space and time. An illustration of our photon is
shown in Fig. 1(a), where the photon is decomposed into its degrees
of freedom, namely the (i) polarization, which is associated with the
spin angular momentum of photons, the (ii) temporal envelope, and
the (iii) spatial structure, which includes the transverse (x and y) and
longitudinal components (z). Accordingly, the photon state can be
expressed as

∣Ψ⟩ =∬ Φspatial(r)Ωtime(t)∣Ϛpol⟩∣r⟩∣t⟩dt d3r, (1)

using the continuous spatial ∣r = (x, y, z)⟩ and temporal ∣t⟩ coor-
dinate basis, with corresponding probability amplitudes, Φspatial(r)
and Ωtime(t), that constitute the photon wavepacket, while ∣Ϛpol⟩

denotes the polarization state of the photon. The temporal and
frequency (ω) components are related by the Fourier transform,
i.e., Ω̃(ω)∝ ∫ Ω(t) exp(−iωt)dt, therefore determining the spec-
tral properties of the photon. Structured light refers to the tailoring
of all these degrees of freedom.1 Here, we aim to show how it can
be harnessed for higher dimensional encoding using the internal
degrees of freedom of photons.

The polarization degree of freedom was initially the best can-
didate for photon information processing due to its ease of con-
trol with conventional linear optical elements and was used to

demonstrate numerous fundamental tests of quantum mechanics
(Bell inequality violations44 and quantum erasers45) and the ini-
tial demonstrations of quantum communication and cryptography
(quantum key distribution,46 teleportation,47 and superdense cod-
ing48). However, the polarization states of a single photon are
restricted to a two level system that can be composed of the canonical
right (∣0⟩ ≡ ∣R⟩) and left (∣1⟩ ≡ ∣L⟩) circular polarization eigen-
states as basis modes. Here, the states ∣0(1)⟩ represent the logical
(standard) basis.

The two level system can be visualized using the Bloch sphere,
as shown in Fig. 1(b), where any two modes on the opposite ends of
the sphere can be used to form a logical basis. For example, if we look
at the equator of the sphere, the superposition states ∣R⟩ ± ∣L⟩, cor-
responding to the horizontal ∣0⟩ ≡ ∣H⟩ and vertical ∣1⟩ ≡ ∣V⟩ linear
polarization states, form another logical basis for expressing polar-
ization states, respectively. The same is true for the rectilinear basis
states, ∣R⟩ ± i∣L⟩, corresponding to the diagonal ∣0⟩ ≡ ∣D⟩ and anti-
diagonal ∣1⟩ ≡ ∣A⟩ linear polarization states, respectively. Therefore,
for polarization states, the encoding basis, Bd, can only contain two
orthogonal states, ∣0⟩ and ∣1⟩, at a time. For higher dimensional
encoding, we require that the encoding basis Bd has d > 2 states, i.e.,
having the elements ∣0⟩, ∣1⟩, . . ., ∣d − 1⟩.

In the section that follows, we explore how the remain-
ing degrees of freedom (time and space) can be used to obtain
higher dimensional states. In particular, we will focus on the
spatial-momentum basis, although some of the techniques can be
transferred to the temporal basis.

B. High dimensional (d > 2) structured photons
Our remaining degrees of freedom, the temporal, spectral, and

spatial components, are continuous. For example, the spatial com-
ponents span R3, which includes the transverse coordinates (x, y)
and the longitudinal component z. Similarly, the conjugate basis for
the spatial components, which corresponds to the momentum basis,
can also be separated into its continuous transverse and longitudinal
parts. Because we would like to obtain a discrete basis, it is pertinent
to ask, how can we obtain discrete higher dimensional photon states
given the continuous nature of the spatial basis?

First, we establish the following: our discrete basis states must
contain d > 2 distinct states, i.e., being the set Bd = {∣ j⟩, i = 0, 1,
..., d − 1} and ⟨i∣ j⟩ = δij, for all ∣i⟩, ∣ j⟩ ∈ Bd and must be com-
plete, i.e., have a completeness relation ∑d−1

j=0 ∣ j⟩⟨ j∣ = Id. Given
such a basis, any high dimensional state can be written as the
superposition,

∣ψ⟩ =
d−1

∑
j=0

a j ∣ j⟩, (2)

where aj are complex coefficients that determine the state ∣ψ⟩ up
to a global phase. The normalization condition requires that the
coefficients satisfy∑j ∣aj∣

2
= 1.

To satisfy the above, we can first attempt to partition our
degrees of freedom in the continuous space into discrete and
bounded intervals, r =(x, y) → rk = (xk, yk), i.e., slicing the photon
fields into N partitions or unit cells that can be addressed indi-
vidually as pixels,49 as illustrated in Fig. 1(c). The same can be
performed in the temporal-spectral degrees of freedom,50,51 where
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FIG. 1. High dimensional structured photons. (a) A photon field can be ascribed to a state that characterizes its polarization and spatial and temporal degrees of freedom.
(b) By selecting one of the degrees of freedom, say polarization, a qubit space can be formed consisting of a two dimensional (d = 2) basis formed by the right ∣R⟩ and
left ∣L⟩ circular polarization states. The two-dimensional space can be visualized geometrically using the Bloch sphere (equivalent to the Poincaré sphere for polarization).
(c) The temporal and transverse spatial degree of freedom are higher dimensional since more than two states are required to describe each of them. This can be seen by
partitioning each degree of freedom into discrete, non-overlapping cells, where each cell contains information about the state of the photon. These states are commonly
referred to as the time-bin and pixel basis states for the temporal and spatial components, respectively. (d) Besides the decomposition of an arbitrary spatial profile using
the discrete pixel basis modes (top panel), one can also use spatial structured modes, where the arbitrary field can now be expressed using a complete set of spatially
structured patterns (bottom panel). These modes also constitute the modal basis for quantum structured light.

information is encoded into time bins. In the spatial domain, each
discrete state is a “pixel” mode that is formed by a collection of
points, r, in the transverse plane that are contained in the area
Ak. While they were initially used in the form of squares in early
experiments, today they include various geometries and arrange-
ments.52 In Fig. 1(d), we illustrate an arbitrary segment of the
photon field as a combination of pixel modes, each containing
information about the field in R2. Each pixel is independent of
its neighboring pixels. This can be seen as mapping the trans-
verse spatial profile of our photon in Eq. (1), with the probability
amplitude Φ(r) as

∣Φ⟩ = ∫
R2
Φ(r)∣r⟩d2r →

N−1

∑
k=0

ak∣rk⟩, (3)

where the discrete and continuous versions are equivalent when
N →∞, meaning that the transverse plane is partitioned into an infi-
nite number of pixels, which are now points in space. Furthermore,
the coefficients, ak, can be evaluated from the points, r ∈ Ak, for the
kth partition according to ak = ∫Ak

Φ(r) d2r.
While this approach works well, the pixel dimensionality can

be limited by the performance of the optical system and must thus
be chosen appropriately.52 The choice of pixel sizes can, for exam-
ple, affect the quality of quantum imaging experiments if not chosen
in conjunction with the performance of the optical setup (angular

resolution, point spread function), as well as taking into account
the joint probability amplitude (correlation length) of the correlated
photons.52,53 Put simply, more pixel states do not imply higher res-
olution; the performance is highly dependent on the quality of the
photon sources and optical elements. Furthermore, for encoding
purposes, pixel modes are not stable on propagation due to diffrac-
tion and can present challenges in applications that require long
propagation distances, especially if the pixels are encoded with arbi-
trary amplitudes and phases and the resulting fields are not modes
of free space.

This brings us to the second approach, which makes use of spa-
tial patterns of light, as illustrated in the bottom panel of Fig. 1(d),
where our photon field is expressed using arbitrary propagation
invariant modes. In particular, we consider spatial modes with a
slowly varying transverse extent relative to the longitudinal com-
ponent. Such modes are known to preserve their transverse spatial
profiles upon propagation, unlike pixel states. These are called
paraxial optical fields. A topical example is the family of pho-
ton fields that carry OAM and are characterized by the azimuthal
phase dependent factor exp(iℓϕ), where each photon has an OAM
of ℓh per photon, with ℓ being the integer that is known as the
topological charge.12 Here ϕ is the azimuth coordinate. Optical
modes with this characteristic are eigenstates of the OAM operator
L̂z = −ih̵ ∂

∂ϕ . In cylindrical coordinates r = (r,ϕ, z), these modes take
the form
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Φ(r) = R(r) exp (iℓϕ), (4)

where R(r) is an enveloping function that determines the
radial amplitude profile of the photon. Bessel–Gaussian54 and
Ince–Gaussian55 are examples of mode families that can possess
the characteristic azimuthal profile of OAM modes and have been
utilized in quantum experiments. Other mode families that are
also propagation invariant at the single photon level include the
Hermite–Gaussian modes,56 which have Cartesian symmetry, and
the Airy modes,57 which show self-healing and free acceleration.

For this tutorial, we will focus on the OAM carrying Laguerre-
Gaussian (LG) mode family because of its ubiquity in high dimen-
sional quantum optics.15,16 There is good reason for this: their
detection can be performed in a phase-only fashion (good for effi-
ciency), the size and radius of curvature of the detected mode do not
affect the total OAM (so the detection is less sensitive to axial align-
ment), and the OAM modes form a natural Schmidt basis, which is
highly convenient when expressing entangled states. On the nega-
tive side is the fact that any lateral displacement will alter the OAM
detected (if r changes, then so does r × p). High OAM implies high
spatial frequencies, which may not be collected by the optical system,
and OAM does not, in fact, form a complete orthonormal basis with-
out the radial information (the p index in the case of the LG modes),
so one finds “missing entanglement” without it.58 A photon defined
in the LG basis maps onto the state,

∣LGℓp⟩ = ∫
R2

LGℓp(r)∣r⟩d2r, (5)

where ℓ is the topological charge, p is the radial mode order, and
LGℓp(r) is the field profile (equivalently the wave-function) of the
photon at any given location r.

In cylindrical coordinates and for z = 0, the LG mode family
has the form

LGℓp(r) =
Cℓp

w
exp(−

r2

w2 )[
√

2
r
w
]
∣ℓ∣

Lℓ
p(

2r2

w2 ) exp (iℓϕ), (6)

where the function Lℓ
p(⋅) is the associated Laguerre polynomial,

and w is the second moment radius of the Gaussian envelope.

The constant factor Cℓp is a normalization constant, such that
∫R2
∣LGℓp(r)∣2d2r = 1. In Fig. 2(a), various LG intensities are shown.

The intensity profile has a region of null intensity centered at the
origin and a radius that increases with the topological charge, ∣ℓ∣.
We also see that the modes have concentric rings that are controlled
by the radial index p.

Furthermore, OAM modes (LGℓ,p=0) have been shown to have
an analogous representation on the Bloch sphere, similar to polar-
ization states in Fig. 1(b).59 We illustrate our OAM Bloch sphere in
Fig. 2(b), where the poles of the sphere contain the ∣ ± ℓ⟩ = ∣LG±ℓ,p=0⟩

modes, and the equally weighted superpositions are contained at the
equator. While this is only shown for ℓ = ±1, multiple spheres can be
constructed using arbitrary ℓ values. Furthermore, our illustration in
Fig. 2(c) shows that the radial modes, in combination with the OAM
modes, can be used to construct arbitrary two dimensional spheres.
Infinitely many such spheres can be constructed from the LG modes.
As with the polarization qubits, given any two OAM modes, numer-
ous experiments have emerged where the OAM qubits are used
as a computational basis for processing quantum information with
further advances made to harness them for high dimensional encod-
ing schemes for single photons,36 entangled two photon states,60

and three photon states33 showing their significance in quantum
science.

Significantly, numerous applications of high dimensional
quantum structured light make use of the LG basis in its high
dimensional form, where states of the form

∣ψ⟩ =∑
ℓp

cℓp∣LGℓp⟩, (7)

having the coefficients cℓ,p, can be tailored for a given applica-
tion. For example, in quantum key distribution, such superposi-
tions can be optimized to achieve unparalleled security,35,36,39,61

transmit quantum states through fiber,38 or tailor novel projective
measurements for state characterization.25–27,62

Next, we explore two photon states and introduce the concept
of entanglement.

FIG. 2. Laguerre–Gaussian basis modes. Intensity profiles for the spatial distributions described by LGℓ,p modes with indices ℓ = [−2, 2] and p = [0, 3] with the phase
profiles given as insets in the top-right corner of each mode. An example of the two dimensional state space that can be created using the LG mode basis for (b) ℓ = ±1
and p = 0 (c) ℓ = 2, 3 and p = 3.
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C. Entangled structured light
So far, our modes of structured light have been discussed in

the context of single photons. A quantum system may entail more
than a single photon, and in some instances, the state of one sin-
gle photon may depend on that of another (entanglement). In order
to elucidate this, we describe how to write the state of more than
one photon and what it means in cases where there is entanglement
present.

Consider two photons that are spatially separated. Here, the
two particle state requires the use of tensor product states, where the
basis states occupy a combined Hilbert space (HAB). For instance,
we can consider a system comprised of two OAM qubits. The
basis on which we can describe the photons is readily formed
from the tensor product of the individual bases. We can chose
the basis, M = {∣ℓ1⟩, ∣ℓ2⟩}. Therefore, the two photon basis now
becomesMAB =MA ⊗MB = {∣ℓ1⟩∣ℓ1⟩, ∣ℓ1⟩∣ℓ2⟩, ∣ℓ2⟩∣ℓ1⟩, ∣ℓ2⟩∣ℓ2⟩}. If
each individual particle were in a separate arbitrary superposition,
where the coefficients are non-zero, the state of the composite
system is

∣ψ⟩AB = ∣ψ⟩A ⊗ ∣ψ⟩B
= (a1∣ℓ1⟩A + a2∣ℓ2⟩A)⊗ (b1∣ℓ1⟩B + b2∣ℓ2⟩B)

= a1b1∣ℓ1⟩A∣ℓ1⟩B + a1b2∣ℓ1⟩A∣ℓ2⟩B

+ a2b1∣ℓ2⟩A∣ℓ1⟩B + a2b2∣ℓ2⟩A∣ℓ2⟩B, (8)

resulting in a superposition of two photon states that can be
expanded in the composite basis MAB.

As shown in Eq. (8), the composite state can be factorized and
thus written as a product or tensor state of the individual particles.
Interesting properties arise when this is no longer true. For example,
we can consider the state

∣ψ⟩AB =
1
√

2
(∣ℓ1⟩A∣ℓ2⟩B + ∣ℓ2⟩A∣ℓ1⟩B). (9)

Here, it is clearly not possible to factor the state of either particle,
and so it is said to be non-separable.

The implications of this are that one can no longer describe
either photon individually (in each basis alone) but rather requires
both at the same time. Accordingly, if ∣ℓ1⟩ was measured on pho-
ton A, photon B would then be in the state ∣ℓ2⟩, and if ∣ℓ2⟩ was
measured on photon A, photon B would then be in the state
∣ℓ1⟩. This is always true despite any arbitrary distance of sepa-
ration. This prompted Einstein to question the reality,63 calling
this “spooky action at a distance,” which has since been termed
quantum entanglement.64 Consequently, this property is a direct
consequence of the inability to factorize the state into its sub-
systems. As such, composite states for which one is not able to
write as a product state, i.e., ∣ψ⟩AB ≠ ∣ψ⟩A ⊗ ∣ψ⟩B, can be called
entangled.

To generalize the description of entangled photons beyond
d = 2, we need to add more linearly independent terms to Eq. (9)
such that the state remains non-separable. Such states can be readily
generated from spontaneous parametric down conversion (SPDC)
by harnessing energy and momentum conservation in nonlinear
crystals where a high energy photon (pump) impinges on the crystal

interface, thereafter producing two daughter photons. We will
explore SPDC in more detail in later sections, but for now, we use
it to guide our discussion about high dimensional entanglement.
Because momentum is conserved by the SPDC process, so is OAM.
The OAM content of the twin photons adds up to that of the OAM
of the pump photon, ℓp. As a result, the high-dimensional entangled
state can be written as

∣ΨAB⟩ =
L

∑
ℓ=−L

cℓ∣ℓ⟩A∣ℓp − ℓ⟩B, (10)

where there are d = 2L − 1 > 2 states with non-zero normalized
probability amplitudes, cℓ, for each state ∣ℓ⟩A∣ℓp − ℓ⟩B, and ℓp is the
OAM of the pump photon. The collection of states, ∣ℓ⟩A∣ℓp − ℓ⟩B, is
called a Schmidt basis. Because the decomposition in Eq. (10) con-
tains d > 2 terms that are linearly independent and non-separable,
the state exhibits high dimensional entanglement where the dimen-
sions of the entanglement should be determined by the number of
Schmidt basis states that have non-zero coefficients and maintain
the non-separability of the state.

While the decomposition we have shown for the SPDC struc-
tured photons assumes a pure coherent superposition of Schmidt
basis modes, in general, the states can contain some degree of
mixture. In that case, we cannot express the states as linear com-
binations of basis states but rather as weighted sums of matrix
operators. For example, it can be shown that the SPDC state, under
some conditions, can be expressed as an isotropic Werner-like
state,

ρAB = p∣ΨAB⟩⟨ΨAB∣ +
1 − p

d2 Id2 , (11)

where 1
d2+1 < p ≤ 1 scales the probability of obtaining the pure state

∣Ψ⟩AB, d2 is the dimensions of the composite Hilbert space of the
two photons, and Id2 is the d2 dimensional identity operator defined
over the two photon subspace. We obtain a pure state for p = 1 so
that ρAB = ∣ΨAB⟩⟨ΨAB∣, while we have a completely mixed state for
p = 0 so that ρAB =

1
d2 Id2 . Example density matrices are shown in

Figs. 3(a)–3(c) for p = 1 in dimensions d = 2, 3, and 5. To show
the impact of introducing the mixture into the state, we set p = 0.4
and show the same density matrices in Figs. 3(d)–3(f). In the case
of p = 0, the state is a maximally mixed state and cannot be written
as a separable outer product of pure states. In this case, we have a
statistical mixture (or ensemble) of purestates that have equal prob-
ability. This can correspond to an incoherent source that produces
classical two photon correlations. Moreover, the state is entangled
when p > 1

d+1 .65 This inequality sets the boundary between separable
and entangled states. Here, the boundary decreases with increasing
dimensions, demonstrating that entanglement can be preserved if
the two photons occupy a sufficiently large Hilbert space in the pres-
ence of noise. As such, having many entangled structured patterns
is, therefore, crucial to achieve this.

So far, we see that the potential benefits of using high dimen-
sional quantum structured light are coming to the fore. Next,
we introduce measures that quantify the dimensions, information
capacity, and purity of our quantum states.
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FIG. 3. Density matrices of pure and mixed high dimensional entangled states. Exemplary density matrices of photons entangled in high dimensions for (a) d = 2, (b) d = 3,
and (c) d = 5. The orbital angular momentum basis modes for each state are shown above each density matrix. Isotropic mixed states with p = 0.4 for the same entangled
states in (d) d = 2, (e) d = 3, and (f) d = 5.

III. KEY EQUATIONS FOR HIGH DIMENSIONAL STATES
Here, we outline some of the key equations that are used to

qualitatively and quantitatively characterize high dimensional quan-
tum states, ranging from the amount of information that can be
packed into quantum states to the quality of the quantum states that
are produced.

A. Information capacity
Suppose Alice and Bob wish to share information using a sim-

ple prepare and measure protocol by encoding photons with high
dimensional structured modes. Each state, on its chosen basis, is
associated with a message (symbol). Here, Alice prepares states on
this basis, and Bob performs measurements on the same basis. We
aim to quantify the amount of information that can be transmitted
between the two parties.

The said bases state that Alice and Bob’s use can be composed
of the sets {∣k⟩},{∣j⟩} ⊂ {∣i⟩}, respectively, where i indices the spatial

modes. How well the photons can be measured and detected may be
computed from the average fidelity, where the fidelity of each state
is given by

f k j =
⎛

⎝
Tr
⎛

⎝

√√

ρk
Aρ

j
B

√

ρk
A
⎞

⎠

⎞

⎠

2

, (12)

and ρk, j
A(B) are the density matrices corresponding to Alice and Bob’s

states, respectively. For pure states, the fidelity can be computed
from the inner product between the states that the operators map

onto, i.e., from f k j = ∣⟨Φk
Bob∣Û ∣Φ

j
Alice⟩∣

2
, where Û is the channel

operator. We show the scattering probability matrix in Fig. 4(a) for
the case where the channel does not change the transmitted states.
The matrix resembles an identity matrix indicating that all prepared
states can be identified and that the channel does not induce modal
coupling (crosstalk) between the chosen basis states. In this case,
the average fidelity is 1. Given that these modes can be successfully
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FIG. 4. Information capacity. (a) The scattering probability matrix for a d = 4 dimen-
sional basis of spatial modes (shown as insets) above the diagonal. The matrix
resembles an identity matrix indicating that all prepared states can be identified.
The average fidelity is F = 1. (b) The mutual information (capacity) as a func-
tion of dimensions (d) in units of bits per photon. (c) Scattering probabilities for a
given system that has high crosstalk (noisy). The fidelity for this case is F = 0.47.
(d) Mutual information vs average fidelity for selected dimensions. Because errors
can reduce channel fidelity, the information capacity of the quantum channel will
also be affected.

transferred between Alice and Bob, how much information can be
transferred through the channel?

Mutual information is a measure that is commonly employed to
quantify the amount of information that can be transmitted between
Alice and Bob. For a perfect channel, this is given by IAB = log2(d).
In Fig. 4(b), we show the channel capacity as a function of the d
dimensions. Provided that the channel is perfect, we can pack more
information into the photons by using more spatial modes. For
qubits (d = 2), the mutual information is restricted to 1 bit per pho-
ton and can be doubled by using d = 4 dimensional encoding. As
the encoding dimensions are increased, the mutual information also
increases.

However, if there are imperfections in the channels, i.e., vary-
ing refractive indices, mode dependent dispersion, etc., then there
will be errors introduced in the detection signal, therefore reduc-
ing the state fidelity. This can introduce errors into the detection
signals, as shown in Fig. 4(c), where the channel average fidelity is
F = 0.47. Consequently, this means that the amount of informa-
tion per photon (mutual information) will be reduced. Given that
the fidelity of the channel is known, the mutual information can be
quantified as66

IAB = log2(d) + F log(F) + (1 − F) log(
1 − F
d − 1

). (13)

In Fig. 4(c), we show the mutual information as a function of average
fidelity for several dimensions. For the noisy d = 4 example, having

low fidelity, the mutual information is IAB = 0.16 and only obtains
high mutual information when F = 1. However, the same fidelity
yields a larger information capacity for higher dimensions. It is clear
that by increasing dimensions, higher information capacities can be
maintained under noisy conditions.

B. Dimensionality
Subsection III A highlights an important point: to overcome

noise, it makes more sense to use higher dimensional basis states.
Moreover, it has been proven that even higher dimensional quantum
entangled structured photons can be robust against noise.62 For this
reason, it is imperative to have a consistent way of characterizing the
dimensions of a quantum system.

For single photon channels, it should be easy to see that the
dimensionality is set by the number of modes that can be transmit-
ted through the channel and detected successfully while maintaining
high mutual information. Further restrictions on d can be set by the
apertures of the system as well as the angular spectrum and resolu-
tion of the generation and detection techniques;67 this means that
modes requiring high spatial resolution will incur noise, so fewer
modes can be used.

For the two photon case, we return to our decomposition of the
OAM entangled photons in Eq. (10), where the coefficient for each
Schmidt basis state is given by cℓ. The dimensions, d, of this state
can be characterized using the Schmidt number witness,68 which can
be estimated from projections with two mutually unbiased bases.28

For an entangled state with cℓ = 1√
d

, the Schmidt number is exactly
d. This has a significant implication in high-dimensional entangled
systems, as this quantifies the “amount” of entanglement in these
systems.

Generalized to systems that are not necessarily maximally
entangled, this number can instead be approximated by69,70

K =
1

∑ℓ ∣cℓ∣
4 , (14)

where K = 1 dictates a separable system and K > 1 indicates an
entangled one, assuming the coefficients are normalized. K thus pro-
vides an effective number of the contributing modes to the entangled
state and thus refers to the dimensionality of the system (see Sec. 2 of
Ref. 71 for an in-depth discussion).

C. Linear entropy
While higher dimensional states are resilient to noise, some

protocols strictly require that the states be completely pure or,
equivalently, have a low degree of mixture. Therefore, it is imper-
ative to characterize the purity of the states. The purity can be
obtained from γ = 1 − SL, where SL is the linear entropy and can be
expressed as

SL = 1 − Tr (ρ2
), (15)

where ρ is the density matrix of the state. For maximally mixed
states, the purity is γ = 1/d, while for pure states, it obtains a maximal
value of γ = 1.
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The purity of the state can also be used as an indicator of the
entanglement in a quantum system. For example, we find that the
purity for the isotropic Werner-like state in Eq. (11) is given by

γiso = p2
+
(1 − p)2

d2 . (16)

In higher dimensions, the purity γiso ≈ p2 because the second term
becomes insignificant, and thus the purity is only dependent on p.
For this reason, the factor p is associated with purity and has been
used as a control parameter for probing the robustness of entan-
glement to noise62,72 in the temporal, pixel, and OAM degrees of
freedom of photons.

IV. CREATION AND DETECTION
In this part of the tutorial, we introduce the reader to tech-

niques that are commonly used to produce, detect, and characterize
high dimensional quantum structured light in the laboratory. We
focus on the spatial degree of freedom of photons that are generated
from SPDC. We subsequently discuss basic procedures for aligning
a simple quantum experiment with SPDC photons and executing
spatial projective measurements. We end the section by discussing
methods for optimizing the generation and measurement steps.

A. Photon pair generation with spontaneous
parametric down conversion
1. Spontaneous parametric down conversion
from nonlinear crystals

One of the most commonly used approaches for generating
quantum structured light uses crystals with a second-order suscep-
tibility via three-wave mixing through a process called spontaneous
parametric down-conversion (SPDC), and so we will use this as our
source throughout this tutorial (for other possibilities, see recent
reviews73,74). Examples of crystals that enable this process are beta-
barium borate (BBO), lithium niobate (LN), potassium dihydrogen
phosphate (KDP), and potassium titanyl phosphate (KTP).

Figure 5(a) shows a cartoon description of the SPDC process
where a pump (p) beam of angular frequency, ωp, interacts with a
non-linear crystal, resulting in the generation of two daughter pho-
tons ofωs andωi, respectively. Due to the conservation of energy, the
angular frequencies of said signal (s) and idler (i) are governed by
the relation ωp = ωs + ωi. This relation is shown in the energy level
diagram in Fig. 5(b). Accordingly, the entangled biphotons need not
have the same energy (ωs = ωi), termed degenerate SPDC, but can
be non-degenerate (ωs ≠ ωi).

Linear momentum is also conserved in the SPDC process;
the momentum of the produced photons should add to that of

FIG. 5. Spontaneous parametric down-conversion. (a) Generation of SPDC photons from nonlinear crystals (NC) that are characterized by a second order nonlinear
susceptibility tensor, χ(2). In this process, a single photon with a frequency, ωp, is absorbed by the crystal, and twin photons with frequencies, ωs and ωi , are produced. (b)
Energy diagram for the three photons involved in SPDC, showing energy conservation. (c) Momentum conservation in the SPDC process. The momentum vectors of the
emitted s and i photons must add up to those of the pump photon. The phase mismatch occurs in the longitudinal direction. The emission cones can be altered by changing
the phase matching conditions. This can be achieved via (d) angle tuning in bulk crystals and (e) temperature tuning in periodically poled (PP-) crystals. (f) Far-field intensity
profiles of SPDC photons showing non-collinear and collinear geometries where the entangled photons are found in the regions highlighted with dashed lines.
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the pump, resulting in kp = ks + ki, shown pictorially in Fig. 5(c),
expressed using the wave vectors, k, of the respective pump, signal,
and idler photons. If energy and momentum conservation are met,
one has perfect phase matching. On the contrary, phase mismatch
occurs and is proportional to Δkz , in the longitudinal momentum
components, as illustrated in Fig. 5(c). In order to alter the phase-
matching conditions, most bulk crystals require angle tuning, as
shown in Fig. 5(d), where the angle of incidence of the pump mode
with respect to the crystal is varied. Alternatively, one can use peri-
odically poled crystals [shown in Fig. 5(e)] with engineered domain
switching of a period of Λ.75,76 For these crystals, the phase match-
ing conditions can be altered by changing the temperature of the
crystal.

There are two types of phase-matching geometries that can be
identified based on the matching of linear momentum. In Fig. 5(f),
on the top panel, the output field propagates off-axis with respect to
the pump, but with equal and opposite trajectories on either side;
this is known as non-collinear SPDC. The emitted photons, in this
case, are anti-correlated in transverse momentum and, therefore, the
entangled photons are located on any two opposite ends of the SPDC
ring. For collinear SPDC, shown in the bottom panel of Fig. 5(f),
the output field wave-vectors are also anti-correlated, except when
ks = ki = 0.

Due to the polarization sensitivity and phase-matching con-
ditions, there are different phase-matching regimes that can be
engineered. This results in different polarization pairings with active
research considering exotic fabrications and crystal pairings, allow-
ing one to engineer unique geometries and output states. A good
review covering this can be found in Ref. 77. For this tutorial, we
will consider the generic cases commonly available and summarized
in Table I.

The distinction between the different types relies on the relative
polarizations with respect to the crystal’s ordinary (o) and extraor-
dinary (e) axes. The examples shown in Table I are special cases but
can, in general, be summarized as follows: in type 0, the signal and
idler photons carry the same polarization as the pump, whereas in
type I, their polarization is orthogonal to that of the pump; for type
II, however, the signal and idler photons are orthogonally polarized
with respect to each other, leading to polarization entanglement. We
note that these characteristics are all determined by the nonlinear
electric tensor of the crystals.

2. Spatial mode entanglement from SPDC
In the SPDC process, photon pairs can be entangled in

their energy-time,78,79 path,80 and transverse spatial degrees of

TABLE I. Phase matching types. Summary of various phase-matching regimes for
second order non-linear interactions that differ for input and output field polarization
with respect to parallel orientation to the crystal’s ordinary (o) or extraordinary (e)
axes.

Type Pump pol. Signal pol. Idler pol.

0 o o o
I e o o
II e o e

freedom24,49,52,81–83 (see Ref. 84). In this tutorial, we focus on dis-
crete spatial modes and thus consider the entanglement generated
therein.

It is useful to consider the general expression of the SPDC state
in terms of wavefunctions for the generated photons on a linear
momentum basis. One method to derive this evolves the quantum
state by using the non-linear phenomenological Hamiltonian.85–87

For brevity, we will use the main result, which is the two photon
state,

∣ψs,i⟩ = ∫ f (qs, qi)∣qs⟩∣qi⟩ d2qs d2qi, (17)

expressed in the transverse momentum coordinates, qs (qi), where
f (qs, qi) is the two-photon joint probability amplitude of the pair
of photons, s and i, respectively. Assuming that the pump beam
impinging on the crystal has a Gaussian profile in the far-field, the
joint probability amplitude function is given by77,88

f (qs, qi) = NU(qs + qi)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

pump

sinc(
LΔkz

2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
phase−matching

, (18)

and is a product between the pump mode, U(⋅), expressed in the
momentum coordinates, qp = qs + qi, and the phase matching func-
tion, sinc( LΔkz

2 ), that is determined by the crystal length, L, in the
longitudinal direction and the longitudinal wave-vector mismatch,
Δkz . The factor N is a normalization constant. The pump beam
of a Gaussian profile can have an angular spectrum, U(qs + qi)

∝ exp(
−w2

p ∣qs+qi ∣
4 ), where the wp is the waist size in the near-field.

Furthermore, the longitudinal wave-vector mismatch mainly
affects the spectral properties of the generated SPDC photons and
is given by Δkz = kp,z − ks,z − ki,z , depending mainly on the relative
difference between the longitudinal components of the wave vectors
of the pump photon and emitted pairs. Accordingly, if the emission
angles of the SPDC photons (i.e., the angles between ks,i and kp) are
sufficiently small, then the longitudinal wave-vector mismatch can
be approximated by89

Δkz = −
∣qs − qi∣

2

2kp
. (19)

Under these assumptions, we can express the constants in the

argument of the resulting phase matching function, as
Lw2

p
8zR

, where
zR =

1
2 kpw

2
p is the Rayleigh length of the pump beam. From here on,

we assume that we can use the thin crystal limit, L≪ zR, so that the
phase matching function evaluates to one. We can now approximate
the joint probability mode function (equivalently, the two photon
wave-function) with the pump profile, i.e., f (qs, qi) ≈ U(qs + qi).
Now, our aim is to express the two photon states given any com-
plete transverse spatial basis. Suppose we have a discrete Schmidt
basis, ∣ j⟩s∣k⟩i, one can express our two photon states in Eq. (20) as an
entangled two photon state,

∣ψs,i⟩ =∑
jk

c jk∣ j⟩s∣k⟩i, (20)
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where the coefficients are given by30

c jk = ∫ f (qs, qi)M
∗
j (qs)M

∗
k (qi)d

2qsd2qi, (21)

and the mode functions Mj(k) (q) are eigenfunctions that map onto
the eigen-states ∣ j(k)⟩ expressed in the transverse momentum basis.
Noting that the joint probability amplitude is approximated by the
pump field (preferably a paraxial optical field), it is possible to map
the integral to the spatial basis ∣r⟩si, where it can be evaluated in the
near field by Fourier transforming Eq. (21). Accordingly, the overlap
integral becomes

c jk = N ∫ u(r)m∗j (r)m
∗
k (r)d

2r. (22)

Here u(⋅) is the pump mode in the near field, while mj,k(⋅)

are the Fourier transforms of the modes Mj,k(⋅). Examples of
suitable bases are the discrete pixel modes,52 Hermite–Gaussian,
Laguerre–Gaussian, and Bessel–Gaussian modes. In all cases, dif-
ferent parameters such as the transverse correlation length, point
spread function of the experimental setup, and angular spectrum
of the pump mode can have an impact on the bandwidth of the
measured spectrum as well as the correlations. We show an exam-
ple using the LG basis formed from modes with the radial index
set to p = 0, i.e., ∣ℓ⟩ ≡ LGℓp ,p=0⟩. Suppose that the pump photon
carries OAM, u(r) = LGℓp ,p=0(r)∝ exp (iℓpϕ). By evaluating the
overlap integral in the cylindrical coordinates, one finds that the
azimuthal integral induces the restriction that the coefficients are
nonzero when ℓp = ℓs − ℓi showing OAM conversation in the SPDC
process. As such, one arrives at the state in Eq. (10), repeated
here as

∣Ψsi⟩ =
∞
∑

ℓs=−∞
cℓ∣ℓs⟩s ∣ℓp − ℓs⟩i. (23)

In Subsections IV B–IV F, we show how one can prepare and
measure these states in the lab and discuss some of the intricacies
involved in detecting them.

B. Alignment and back-projection
Typically, quantum optical setups can be aligned both forwards

and backward (backprojection) in order to ensure both entan-
gled photons sent through the system travel the desired path and
coincide well with the detection system. Accordingly, we will first
look at typical forward alignment strategies for different types of
SPDC, which are illustrated in Fig. 6, before seeing how back-
alignment works and, ultimately, how one may view the system for
simulation.

The alignment of the SPDC depends both on the type of trajec-
tory of the entangled photon pair one wishes to measure (collinear or
non-collinear) as well as the distinguishing properties between them.
The simplest configuration lies with collinear SPDC. As the linear
momentum of the biphotons lies in the same direction as the pump,
one may use the pump laser as a guide throughout the optical setup.
Separation of the biphotons into the desired arms of the system
can then be achieved by passing them through a 50:50 beamsplit-
ter when they hold the same polarization and wavelength, as shown
in the top illustration of Fig. 6. Alternatively, if the SPDC is non-
degenerate, as in the second illustration in Fig. 6, one may employ a

FIG. 6. Generic SPDC alignment strategies. Typical strategies for alignment of
quantum systems with collinear and non-collinear SPDC sources and how they
may differ for the degenerate and non-degenerate cases. Irises (black triangles)
are typically placed in the beam paths for each arm in order to mark the path of
the photons.

dichroic mirror (DM) to separate the wavelengths. In this case, the
side coated for the reflected wavelength should be the incident face.
When considering the pump beam as a guide, two parallel beams are
traditionally reflected as a result of incidence on the front and back
sides of the optic, as illustrated in the inset. If orientated correctly,
the first reflection of the pump beam should indicate the path of the
reflected photons. Depending on the cutoff wavelength between the
reflected and transmitted light, the pump beam will be brighter in
either transmission or reflection. For cases where the pump is not
bright enough to see both the transmission and reflected intensities
through the DM, another wavelength in the complementary wave-
length band may be aligned with the pump beam beforehand, or one
may consider relying on back alignment alone.

For non-collinear SPDC, the alignment varies appreciably as
the biphotons no longer travel in the direction of the pump beam
but rather in opposite directions to either side. This corresponds to
selecting the photons on opposite ends of the cone shown in Fig. 5(f),
which we see illustrated in the horizontal plane of the last illustra-
tion of Fig. 6. The pump may no longer act as a guide in this case.
This results in the need to see the SPDC cone produced with a sen-
sitive CCD and align through two apertures in each arm to opposite
transverse sides of the cone for planes with an appreciable distance
between them. These apertures then allow one to use back align-
ment in order to align the rest of the optical elements from these
points.

For back alignment, one must consider the optical system
in its entirety. For instance, considering the typical system in
Fig. 7(a), after traversing the desired optical elements [such as the
lenses and spatial light modulators (SLMs)], the biphotons are each
focused into single mode fibers (SMF), which relay them to sensitive
detectors like avalanche photodiodes (APD). Back alignment then
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FIG. 7. Klyshko model for a quantum system. Demonstration of the Klyshko model
for quantum systems where the non-linear crystal (NC) in the optical system (a)
can be seen as a mirror (M) in the model (b). Experimentally, the setups are
almost identical. In the quantum setup (a), a pump beam is incident on an NC,
which produces our SPDC state consisting of entangled photon pairs, which are
then spatially separated into the two arms of the experiment. The SPDC state is
imaged onto the SLMs with lenses (L) and measured using single photon detec-
tors (Det). In the Klyshko back-projection model, one of the detectors is replaced
by a source, and a single beam is sent through the setup by replacing the NC with
a mirror.

considers this system in reverse. One can envision that if the photons
can travel to the detector in the forward direction, light traveling
in the opposite direction from the same point in the detector must
travel the same path. As such, an additional laser is used where the
light is sent back through the detection end of the fiber (replac-
ing the detectors in the figure) such that it traverses the elements
backward toward the crystal face. By using this backpropagating
light, one may then align the couplers and optical elements as
desired. Here, one may be aided by using the same wavelength as
the SPDC to ensure the optical operations observed in back align-
ment correspond well and are not shifted due to the difference in
wavelength.

When the forward alignment overlaps well with the back align-
ment, one should see the signal at the detector, allowing one to
further improve the setup and take measurements. For the non-
collinear geometry discussed earlier, forward alignment ends at
the initial apertures. The alignment of the backpropagating laser
through the initial aperture then sets the path such that alignment
of the optics is performed with this laser as a guide instead of the
pump. Fine tuning of the phase matching may then also be achieved
by aligning the detection SMF back through the apertures used for
the pump and checking that the maximal counts lies at the correct
crystal parameters, be it temperature or angle.

An additional method exists that allows one to experimentally
simulate and probe a quantum optical system using classical light.

Here, when looking at the setup in a retrodictive manner, the quan-
tum system at any point in time may simply be described by evolving
the measured states backward in time.90 Based on a rigorous for-
mulation, it was shown by Kyshko in 1988 that one may employ
back-propagation to generate a classical analog that predicts the
measured quantum correlations produced from the optical system
being traversed by the biphotons. Known as the Klyshko advanced
wave model, the nonlinear crystal is replaced with a mirror, and in
one of the detection arms, the detector is replaced with a laser. This
formulation is illustrated in Fig. 7(b). As can be seen, the light then
passes through the system, bounces off a mirror positioned where
the crystal was, and traverses the other arm in the forward direc-
tion before being detected in place of the correlated SPDC photon.
The corresponding intensity measurements then reflect the coin-
cidences that would be seen when detecting the biphotons in the
equivalent quantum setup. For example, the measurements yield the
conditional probability of detecting a photon in one arm, given that
another photon is detected in the other arm.

Furthermore, the effect of the pump beam on the system can
also be modeled by simply adjusting the properties of the mirror
substituting for it. For instance, when the pump beam is not a plane
wave in the crystal, the phase curvature is equivalent to the mirror
being curved, or when the pump is angled, it equates to the mirror
being tilted at the related angle.91–93

It may be noted that, in addition to the rigorous theoretical
formulation, it has been experimentally verified, showing excellent
agreement in comparison to the quantum outcomes.94,95 Conse-
quently, this not only provides a good way to numerically model
the system but also serves as a good probe in order to deter-
mine and correct the physical parameters that affect the desired
system.

C. Coincidences
Detection of the entangled photons in a quantum experiment is

traditionally achieved by distinguishing time correlations in the sig-
nals received by the detectors. As each of the entangled photons is
“birthed” at the same time in the crystal, they should arrive at their
respective detectors at exactly the same time (within the uncertainty
principle) or after a set delay related to traveling different distances
before reaching the detectors. This yields a way to distinguish them
from other non-correlated detection events (photons that are not
entangled) or noise, with a pair being detected in the appropriate
interval being called a coincidence.

Practically, these can be detected using event timers that log the
time of arrival for each photon signal and looking at the difference
in the time delay between each photon detected in arm 1 and every
photon detected in arm 2, or vice versa. Subsequently, these entan-
gled photons are identified by taking a histogram of the detected
photons where all the respective time differences (Δt) between the
signals form values in discretized timebins (e.g., 40 ps) from each
of the arms, as illustrated in Fig. 8. Due to the aforementioned time
correlation, the entangled photons will be found to have the same
time difference, and thus the counts or signal in that time bin of the
histogram will increase, such as in the second time bin of the his-
togram. Conversely, stray or uncorrelated light that does not have a
set correlation will be spread randomly across all the other bins and
thus not have any specific signal buildup. This then gives a degree of
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FIG. 8. Coincidence detection. A typical biphoton quantum setup utilizes two detec-
tors (APDs in this case) to detect individual photon events, and a timer observes
such events over a certain time period. Correlations are then drawn between
events in both channels according to delay time, Δtn. (b) For a series of events
detected by channels 1 and 2 shown in the 1000 ps time window, events are (c)
time-binned according to relative time delays between events in each channel. For
example, if an event is detected at time t1 by channel 1, the time tagger compares
this event to all other detected events in channel 2 in the same time window and
orders events in timebins corresponding to the relative time delays between t1 and
all other detected events in channel 2. This is performed for all detected events
in channel 1. Once this process is completed, one observes a peak around the
expected delay time between correlated photon pairs from the SPDC process.

noise that depends on the ratio of entangled photons being detected
to stray or uncorrelated light. It may be noted that there is a degree
of uncertainty in the processing and propagation times of devices
like the event timer and APD. As a result, this time delay correlation
will also “spill over” or spread into adjacent time delay bins of the
histogram if the timebins are made on the order of the jitter in the
detectors and instruments.

D. Noise
It should be noted that there are several factors that may lead

to noise and other uncertainties in quantum experiments, such as
those besides the jitter in the instruments. First, we can consider
the statistical nature of the biphotons. Here, their generation in
SPDC is spontaneous, meaning each pair event is independent of
the next, resulting in the generation times being governed by Pois-
sonian statistics. More specifically, one may quantify the probability
of the emission times of these pair generation events in terms of time
bins relative to some fixed reference. Here, the probability of finding
the k number of photon generations in a time bin, t, is given by a
Poisson distribution and can be described by

P(k) =
Nke−N

k!
, (24)

with N being the average number of pairs per timebin. As a result,
the variance in this distribution is given by the mean, resulting in the
standard deviation σP(k) =

√
N. This means the uncertainties in the

coincidences measured (which is given by N) have a fundamental
uncertainty of

√
N.

One may also work out the probability of erroneously detect-
ing a coincidence due to two uncorrelated photons arriving at
both detectors at the same time. These are referred to as acci-
dentals (NAcc) and may be estimated based on the timebin win-
dow used (Δt) and how high the counts are in both the signal
(CCh1) and idler (CCh2) arms that are used to determine the
coincidences,

NAcc = CCh1 × CCh2 × Δt. (25)

Consequently, larger signals in each arm used to obtain coinci-
dences yield larger numbers of accidentals. A common measure that
determines the signal-to-noise ratio in photon correlations is the
quantum contrast, Q = NCoin/NAcc. Accordingly, a large coincidence
detection window allows a greater probability for including uncorre-
lated light into the coincidence values and, therefore, to increase the
quantum contrast, narrow gating times (1 ns) are usually preferred
so that the accidental counts are reduced.

Another notable source of noise in the production of entangled
photon pairs by pumping a crystal is the generation of additional
pairs within the same coincidence window.96–98 This results in impu-
rity in the detected coincidences, as they form a statistical mixture
rather than a pure source to utilize.99 As a result, the event of
generating multiple bi-photons serves to reduce the fidelity of the
entanglement. Several works have been published in an active effort
to solve this;100–102 however, this involves generally complex config-
urations. The straightforward approach to mitigating the additional
bi-photon generation events is a reduction in the intensity at which
the crystal is pumped. While this reduces the efficiency at which
the desired single bi-photons are produced, a much larger reduc-
tion in the multiple bi-photon probabilities serves to increase the
fidelity. Further, the probability of having multiple photon pairs
scales with the photon generation rate, μ. As such, for a given pho-
ton generation rate, the quantum contrast (signal-to-noise ratio) is
determined by72

Q = 1 +
μ(1 + μ)
(β + μ)2 , (26)

where β is the ratio between the probability of detecting background
photons (from ambient light or noise in the detectors) and the col-
lection efficiency. A preferred photon generation rate is μ≪ 1, as
this reduces the generation of multiple pairs and increases the quan-
tum contrast. On the other hand, β≪ 1 is also preferred. This can be
achieved by ensuring that the collection and transmission efficiency
of the apparatus used is high (near unity if possible), that the detec-
tors have a high quantum efficiency and low dark count rates, and
that the experiment is shielded from ambient light. This can signifi-
cantly improve the fidelity of measurements in the experiment since
noise contributions will be minimized.

As such, the average quantum contrast that is required to
witness entanglement in k dimensions, given a d dimensional
space is72

Q >
d − 1(d + k − 1)

d − k + 1
. (27)
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Here, d can be determined from the spiral bandwidth, while
the determination of k requires a suitable entanglement
witness.28

E. Detection and measurement of quantum
structured light
1. Detection using projective measurements

High-dimensional states require a reliable method of detection
where projections into some orthogonal basis are needed. If we con-
sider the SPDC state given by Eq. (23), then a detection scheme is
required that can distinguish between different OAM states. In fact,
what we need is a coupled detection system that only accepts a sin-
gle OAM state, ∣ℓDet⟩. For the example of OAM used in this tutorial,
we use what is known as a spatial light modulator (SLM) coupled
with an SMF. It is worth noting that this detection scheme works just
as well for any chosen spatial basis, such as the Hermite–Gaussian,
Ince–Gaussian, and pixel mode bases, to name but a few and, there-
fore, extends past OAM, making it an ideal scheme to be used
to generate and detect spatial modes of single photons and mea-
sure correlations between entangled photons of high-dimensional
quantum states.

The detection of spatial modes with SLMs borrows from meth-
ods that are commonly used for creating arbitrary light fields in
beam shaping.103 In beam shaping an incoming light field, usu-
ally, the fundamental Gaussian mode (∣0⟩ ≡ ∣LG0,0⟩) is modulated in
phase and amplitude using an SLM. As for the detection, the recip-
rocal nature of light is employed, where one is able to “reverse” the
modulation of a particular field back to the fundamental Gaussian
state, which is subsequently coupled to a single mode fiber and a
photon counting module.104,105 This approach flattens the field. The
concept is illustrated in Fig. 9(a), where the fundamental mode is
converted into a desired spatial pattern, Φ(r), and can be detected
in reverse. Consequently, the fiber and the SLM form an optical
correlation measurement that is analogous to performing an inner
product measurement of the form ∣⟨Φ∣Ψ⟩∣2 for some input fieldΨ(r)
and some target (detection) mode Φ(r).105 Furthermore, to maxi-
mize coupling efficiency, the creation and detection beam sizes need
to be comparable. As outlined, two elements are at play: (i) the
detection mode that is encoded as a hologram (HΦ(r)), and (ii)
the probability of the demodulated mode coupling into the single
mode fiber. In this and the proceeding sections, we place emphasis
on this coupled detection scheme, focusing on the different opti-
cal inner-product measurements that overlap the state ∣Ψ⟩ with the
state ∣Φ⟩ using SLMs and fibers. Later, we extend this to entangled
photons.

Spatial light modulators typically come in two forms. One is a
phase-only modulator, and the other is an amplitude-only modula-
tor. With a few clever tricks, both of these devices can be used to
manipulate or modulate the amplitude as well as the phase profiles
of your input photons. In this tutorial, we will focus on phase-only
modulation devices. For more information on using amplitude-only
devices, see Ref. 106.

We can consider the action of the SLM on the input state, ∣Ψ⟩,
to be given by a phase modulation function H(Φ(r̄)), commonly
called the hologram. As will be seen, by incorporating a grating func-
tion, one is able to encode the amplitude in addition to the phase
of the optical field with phase only modulation.107 Accordingly,

FIG. 9. Detection scheme for high dimensional states. (a) The detection scheme
for an input fieldΨ(r) impinging on an SLM encoded with a hologramΦ∗(r). The
SMF then accepts only the LG0,0 component of the output field. Reciprocally, we
see the usual SLM modulation scheme where the SMF now acts as our source
producing the mode LG0,0, which is incident on the SLM encoded with Φ(r),
thereby producing the desired mode (or, depending on the encoding scheme, a
superposition of modes is created with the desired mode being among them).
(b) Examples of encoded phase holograms (no grating) with encoded hologram
functions taking the form H(Φ(r)) = exp(iℓϕ) for ℓ = 1, 3,−1. (c) Examples of
complex-amplitude holograms (grating included) with encoded hologram functions
taking the form H(Φ(r)) = ∣LGℓ,0∣sin(arg(LGℓ,0) + Λgrating) for ℓ = 1, 3,−1. (d)
Schematic of the detection scheme for a biphoton state ∣Ψ⟩AB.

this means that the hologram has a phase transmittance function,
Φ∗(r) ∼ exp (iH(Φ(r̄))).107

The hologram function in general can be seen as a mapping of
the form

H(Φ(r̄)) : ∣Ψ⟩→ η∣0⟩ + ∑
(ℓ,p)≠(0,0)

αℓ,p∣LGℓ,p⟩, (28)

where the first term is the desired fundamental mode that will be
coupled to the SMF, and the rest of the terms are unwanted modes
and diffraction orders. Here, the SLM and fiber act as a match filter:
if the incoming mode and the SLM hologram result in a funda-
mental mode in the first order, then the mode on the SLM must
have been the complex conjugate of the input mode. For example,
consider the case where the input photon is a vortex mode, Ψ(r)
= G(r) exp(iℓϕ), and the SLM encodes the mode Φ∗(r) = exp
(−imϕ), where G(r) is the fundamental Gaussian mode. After the
SLM, the photon will have the field profile Ψ(r) ×Φ(r). Therefore,
the field profile of the photon will be that of the fundamental mode
of the fiber if and only if m = ℓ. This means that the first term in
Eq. (28) is non-zero for m = ℓ, while the other unwanted terms are
filtered by the fiber.

The other modes in Eq. (28) can also be attributed to artifacts of
the modulation technique used on the SLM. Ultimately, regardless of
the technique used, modes besides the fundamental mode are filtered
out when passing through an SMF. The probability of obtaining the
fundamental mode is given by η∝ ∣⟨Φ∣Ψ⟩∣2. How can we encode the
holograms as a function that achieves this mapping?
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In general, one can define the hologram phase modulation that
encodes Φ∗(r),108

H(Φ(r)) = f (Φ∗(r)) × h(argΦ∗(r)), (29)

where f (⋅) is the relation chosen to describe how
the efficiency changes with grating depth, while h(⋅)
encodes the phase, arg(Φ∗(r)). By setting f (⋅) = 1 and
h = mod [arg (Φ∗(r)) +Λgrating , 2π], we obtain a blazed phase
grating that allows for phase-only detection, where the grating is
controlled by the term Λgrating . This technique is known as phase
modulation and works by unraveling the phase without altering the
amplitude. By loading this phase-only hologram on the SLM, one
physically alters the phase of a photon by changing the orientation
of liquid crystal (LC) molecules in the SLM pixels, as the orientation
dictates the refractive index of the material seen by the field.108

This change in orientation results from applying a voltage across a
section or cell of such molecules as dictated by the phase values at
each pixel. A collection of such pixels comprises the SLM screen,
onto which we direct the photon we wish to detect. We show
examples of such holograms in Fig. 9(b) with Λgrating = 0 in order
to emphasize the phase ramp. A more detailed explanation of this
and the methods described here is well covered in Ref. 108. Here
the grayscale image has 256 values, which refers to the number of
voltage levels and, therefore, orientations of the LC molecules that
the device can program for each LC cell or pixel. It thus follows that
there are 256 levels that can be encoded onto the SLM, implying
that the phases modulated in this example need to be quantized into
256 values.

Considering that we have control over the individual LCs of
the SLM and that we can tailor the phase of arbitrary fields, the
next step is to consider how we may use it to map the amplitude
information, f (Φ(r)), if we wish to measure complete amplitude
and phase. The simplest approach is to modulate the blaze grat-
ing with the field amplitude [see example holograms in Fig. 9(c)].
This approach might be efficient but may come at a loss of accu-
racy since the field amplitude does not map linearly with conversion
efficiency. Alternative methods can be found in Refs. 107, 109,
and 110. Furthermore, we direct the reader to Ref. 111 for a com-
parison of commonly used techniques. One relation for f (⋅) that can
produce the best outcome was reported in Ref. 107, where the ampli-
tude function is encoded as, f (Φ(r)) = J−1

1 (Φ(r)). Here, J−1
1 (⋅) is

the Bessel function of the first kind. The phase function is altered as
h = sin (arg (Φ∗(r)) +Λgrating).

With these phase modulation techniques, it is possible to pre-
pare complex amplitude holograms that accurately encode (or recip-
rocally detect) the target mode Φ(r). Next, we unpack the final
detection step, where the fiber is used as a tool to achieve the map-
ping in Eq. (28) in order to filter out the desired fundamental mode
once the hologram has modulated the photon field.

2. Influence of optical fibers on the measurements
Following the modulation of the input field Ψ(r) by an SLM

encoded with Φ∗(r) and the subsequent coupling of the resulting
field onto the SMF and photon counting module, photon counts that
are proportional to the desired overlap probability are obtained, ∣η∣2.

The corresponding overlap integral that determines the measured
photon rates is governed by105

η = ∫ Ψ(r)Φ∗(r)e−
r2

w2 dr2, (30)

where the Gaussian factor is the fundamental mode that propagates
in the fiber. If we consider taking the beam waists of the input field
and the encoded hologram function to be much smaller than that of
the fiber, w, then one can assume that any significant contribution

from the integral in Eq. (30) comes from regions where e−
r2

w2 ≈ 1;
therefore, the calculation becomes an inner product between the
input field and encoded mode, η = ⟨Φ(r)∣Ψ(r)⟩.

The above-mentioned steps give us a recipe for detecting arbi-
trary single photon states. Now we consider two photon states. To
see how the technique works, consider the biphoton state ∣Ψ⟩AB
described in the OAM basis by the SPDC state given in Eq. (10).
Detection of the said state involves utilizing our coupled detec-
tion scheme on each individual photon, independently, as shown in
Fig. 9(d). However, this follows rather simply from the single photon
case, where we compute an inner product between encoded mode
functions, ΦA(r) for photon A and ΦB(r) for photon B, and the
field dictating the photon correlations. The overlap integral takes the
form105

ηAB = ⟨ΦB(r)∣⟨ΦA(r)∣ΨAB(r)⟩,

= ∫ ΨAB(r)Φ∗A(r)Φ
∗
B(r)e

−2 r2

w2 d2r, (31)

where ΨAB(r) is the two photon joint probability amplitude that
is determined by the entanglement source, while the Gaussian fac-
tor includes the contribution of the fibers that are used to collect
each photon. In general, it is important to optimize the crystal
(phase matching) and experimental parameters (fibers, lenses, and
apertures) for the desired detection basis and application. Several
experiments have demonstrated the detection of high dimensions in
the OAM and pixels basis.32,52,112,113

In Fig. 10(a), we show the detection of OAM modes from
SPDC, where each photon is projected into OAM modes ΦA,B(r) ∼
exp(iℓsiϕ) with corresponding charges of ℓs,i for photons A (signal)
and B (idler), respectively. Figure 10(b) shows the corresponding
spectrum for ℓs = −ℓi taken from Fig. 10(a). This configuration pro-
duces a fixed number of modes (≈21). The number of generated
and detected modes can be affected by the source parameters (input
mode and crystal parameters) and the quality of the detection sys-
tem. Next, we show how the source and detection systems can be
optimized to achieve such higher dimensional encoding.

3. Optimizing the measurement of quantum
structured light

Limiting parameters affecting the extent of our spatial entan-
glement here may be reduced to two factors on the generation side:
the pump size and crystal length. This may be seen by decomposing
the SPDC wavefunction [Eq. (17)] into the LG basis for p = 0, and
the waist size is scaled with respect to that of the crystal and pump,
β = wp

4
√

L
2zR

, in order to determine the coefficients, cℓ, in Eq. (23).
It may be noted that further decomposition into the radial terms,
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FIG. 10. SPDC generational OAM bandwidth. Example of measured (a) SPDC OAM coincidence rate (counts per second) for different OAM projections on the signal (ℓs)
and idler (ℓi) photons, showing anti-correlations in OAM. (b) Coincidences taken for ℓs = −ℓi . From this plot, the spiral bandwidth (dimensionality), K = 21, was measured.
(c) Spiral bandwidth optimization as a function of the pump beam waist size wp and the non-linear crystal length L computed from Keff in Eq. (34).

p, of the LG modes is possible,30,114 but this is not covered here.
Subsequent decomposition yields the analytical expression,114

cℓ =
4α

(1 + α)2 ∣
α − 1
α + 1

∣
∣ℓ∣

, (32)

with α = wp
√

L
kp

for pump wavenumber, kp. The probability (∣cℓ∣2)
of having the SPDC biphotons in the state ∣ℓs⟩s∣ − ℓi⟩i can be cal-
culated for the pump size and crystal length to give a generational
bandwidth. For the results shown in Fig. 10(b), the parameters are
L = 5 mm, λ = 532 nm, and wp = 400 μm. Using the Schmidt num-
ber, K = [∑ℓ ∣cℓ ∣2]2

∑ℓ ∣cℓ ∣4
, as defined in Eq. (14), the number of modes

present and, therefore, the dimensionality can be indicated. More-
over, the Schmidt number quantifies the (spiral) bandwidth of the
OAM spectrum shared by the two photons.71 Here, this value is
marked on the bandwidth plot where K ≈ 21. Assuming a symmetric
spectrum about ℓ = 0, one may thus convert K to the range of OAM
available (-ℓmax to ℓmax) by ∣ℓ∣max =

K−1
2 . Consequently, the effect of

the pump size and crystal length on the generated dimensions (dic-
tated by K) in the biphotons can be seen. Figure 10(c) shows how
this varies for the ranges L = [0.5 : 10]mm and wp = [50 : 1000] μm.
It follows here that a shorter crystal length and a larger pump beam
size generate a larger number of modes in the SPDC being produced.
Now we are left with optimizing the detection system.

While the phase flattening measurement techniques we estab-
lished earlier work as a highly sensitive single photon detection
system, the nature of the SMF results in an additional modal modu-
lation with the Gaussian distribution describing the coupling of the
flattened light into the fiber.71,105 As a result, the measured band-
width needs to account for the SPDC state and the overlap thereof
with both of the chosen detection modes for either photon.

One may understand the play between the generation and
detection parameters by considering the geometric picture as out-
lined in Ref. 71, where the overlaps in the near and far-field regimes
are accounted for. From this, an upper bound on the generated spiral
bandwidth is derived,

Kgen = 1 + 2

√
π2w2

p

Lλ
, (33)

given the pump waist, wavelength, and crystal length. This result can
be obtained by computing Eq. (14) for the OAM basis, given the
crystal and pump photon parameters. To incorporate the detection
beam waists, further derivation results in a convolution of near and
far-field bandwidths, where71

Keff =

⎛
⎜
⎜
⎝

¿
Á
Á
ÁÀ(1 + 4γ2

s,i)
−2
+ (1 +

π2w2
p

γ2
s,iLλ
)

−2⎞
⎟
⎟
⎠

−1

, (34)

which allows one to predict the effective dimensionality of the modes
that one may detect, given a choice of the detection waist size ws,i
backprojected to the crystal plane in the ratio γs,i =

wp
ws,i

.
In Fig. 11(a) we illustrate the effect on chosen detection size

by showing the variation of Keff with ws,i and wp as shown for the
example used in Fig. 10(a). Consequently, an optimal ratio exists, as
highlighted by a dotted line in the contour map. Furthermore, such
an optimal value changes with the crystal length, as shown by the
shift of the maximal positions of Keff in Fig. 11(b), where L = 1 mm
instead. The ratio thus depends on L as well as the pump waist. Here,
this can be seen in Ref. 71.

γopt ≈
4

¿
Á
ÁÀπ2w2

p

λL
, (35)

which yields the optimal ratio for detection given the pump waist
and crystal length.

F. Other special elements for generation
and detection

Besides the modulation and projective measurement
approaches that were discussed earlier, spatial modes can be
created and measured using a variety of other techniques and
tools. Here, we explore a few that are commonly used for quantum
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FIG. 11. SPDC measurable OAM bandwidth. Example of measurable bandwidth
(K ≡ Keff) as a function of the pump and detection beam sizes for a (a) L = 5 mm
crystal and a (b) L = 1 mm crystal. The dotted line indicates the optimal ratio for
maximum bandwidth between the detection and signal beam waists.

structured light. We focus on components that couple the polar-
ization and spatial components of photons since they have been
instrumental in demonstrating quantum walks,115 quantum cryp-
tography,21 and creating hybrid entangled states.116 Furthermore,
we also explore the use of refractive elements for mode sorting since
they show the capability of measuring high dimensional quantum
structured light.117–120

1. Dynamic and geometric phase control of photons
In an effort to gain control over and manipulate the spatial

structures of photons, significant efforts have been made toward
developing additional elements in addition to the vanilla spatial light
modulators. This, in an effort to allow specialized control in the
manipulation and subsequent use of quantum light, further extends
the toolbox for high dimensional applications. Here we consider
three significant devices based on OAM, which, since their demon-
stration, have facilitated interesting applications for using structured
quantum light and hold further potential.

Previously, the principles and implementation of a spatial light
modulator could be seen to yield a versatile method for detecting
(and generating) spatial structures on demand. A commonly used
spatial light modulator is based on liquid crystal on silicon tech-
nology.121 Here, each pixel of thickness Δt of the device is filled
with liquid crystals that can be rotated by an applied voltage. The
variation of the liquid crystal molecular orientations allowed one to
impart a controlled dynamic phase, ϕd,

ϕd =
2πnΔt
λ

, (36)

through the altered refractive index, n, changing as a function of the
liquid crystal orientation, a type of birefringence, and so only the
phase of one polarization component is changed.

An alternative principle also lends itself to the generation of
phases, but instead by using the “memory” of the transformations
applied. Here, by altering parameters adiabatically in a closed-loop
fashion, a geometric phase122 may be induced, so-called as the
amount of imparted phase is determined by half the solid area
bounded by the transformations in the parameter space. Applied to
light, one may use a change in polarization to induce such a relative
phase in the electric field, as illustrated in Fig. 12(a), which is other-
wise known as the Pancharatnam–Berry phase (after the authors),
applying the concept to the classical123,124 and quantum125 light,
respectively.

To see this effect, we may consider the polarization parameter
space, which is illustrated on the polarization equivalent of the Bloch
sphere in Fig. 12(b), known as a Poincaré sphere. Here, linear polar-
izations are placed along the equator and circular polarizations at
the poles. The “closed loop” evolution of an input photon or light
beam can then be followed by placing a series of waveplates, as illus-
trated in (a). When diagonally polarized light is passed through a
half-waveplate (HWP) orientated at 22.5○, it becomes horizontally
polarized. On the Poincare sphere (b), this is seen by the change in
position from ∣D⟩ to ∣H⟩ through path A. Passing the light through a
quarter-waveplate (QWP) at 45○ then alters the state to ∣R⟩, i.e., fol-
lowing path B and with another QWP at 90○, the ∣R⟩ state is changed
back to ∣D⟩ through following path C and a closed loop has been
formed on the Poincare sphere. The light at this stage is not just diag-
onally polarized but also has a supplementary phase of ϕG = eiΩ/2,
where Ω is the area enclosed by the evolution.

We may now consider applying this physical principle from
the time (a) to the spatial126 (c) domain. Here, instead of evolution

FIG. 12. The concept of geometric phase. (a) Illustration of a diagonally polarized
state traversing a series of waveplates that take the state through a closed loop
transformation, which is (b) depicted on the Poincaré sphere. (c) Depiction of an
element with spatially varying optical indices of refraction that may be considered a
series of HWPs with varying optical axes. (d) Illustration of associated paths taken
by different rays of a light beam traversing an element with four arbitrary HWPs
with varying fast axis rotational angles.
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through waveplates in time, we consider evolving small waveplate
elements [α(r,ϕ)] across the transverse spatial coordinates, (r,ϕ),
of an optic as depicted in (c). Here, if a change in polarization occurs
at points across the transverse spatial plane of the incoming beam, an
associated spatially varying geometric phase is also generated. This
is illustrated in (d), showing how geometric phase may be mapped
between right-circularly polarized (RCP) waves traversing four arbi-
trary points [denoted α0(r,ϕ) to α3(r,ϕ)] on an optic (c), which has
effective HWP elements with different orientations at each trans-
verse coordinate. With the polarization change occurring spatially,
the “closed path” is formed by the difference in the path between the
other elements, resulting in the geometric phase being both relative
and spatially varying.126,127 One may, therefore, engineer the relative
optical axis orientations to generate any number of variable geomet-
ric phase acquisitions that may be used to manipulate the spatial
mode of the overall beam.

The q-plate (QP) is one such device that does this128 by pattern-
ing the optical axis orientation such that the relative phase changes
azimuthally and thus creates an azimuthal phase across the entire
beam.128 The waves subsequently twist alongside each other in a
helical fashion, resulting in OAM generation. This patterning of the
optical axis is described by Eq. (37),128

α(r,ϕ) = qϕ + αo. (37)

Here the QP is taken to be in the xy-plane, αo is the angle formed by
the optical axis from the x-axis, q is a constant defining the number
of times the optical axis rotates in a path as it traverses once around
the plate center, and αo is the permanent offset of the optical axis
from the element’s x axis. A discontinuity occurring at r = 0 when
q ≠ 0 is evident due to the nature of the azimuthal coordinate, ϕ,
being undefined at this point.

A simple description of the subsequent QP action can be
performed in terms of a Jones matrix on the linear basis,129

QP = cos(
φ
2
)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0

0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ i sin(
φ
2
)

×

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cos (2α(r,ϕ)) sin (2α(r,ϕ))

sin (2α(r,ϕ)) − cos (2α(r,ϕ))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (38)

Here, ϕ refers to the efficiency of QP, which is tied to the
retardance of the slow and fast axes in the element. The cosine
term alongside the identity matrix indicates that this portion of the
incident beam remains unaffected where no polarization or phase
changes occur. The second matrix term refers to the action of the
QP whereby an azimuthally-varying geometric phase is imparted as
described by Eq. (37). It may thus be seen that when φ = π (HWP
retardance), the QP is 100% efficient, with the first matrix term
falling away.129,130 Q-plates meeting this condition are referred to
as “tuned.”

Consequently, the QP operation may be condensed into the
following selection rules:129

Q̂P∣l, R⟩ = cos(
φ
2
)∣l, R⟩ + sin(

φ
2
)∣l + 2q, L⟩, (39a)

Q̂P∣l, L⟩ = cos(
φ
2
)∣l, L⟩ + sin(

φ
2
)∣l − 2q, R⟩. (39b)

This effective twisting of the light beam produced by the geo-
metric phase has additional implications in the physical interpreta-
tion, whereby the CP polarization may also be seen in terms of spin
angular momentum (SAM). Here, when RCP is incident on the QP,
an OAM of 2qh per photon is generated, and the flip in CP cor-
responds to a flip in SAM from 1h per photon to −1h. It is well
known that the transference of SAM and OAM can occur between
light and certain matter.130 Here, SAM interaction occurs in opti-
cally anisotropic media such as birefringent material and OAM in
transparent inhomogeneous, isotropic media.128 The combination
of a thin birefringent (liquid crystal) plate with an inhomogeneous
optical axis in the QP subsequently results in the element coupling
these two forms of angular momentum such that flipping in the SAM
may be seen to generate OAM, making the QP a spin-to-orbital
angular momentum converter (STOC) where the symmetry of the
optical axis patterning effects the conversion values.130

QPs have been instrumental in realizing practical applica-
tions of quantum structured light that interface the spin and
orbital components of photons for quantum communication in
free-space,21,131,132 underwater,133 between satellites,134 and through
optical fiber,135,136 for quantum memories,132 computing,115,137–139

quantum metrology,140 and for engineering novel quantum
entangled states such as entangled vectorial fields,141 hybrid
entangled,116,142,143 and hyper-entangled144,145 quantum channels. In
most of these applications, the QP is used as the main component for
encoding quantum information in quantum structured light.

While useful, the QP is limited by the physical principles
governing geometric phase only, reducing the operation on oppo-
site polarizations to yield conjugate OAM charges of each other
only and requires the principle evolution to remain on a CP basis.
An alternative approach uses the properties of meta-surfaces146,147

instead of liquid crystals. Here, the desired phases are achieved by
spatially engineering the characteristics of sub-wavelength struc-
tures, known as meta-atoms. This is usually achieved by altering
the orientation and dimensions of the meta-atom structures. Meta-
surfaces can subsequently replicate the action of the QP148–151 but
can then be extended to have more control, enabling the con-
trolled pairing of both geometric and propagation phases, such
that arbitrary polarization states can be mapped to arbitrary incre-
ments of OAM152,153 or even superpositions thereof.150,154 For
instance, one may engineer the interaction such that a generalized
conversion of152

JP = eiδ
⎡
⎢
⎢
⎢
⎢
⎢
⎣

eiδ
(eimϕ cos2 χ + einϕ sin2 χ)

sin 2χ
2
(eimϕ

− einϕ
)

sin 2 χ
2
(eimϕ

− einϕ
) e−iδ

(eimϕ sin2 χ + einϕ cos2 χ)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

(40)
is possible for arbitrary linear polarization bases states, ∣s+⟩
= [cos (χ); eiδ sin (χ)]

T
and ∣s−⟩ = [− sin (χ); eiδ cos (χ)]

T
. Here, ϕ

remains the azimuthal angle, and n and m are integers, with χ and
δ being parameters dictating the polarization states. It then follows
that the operations

ĴP∣ℓ, s+⟩ = ∣ℓ +m, (s+)∗⟩, (41a)
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ĴP∣ℓ, s−⟩ = ∣ℓ + n, (s−)∗⟩, (41b)

take place where ∗ specifies complex conjugate and eimϕ
= ∣m⟩ (einϕ

= ∣n⟩) is the phase with m (n) OAM imparted to the polarization
state ∣s+⟩ (∣s−⟩).

These devices thus allow one to arbitrarily map between polar-
izations and orbital angular momentum, allowing one full control
of the full angular momentum (J) domain and, as such, have
been denoted J-Plates. Furthermore, the versatility of engineer-
ing the material properties allows one to extend past the OAM
domain and map polarization to the pixels domain (images) such
that one polarization excites an image like a cat and the other a
dog,155 or, conversely, different OAM states exciting different holo-
graphic images,156,157 and the HWP dependence changed to that
of a QWP158 and structuring the total angular momentum as it
propagates.159 Good reviews tracking the burgeoning progress of
these and other metasurface-based devices can be found in Refs.
146 and 160. With such capabilities, these metasurface devices
have also found possibilities in quantum applications. A good
review considering this is Ref. 161, where applications ranging
from state creation to manipulation and weak measurements are
considered.

2. Refractive mode sorters
Therefore, we have explored detection by the single generation

of conjugate projections in order to detect OAM. Alternatively, the
application of geometric transformation concepts such as coordi-
nate transformations through the use of optical systems can exact a
desired transformation in light.162 This is the basic principle behind
mode sorting and, therefore, detecting OAM. Here, the technique
takes advantage of the circular geometry associated with OAM
so that a geometrical mapping translates circular to rectangular
geometry,163 as illustrated in Fig. 13(a). The resultant phase distri-
bution “unwrapping” causes OAM to be transformed into transverse
momentum with a linear phase gradient,120 as demonstrated in the
(u, v) coordinate space of the figure.

Physically, this (x, y)→ (u, v) transformation is achievable
through the application of a phase distribution, described in
Eq. (42),163

φ1(x, y) =
d
λ f

⎡
⎢
⎢
⎢
⎢
⎢
⎣

y tan−1
(

y
x
) − x ln

⎛
⎜
⎝

√

x2
+ y2

b

⎞
⎟
⎠
+ x
⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (42)

Here d is the fixed unwrapped beam length, b affects the location in
the (u, v) plane, λ is the wavelength, and f is the transforming lens
focal length. Associated phase distortions in the “unwrapped” beam
from optical path length variation then simply require correction by
a second phase distribution, described in Eq. (43),118,163

φ2(u, v) =
db
λ f

e
−2πu

d cos(
2πv

d
). (43)

The resultant phase distribution “unwrapping” causes the
OAM to become transverse momentum with a now linear phase
gradient of eil tan−1( y

x ) = eil 2πv
d across the beam length.118,119 As the

FIG. 13. Mode sorting with geometrical phase transformation. The (a) illustration
of a conformal mapping that “unwraps” an OAM = 2 mode to a transverse phase
gradient and the (b) color map illustration of the phase gradient resulting from the
OAM geometric transformation for l = −1 (left) and l = 2 (right). (c) Depiction of the
sorting action performed by a Fourier transforming lens after the phase correction
element.

“unwrapped” mode contains a phase gradient limited to the length,
d, all OAM modes result in a transverse phase gradient that is integer
multiples of each other, as shown in Fig. 13(b).

Physically distinguishing the unraveled gradient then requires
a phase-to-position mapping. Here, the Fourier transforming opera-
tion of a lens comes into play such that each unwrapped beam forms
a diffraction-limited elongated spot at the Fourier plane.120 Further-
more, the phase gradient dictates the transverse position of the spot
(t) here. It thus follows that after a lens, the mode sorter maps OAM
to a particular transverse position163 according to

t =
λ f l
d

, (44)

and as illustrated in Fig. 13(c).
Moreover, the intensity of the spot indicates the “amount” of

any OAM mode present. The mode sorter technique employed with
refractive elements allows for the efficient detection of a large range
of OAM modes and the associated weightings, enabling the detec-
tion of low intensity sources in comparison to other techniques such
as SLM projections. For instance, sorting as many as 50 states was
demonstrated.119

It may be noted that, as a result of the transformative action,
such devices are more sensitive to alignment than devices such as
SLMs or QPs. They do, however, offer the advantage of determin-
istic detection, as the transformation always sends the photons to
a detectable state. This is in contrast to single-outcome projective
measurements such as those performed by the SLM, where the pho-
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tons that do not collapse into the mode the SLM is interrogating
for are discarded, making the detection probabilistic. Accordingly,
this detection has been used from detecting vector vortex states
deterministically117 to high-dimensional quantum cryptography,36

efficient detection for a classical quantum walk resonator,139 and
interfacing between the path and OAM entanglement.164

Finally, we note that there is a wide range of specialized optics
and extensions thereof, such as g-plates, proceeding from liquid
crystal patterning like QPs to allow for topological quantum sim-
ulations165 and linear photonic gears.166 Mode sorters have been
extended to include radial orders167 and other spatial modes such
as Hermite–Gaussian modes168 and have taken on more com-
plex forms with multiple conversion planes169 even extending into
fibers.170 Metasurfaces, furthermore, have a very wide reach from
multi-wavelength lenses171–173 to nonlinear engineering.174–176 Here,
we selected a few special optical elements that have made a basic
impact on structured quantum light.

V. HIGH DIMENSIONAL STATE CHARACTERIZATION
We have introduced a source for creating quantum structured

light (i.e., SPDC) and also presented several measurement appara-
tuses and detection techniques. Next, we focus on a few examples of
typical characterization techniques, particularly those that are used
for verifying two dimensional and higher dimensional quantum
entanglement, and also discuss a method for reconstructing quan-
tum states. The photons analyzed in this section were also produced
from SPDC (see Sec. IV A 2) and are entangled in their OAM degrees
of freedom. Because the pump photons used here had a topological
charge of ℓ = 0, according to Eq. (23), the photon pairs are prepared
in the state,

∣ΨAB⟩ =∑
ℓ

cℓ∣ℓ⟩A∣ − ℓ⟩A, (45)

where cℓ are normalized coefficients. The task here is to use the
techniques we will discuss to characterize such states.

A. 2D Bell curves and Bell violations
In most quantum entanglement experiments, it is common

practice to demonstrate a violation of the Clauser-Horne-Shimony-
Holt (CHSH) Bell inequality.177 The violation of the inequality
confirms non-locality in quantum experiments. Following the ini-
tial demonstration with the polarization states of photons,44 today
the Bell-inequality violation is used in a myriad of experiments as
a characterization tool. Here we show how it can be performed on
an OAM basis. We direct the reader to Refs. 24 and 23 for further
reading.

As shown in Fig. 14(a), spatially separated measurements are
performed on entangled photons A and B that are generated from a
nonlinear crystal (NC). The photons share an entangled state given
by 1√

2
(∣ℓ⟩A∣ − ℓ⟩B + ∣ − ℓ⟩A∣ℓ⟩B) for integers ℓ, defined in the OAM

basis. Photons A and B are projected onto superposition states of
OAM with equal but opposite charges,178

∣θA(B)⟩ =
1
√

2
(∣ℓ⟩ + eiℓθA(B) ∣ − ℓ⟩), (46)

FIG. 14. Bell-inequality violation. (a) An experiment for demonstrating the Bell
inequality violation using structured light. Here, SPDC photons are generated
from nonlinear crystal (NC) and propagated to spatial light modulators (SLM),
where spatial projections onto the states ∣θA(B)⟩ are performed. θA(B) corresponds
to the physical rotation of the encoded hologram. Correlation measurements
between photons A and B for the subspaces (b) ℓ = 1 and (c) ℓ = 2. Using these
correlations, the Bell parameter can be evaluated.

where θA(B) controls the relative phases between the states in the
superposition. Physically, the parameters θA(B) correspond to physi-
cal rotations of the phase patterns [see insets for Fig. 14(a)]. Detec-
tion probabilities are shown in Figs. 14(b) and 14(c) for ℓ = ±1, 2,
respectively. In each plot, the coincidence measurements between
photons A and B are shown for θA = {0, π

2ℓ , π
ℓ

, 3π
2ℓ}, mapping the pro-

jections of photon A, while for photon B they are varied between 0
and π

ℓ
, where the probabilities are proportional to cos2

(ℓ(θA − θB)).
Subsequently, the CHSH-Bell parameter S can be computed
from178

S = ∣E(θA, θB) − E(θA, θ′B) + E(θ′A, θB) + E(θ′A, θ′B)∣, (47)

with E(θA, θB) calculated from the coincidence events,
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E(θA, θB) =
ξ(θA, θB) − ξ′(θA, θB)

ξ(θA, θB) + ξ′(θA, θB)
,

ξ(θA, θB) = C(θA, θB) + C(θA +
π
2

, θB +
π
2
),

ξ′(θA, θB) = C(θA +
π
2

, θB) + C(θA, θB +
π
2
).

(48)

Here, C(θA, θB) represents measured coincidence counts. The Bell
parameter can be characterized as S ≤ 2 for separable states (satis-
fying local hidden variable theories) and 2 < S ≤ 2

√
2 for nonlocal

entangled states. The upper bound of the Bell parameter, S = 2
√

2,
is called the Tsirelson bound,179 which is achieved only for maxi-
mally entangled Bell states. For the two measurements in Figs. 14(b)
and 14(c), we obtained Bell parameters of S1 = 2.66 ± 0.08 and S2
= 2.80 ± 0.01 violating the Bell inequality and confirming entan-
glement in the ℓ = ±1 and ℓ = ±2 subspaces of our generated SPDC
photons.

While our demonstration above shows that the Bell-inequality
test can be used to confirm entanglement in multiple subspaces
of a high dimensional entangled state, it does not confirm the
entanglement between all the subspaces. In order to confirm that a

higher dimensional state possesses entanglement over all the dimen-
sions, generalized Bell inequalities have to be employed. One such
version was introduced by Collins et al.,180 sometimes called the
CGLMP inequality, and has been instrumental in demonstrating
high dimensional Bell violations ranging from OAM qutrits181,182

and reaching up to 12 dimensions25 of entangled OAM states. Fur-
thermore, an intriguing aspect of the CGLMP inequality is that
higher dimensional states can obtain violations above the Tsirelson
bound.

B. Quantum state tomography
The concept of tomography relies on the idea of projecting

a quantum state onto observable basis states and measuring the
probability that the particle is in the state. One then works back-
ward in order to determine what state would result in the outcomes
measured. Tutorial references covering this topic may be found in
Refs. 23 and 183 with a more brief overview tailored to this work
detailed here. The concept is illustrated in Fig. 15(a). Here the pro-
jective measurements equate to using a light source to project the
shadow of the object of interest onto a plane such as those normal
to the x-, y-, and z-axes shown in the top panel of Fig. 15(a). The
shapes and dimensions of the projected profiles then allow one to

FIG. 15. State reconstruction. (a) Concept of quantum state tomography, where projections are made into states (“planes”) that reveal the composition of the state (“shape”).
The projections can be subsequently combined to reproduce the state. Qubit state (d = 2), (b) tomographic projections onto the ℓ = ±1 subspace, and corresponding (c)
reconstructed state. For two particle qubits, up to 36 measurements are performed. In higher dimensions, more projections are needed. (d) Tomography of a d = 3 entangled
state where the projections are performed on smaller qubit spaces at a time. (e) Corresponding reconstructed density matrix for the qutrit entangled state.
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reconstruct what the object was as indicated in the bottom panel
of Fig. 15(a). It should be noted that here only 3 projective mea-
surements were used, which assumes a fairly simple and symmetric
object. For more complex objects or measurements that introduce
uncertainties, a larger number of projections onto different sets of
planes can allow for a more accurate reconstruction.

Quantum mechanically, we can carry out this reconstructive
concept by performing various operations in order to manipulate
the state and thus characterize it. To do so, we apply a variety of
projections on many copies of the quantum system, and with the
subsequent measurements, information on the quantum state being
interrogated is built up, analogous to the projections of the object
shown in Fig. 15(a). The question now arises: what are the optimal
projections necessary in order to accurately determine the quantum
state?

Several types of approaches to such tomographic measure-
ments have been put forward that allow one to extract the infor-
mation needed to reconstruct the state. Here, these range from
generalized Bell tests25,181,182 to using mutually unbiased bases26,28,184

or incorporating self-guided approaches,185,186 with each approach
having certain merits. One may also ask, how many measurements
are enough to accurately reconstruct the state using the chosen
method? The answer to this lies in the uncertainties in the mea-
surements being made. Initially, one may consider the projections
in the concept figure. Here, only three projective measurements are
actually necessary in order to find the object. These would then
form a tomographically complete set. If there is any uncertainty or
“blurriness” in the projection, the actual size and perhaps the fine
structural details of the outlines may be in question. To improve
this, one may consider making additional projections on the object
where the planes are rotated to some degree. While these projec-
tions may not provide additional information, they will allow the
reconstructed object to be checked against them and adjusted as nec-
essary. This results in the “blurriness” or uncertainty being reduced.
This then forms an overcomplete set of measurements but allows a
greater degree of accuracy in the reconstruction.187,188

Before we begin, it is important to highlight that we first have to
assume a decomposition of the density matrix. For two dimensions,
we assume that the state density matrix is given by26

ρ =
3

∑
m,n=0

bmnσA,m ⊗ σB,n, (49)

where σ0 = I2 is the identity matrix and b00 = 1/4, and the other
coefficients bm,n>0, weight the tensor products between the Pauli
matrices, σA(B),m>0, given by

σ1 =
⎛
⎜
⎝

0 1

1 0

⎞
⎟
⎠

, (50)

σ2 =
⎛
⎜
⎝

0 −i

i 0

⎞
⎟
⎠

, (51)

σ3 =
⎛
⎜
⎝

1 0

0 −1

⎞
⎟
⎠

, (52)

that span the two-dimensional states pace of each photon. There-
fore, the measurements we perform must return information about
the coefficients that determine the state. Since each Pauli matrix
can be decomposed into two projectors, σm = P+m − P−m, we can
construct our measurements by projecting onto these states, i.e.,
P±m = ∣λ±m⟩⟨λ±m∣, where ∣λ±m⟩ are the corresponding states.

In the OAM basis, we can select the two states ∣ℓ1⟩ and ∣ℓ2⟩

as our standard basis, constituting the eigenstates of the σ3 matrix.
Next, we can construct their equally weighted superposition,26

∣αℓ1ℓ2⟩ =
1
√

2
(∣ℓ1⟩ + eiα

∣ℓ2⟩), (53)

with relative phases α. By selecting α = 0,π, and α = ±π2 , we
obtain eigenstates of the σ1 and σ2 operators, respectively.
Therefore, we have a total of six projectors, Pj → ∣j⟩ ∈ {∣ℓ1⟩, ∣ℓ2⟩,
∣α = 0⟩, ∣α = π⟩, ∣α = ±π/2⟩}, that form a tomographically complete
set of measurements for each photon (see Ref. 23).

In Fig. 15(b), we show the measurements performed on two
photons given the tomography measurement states above. Here,
spatially separated measurements Ai j = PA

i ⊗ PB
j were performed,

where PA,B
i, j are the local projections of photon A and photon B in

our overcomplete basis. The detection probabilities of a system with
a corresponding density matrix (ρ) are thus

Mi j = Tr (Ai jρ(Ai j)
†
), (54)

where Tr(⋅) represents the trace operation. These measurements,
Mij, can then be used to reconstruct the density matrix. Two pop-
ular methods for achieving this are maximum likelihood189–191 and
Bayesian mean192–194 estimation. In this work, we employed max-
imum likelihood, where the coefficients bmn were determined by
minimizing the square difference between the measured and theo-
retical probabilities.195 Once successful, the real and imaginary parts
can be obtained, as shown in Fig. 15(c). The imaginary part of the
density matrix is placed as an inset.

The aforementioned method can be extended to higher dimen-
sions (d > 2) by taking the higher dimensional state and projecting it
onto smaller qubit spaces.26 The localized measurements for each
particle are then spread across combinations of two-dimensional
subspaces within the d-dimensional system. This naturally results
in far more measurements as each two-dimensional subspace com-
bination in the d-dimensions of each particle needs to be measured
along with all the different MUBs therein. In Fig. 15(d), we show
the measurements for ∣ℓj⟩ ∈ {∣ − 1⟩, ∣0⟩, ∣1⟩} basis states, where pro-
jections are performed on the OAM eigenstates, as well as the
corresponding superpositions, ∣αℓ1ℓ2⟩, with the ℓ1 < ℓ2. As such,
the number of measurements scale as (4C d

2 + d)2 with d dimen-
sions per particle for a two-particle system, where C d

2 is a binomial
coefficient.

Unlike the qubit case, where we used the decomposition in
Eq. (49), for qudits, we apply a generalized version of the density
matrix for higher dimensions following:26

ρ = ∑
m,n=0

tmnτA,m ⊗ τB,n, (55)

where the coefficients tmn are weighting factors for the generalized
Gell–Mann matrices, τm, for d > 2. Here, τ0 is the identity matrix,
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and t00 = 1/d2, given that each photon is defined on a d-dimensional
statespace. Given this decomposition, we can apply maximum like-
lihood using the tomography measurements. We show the recon-
structed density matrix for the d = 3 entangled state in Fig. 15(e)
using this model.

The techniques described earlier make use of measured detec-
tion probabilities to work out what state could have produced them.
However, the measurements performed were not high dimensional
and were instead constructed from simple two dimensional MUB
subspaces. It is possible to use higher dimensional state projec-
tions that project onto the d-dimensional space of each photon.196

Given our d-dimensional standard basis of OAM modes, i.e., ∣ψ0
j⟩

∈ {∣ℓ j⟩, j = 0, 1..d − 1}, it is possible to find d MUBs, forming an
overcomplete set on the d-dimensional state space. The main limi-
tation is that not all the MUBs can be found for arbitrary d, except
when d is an odd prime number or an integer power of a prime.197

Assuming that the d is an odd prime number, then the nth state from
the mth MUB can be written as an equally weighted superposition
following197

∣ψm
n ⟩ =

1
√

d

d−1

∑
k=0

ωknωmk(k−1)/2
∣ℓn⟩, (56)

where m = 1, 2, . . . , d − 1, n = 0, 1, . . . , d − 1, and ω = exp(i2π/d).
Once all (d + 1) bases are obtained then joint projections of pho-
ton A and B onto each of the basis states, including the standard
basis ∣ψ0

j⟩, are performed, resulting in a total of ((d + 1)d)2 because
there are d + 1 MUBs each containing up to d independent states.
Finally, the measured results are then used to find the density matrix
using maximum-likelihood just with the qubit state projections. In
Ref. 184, it was reported that up to 2d + 1 measurements can be
discarded, therefore leaving a total of d4 measurements. For exam-
ple, the authors show that for d = 5 dimensional entanglement, they
only require N = 625 measurements, which is much lower than the
N = 2025 measurements that are required for projections onto
multiple 2 dimensional Hilbert spaces.

C. Fidelity and purity
To characterize the quality of the generated states, we can use

some of the measures that were introduced in Sec. III. For example,
we can characterize how similar the measured density matrix is to
our desired one by using the state fidelity in Eq. (12), but rewritten
here as F = (Tr (

√√ρTρ
√ρT))

2
, where ρ is the measured density

matrix and ρT is the target density matrix. The fidelity evaluates to
0 for distinct (non-equivalent) density matrices and 1 for identical
density matrices. Here, the density matrices we reconstructed were
compared to maximally entangled states in the same dimensions,
i.e., ∣1⟩∣ − 1⟩ + ∣ − 1⟩∣1⟩ for d = 2 and ∣1⟩∣ − 1⟩ + ∣0⟩∣0⟩ + ∣ − 1⟩∣1⟩ for
d = 3, corresponding to the density matrices in Figs. 15(c) and
15(d), respectively. The fidelity was measured as f = 0.98 ± 0.01 and
f = 0.92 ± 0.01 for our d = 2 and d = 3 dimensional states, respec-
tively, showing that the reconstructed states are similar to the
maximally entangled states we desired.

Furthermore, the degree of the mixture in the states can be
quantified from Eq. (15) via the linear entropy (SL) or Von Neu-
mann entropy. Accordingly, the purity of the state can be computed
from 1 − SL, producing values equal to 1/d for mixed states and 1

for pure states. For our measured density matrices in Figs. 15(c) and
15(d), the linear entropies are SL = 0.01 ± 0.02 and SL = 0.11 ± 0.07
for d = 2 and d = 3, respectively. The corresponding purities are thus
1 − SL = 0.99 ± 0.02 and 1 − SL = 0.89 ± 0.07, showing that the states
are similar to maximally entangled states and possess a high level of
purity.

D. Toward fast and efficient witness
and quantum measures

In the techniques, we have presented so far, we chose the
dimensions of the state we wanted to probe (in the case of the Bell
measurement), or we needed to reconstruct the full density matrix
(tomography) of the system in order to extract the purity or fidelity
of the state. However, the state reconstruction can be a tedious
process because the measurement complexity can scale to d4 for
quantum systems where each photon occupies d dimensions.

Recently, many alternative techniques have been devel-
oped to characterize high-dimensional quantum states, including
approximating the density matrix via quantum state tomogra-
phy techniques that incorporate self-guided approaches to state
reconstruction,185,186 or using a mutually unbiased basis to com-
pute higher dimensional entanglement witnesses.28 The witness’s
approach attempts to establish a lower bound on the fidelity of the
quantum state by mapping the state onto a maximally entangled
state with a Schmidt rank k. To see how the technique works, we
first define the operational definition of the Schmidt rank,28 where
we find some positive integer k that satisfies

F(ρ,Φ) ≤ Bk(Φ), (57)

where ρ is a d dimensional density matrix for a two photon state,
∣Φ⟩ = ∑k

j=1 γ j ∣ j⟩∣ j⟩, F(ρ,Φ) = Tr(ρ∗∣Φ⟩⟨Φ∣) is the fidelity of the
state with respect to a maximally entangled state and the parameter
Bk(Φ) = ∑k

j ∣γ j ∣
2. For a maximally entangled state, Bk(Φ) = k/d.

Therefore, one finds the lower bound of the Schmidt rank k − 1 when
F(ρ,Φ) > Bk(Φ).28,68 The authors in Ref. 28 demonstrated that one
can obtain the Schmidt rank using at least two mutually unbiased
bases and used it to characterize pixel entanglement in the above
d = 90 dimensions.

In previous work,131 we also introduced a method for char-
acterizing the purity and dimensionality (effective dimensions and
Schmidt rank) with d/2 measurements for noisy isotropic states in
Eq. (11). The technique estimates the size of the Hilbert space of the
photons (d) as well as the purity of the state p by performing a set of
local projective measurements that return periodic detection prob-
abilities with visibility that is dependent on the dimensions of the
state. Because d and p are parameters that determine the isotropic
state, the fidelity can also be estimated from p using

Fp =
p(d2

− 1) + 1
d2 . (58)

This means that for a state with an effective dimensionality of
d, the Schmidt rank is given by dent ≈ dFp.28 This procedure was
used to characterize entanglement in a state defined in d = 100
dimensions.27

The benefit of having access to such measurement techniques
is that key information needed for quantum information processing
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protocols, such as the information capacity of quantum states and
the allowed error bounds in secure communication systems, can
be estimated quickly without wasting resources and increasing
measurement times.

VI. EXAMPLE APPLICATIONS
A. Quantum key distribution
1. High dimensional BB84 protocol

One of the emerging key applications of structured light is
in the area of quantum key distribution (QKD). Protocols such
as the BB84 (prepare and measure)46 or the E91 (entanglement
based)198 protocols were designed to replace computationally dif-
ficult problems to maintain secrecy in communication channels.
This is because the rise of quantum computing algorithms might
compromise traditional key generation techniques that may rely
on difficult problems such as factoring.199 QKD is superior in that
it is provably secure thanks to the uncertainty principle and no-
cloning theorem,200 making the QKD protocols robust against an
eavesdropper that is armed with unlimited resources.

Here, we will mainly focus on the prepare measure protocol,
where photons are encoded and transmitted by Alice and detected
at the receiver by Bob. Following the implementation of these pro-
tocols with polarization qubits, it was later realized that polarized
photons could only transport 1 bit of information and, therefore,
more efforts were focused on generalizing the protocol to higher
dimensions. Once the theoretical framework was in place,66 adap-
tations of the protocol were implemented beyond qubit encoding
using alternative degrees of freedom. Several experiments were

reported21,35,36,131 that made use of structured light patterns encoded
with OAM. We will describe, in a tutorial style, how the prepare
measure protocol is executed with quantum structured light.

Using the OAM basis, Alice and Bob can agree on a set of
basis modes, ∣Ψj⟩ ∈ {∣ℓ1⟩, ∣ℓ2⟩, . . . , ∣ℓd⟩}, that have d independent
states. Subsequently, they select a second set of basis modes ∣Φj⟩,
that are mutually unbiased to the standard basis. The two bases
must satisfy the relation ∣⟨Ψ∣Φ⟩∣2 = 1/d. For a given d dimensional
basis, there are at most d + 1 mutually unbiased bases to choose
from.197

For example, in three dimensions, we can use the basis modes
{∣ℓ1 = −1⟩, ∣ℓ2 = 0⟩, ∣ℓ3 = 1⟩}. The corresponding mutually unbi-
ased basis can be found in the equally weighted superposition
states,

RRRRRRRRRRR

Φk⟩ =
1
√

d

d

∑
j=1

ak j

RRRRRRRRRRR

Ψ j⟩, (59)

where weightings, akj, for each state can be found from the row
vectors of the matrix

⎛
⎜
⎜
⎜
⎜
⎝

1 1 1

1 ω ω2

1 ω2 ω

⎞
⎟
⎟
⎟
⎟
⎠

, (60)

where ω = ei2π/d. There are two other matrices that can be used to
form the MUB in d = 3 (see Ref. 35). We show the corresponding
modes formed from our OAM superposition basis in Fig. 16(b) for
the spatial basis of {∣Ψj⟩} (top panel) and {∣Φj⟩} (bottom panel)

FIG. 16. Quantum key distribution with
structured light. (a) Alice prepares a
state on a randomly chosen basis, and
Bob can measure the said state on a
basis that he chooses randomly as well.
(b) The states they choose must be
selected from a pair of mutually unbi-
ased bases {∣Ψ⟩j}, {∣Φ⟩j}, which in
this example, we have chosen to be
comprised of orthogonal spatial states
∣Ψ⟩ ∈ {∣ − 1⟩, ∣0⟩, ∣1⟩} and superposi-
tion states ∣Φk⟩ = 1

√

3
∑3

j=1 ak j ∣Ψ j⟩. (c)
The overlap matrix shows orthogonal-
ity between states on each basis but
the non-zero overlap between pairs of
states taken from both bases. (d) The
key generation scheme starts with Alice
preparing a state on a randomly cho-
sen basis and Bob performing a mea-
surement on another randomly chosen
basis. They then sift through all the
measurements and discard all those in
which the preparation and measurement
bases were not correlated. The remain-
ing measurements they keep as their
key.
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modes and demonstrate in Fig. 16(c) that states within the same
basis are orthogonal while the calculated overlap for states taken
from mutually unbiased bases is non-zero, as expected. Figure 16(d)
shows how a typical QKD experiment is performed. After Alice
and Bob have agreed on the encoding basis (and its correspond-
ing MUB), Alice encodes states that are randomly chosen from
the {∣Ψj⟩} and {∣Φj⟩} bases, while Bob randomly selects the basis
to measure the received photon with. Each state that Alice has
selected is mapped onto an alphabet, say {1, 2, 3} that will encode
the message (M). After all the photons have been measured by Bob,
Alice announces the basis she prepared the photon on, while Bob
announces whether he chose the same basis. They then discard the
cases where the bases do not correlate and thereafter remain with the
sifted key. The channel is still secure because the states themselves
were not announced.

2. Security analysis
The key they remain with can be further characterized to test

for eavesdropping and to perform error correction. First, they have
to check whether the key has no imperfections. They proceed by
measuring the quantum bit error rate (Q)201 by exchanging a frac-
tion of the transmitted key and checking whether they are identical.
Depending on the action of the channel, Û, the bit error rates (Q)
can be computed from the two measurement bases as201

QΨ = 1 −
1
d

d

∑
i=1
∣⟨ΨBob

i ∣Û∣Ψ
Alice
i ⟩∣

2, (61)

QΦ = 1 −
1
d

d

∑
i=1
∣⟨ΦBob

i ∣Û∣Φ
Alice
i ⟩∣

2, (62)

each basis. The second term in each of the equations quantifies the
fidelity of each measurement basis (as discussed in Sec. III A). Given
the average error rate, Q = 1/2(QΨ +QΦ), and the corresponding
average fidelity (F = 1 −Q), they can estimate the mutual infor-
mation (IAB) in the channel from Eq. (13). The highest achievable
mutual information is given by Imax

AB = log2(d) for a d dimensional
basis. While mutual information is a good measure for character-
izing the channel, it is imperative to also estimate the amount of
information that can be obtained by an eavesdropper. Assuming that
the eavesdropper has a cloning machine that can make duplicates of
the transmitted photons, then the amount of information that the
eavesdropper can obtain is66

FE(d, Q) =
1
d
(1 + (d − 2)Q + 2

√
(d − 1)Q(1 −Q)), (63)

which scales with 1/d, showing that the eavesdropper introduces
more errors into the key as the encoding dimensions are increased.
Accordingly, the maximum cloning rate can be (d − 1)/d. Using our
formulas for mutual information, it can be shown that the mutual
information shared between Alice and Eve,66

IAE(d, Q) = log2(d) + (FE −Q)log2(
FE −Q
1 −Q

)

+ (1 − FE)log2(
1 − FE

(d − 1)(1 −Q)
). (64)

Because the cloning fidelity is limited to (d − 1)/d, an eavesdropper
extracts less amount of key bits for higher dimensional encod-
ing ensuring optimal secrecy for larger encoding dimensions (d).
Finally, given the error rates, Q, the lower bound on the secure key
generation rate can be estimated from

R(d, Q) = log2(d) + 2(1 −Q)log2(1 −Q) + 2Qlog2(
Q

d − 1
), (65)

which must be checked to ensure that the channel is secure and
allows for forward error correction202 by ensuring that R(d, Q) > 0.
Figure 17 shows the secure key rate as a function of the error rates
for dimensions d = 2, 3, 4, 8, and d = 16, demonstrating that QKD
allows for higher key rates with increasing dimensions. Further-
more, we also see that QKD is tolerant to larger errors for higher
dimensional bases; the key rate decays less rapidly for higher dimen-
sional states than for lower ones. For example, for d = 2, we see that
R(2, Q) = 0 for Q ≈ 0.11, while for double the dimensions (d = 4),
R(4, Q) = 0 is only reached at a higher error rate of Q = 0.19. This
tolerance appreciates with increasing dimensions, making higher
dimensional encoding with structured light a good candidate for
QKD due to the abundance of encoding dimensions. So far, success-
ful demonstrations have been reported in transmission media such
as optical fiber (d = 437,135), free-space (d = 4,721,36), and underwater
channels.133

To realize the full potential of using higher dimensional QKD
with spatial modes, several improvements are needed for cur-
rent implementations. This includes having more efficient photon
sources, efficient and fast modulation techniques for spatial mode
encoding, and detection methods that are fast, deterministic, loss-
less, and resilient to perturbations in complex channels (see ref-
erences focusing on turbulence203 and optical fiber204). One main
challenge is improving the measurement step due to increasing mea-
surement complexity for higher dimensional modes. For example,
because 2 × d detectors are needed for d dimensional states, filter
based techniques, i.e., measuring one mode at a time, are commonly
used to reduce costs as well as avoid building complicated setups
that require many optical elements. However, this reduces the per-
formance by a factor of 1/d. To overcome this limitation, spatial

FIG. 17. Secure key rate. Secure key rates (bits per photon) for higher dimensional
QKD as a function of the error rates (Q) for several d-dimensional encoding bases.
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mode sorting using two refractive optical elements36,117,118,120,205 is
being incorporated into the detection step (see the section on spe-
cial optics, Sec. IV f). These techniques map the desired modes onto
spots that can be easily measured with detector arrays. Recently,
multi-plane light converters (MPLCs) applied to classical structured
light detection169 are showing promise with recent demonstrations
extending to the quantum regime.206

B. Teleportation
A building block holding potential for developing quantum

technology is quantum teleportation. Having received much atten-
tion since the seminal paper by Bennett et al.,207 the protocol
derives from the idea of transporting an entity between two distant
points without it traveling or existing in the connecting distance. In
this technique, the entities in question are states, which have been
represented in many different systems from nuclear magnetic res-
onance208 to atomic ensembles,209–212 solid state systems,213–216 and
trapped atoms217–221 along with photons, where degrees of freedom
such as time,222–224 path,41,42 polarization,47,225–230 or structured
patterns20 have been exploited.

Physically implementing teleportation has garnered much
investigation due to the fundamental features governing it. We may
understand this by looking at the general protocol. Using the pre-
vious convention of Alice and Bob, where Alice is the sender and
Bob the receiver, Alice prepares a maximally entangled state with
2 photons, B and C, in Fig. 18. She then sends one (B) to Bob,
creating a channel where quantum mechanical correlations now
exist between them. In the ideal case of a 2-level discrete vari-
able system, these maximally entangled qubits form one of the Bell
pairs,231 e.g.,

FIG. 18. Concept of spatial teleportation. Initially, a pair of entangled photons is
shared between Alice (particle C) and Bob (particle B), establishing an entangle-
ment channel. A third particle A containing an unknown or prepared state to be
teleported is then mixed with Alice’s particle. Alice then performs a measurement
in an entanglement or “Bell” basis of A and C. This Bell projection collapses the
entanglement between particles A and B while simultaneously entangling photons
A and C as well as destroying the state of photon C. Alice then transmits classi-
cal information to Bob about the Bell measurement projection ( j), allowing him
to correct for any unitary rotation on the state being teleported (Uj) and realiz-
ing teleportation. Physical mixing of A and C may be realized through either a
beam-splitter (BS) or a non-linear crystal (NC).

∣Φ+⟩CB =
1
√

2
(∣0⟩C∣0⟩B + ∣1⟩C∣1⟩B). (66)

A third photon A, with an unknown state ∣Ψ⟩A, possesses the infor-
mation that needs to be transferred. Together, the three photons
occupy the state

∣Ω⟩ABC = ∣Ψ⟩A ⊗ ∣Φ⟩CB. (67)

By performing a joint quantum measurement or Bell detection232–234

with photons A and C, photon B is projected onto the state

∣ψ⟩B = P j ∣Ψ⟩A, (68)

imprinted with the unknown state of photon A but modified by the
unitary Pj. Here, Pj ∈ {σ0, σ1, σ2, σ3} is a Paulie operator [as defined
in Eq. (52)].

Before the Bell measurement, photons A and C could be
thought of as being in a superposition of every possible entangled
combination. For each possible entangled state, Bob’s photon has a
form of the carrier’s state, each with a unitary phase variation related
to each entangled state that A and C might realize. A measurement
of photons A and C on this basis then forces them to realize one of
the entangled states. As a result, Bob has the teleported state within
the unitary rotation resulting from the projective measurement. To
retrieve the state, ρ, Alice then classically communicates the out-
come of the Bell detection, j, to Bob such that the unitary correction,
Pj, can be applied, and the state has thus been successfully tele-
ported to Bob. The required classical communication then results
in excluding the protocol from communication faster than the speed
of light. Consequently, by mixing one of the entangled particles with
that of a secondary entity carrying an unknown state and project-
ing them onto an entangled superposition, the unknown state can
be conveyed without knowing or measuring it. As there is no direct
observation of the state being sent, the superposition, as well as all
the correlations, are maintained, preserving both the anonymity and
any quantum nature.

As a result, teleportation can be exploited through a wide
range of applications. For instance, it is an active component in
the development of quantum information science,231,235–237 with the
conceptual scheme forming a fundamental step in formal quantum
information theories, and its physical process forms a basic build-
ing block toward the development of many quantum technologies,
allowing information exchange protected against eavesdropping.238

Quantum technologies such as quantum repeaters,239 measurement-
based quantum computing240 as well as quantum gate teleporta-
tion241 derive from the quantum teleportation protocol, and it may
be extended to the idea of a quantum network.242

Significant focus and progress have been given to extending
the distance and fidelities243 at which the protocols may be exe-
cuted across both fiber222,224,225,244,245 and free-space229,230,246 with
efforts extending to a low orbit satellite.247 These advances bring
forward the practicality of implementing large quantum networks,
which can then form a quantum internet.242,248,249 Only recently,
however, has progress been made toward physically increasing the
dimensionality of the states that can be sent using this protocol. This
requires utilizing a basis of maximally entangled states and a unitary
operator basis, {U j}, whereby tr(U†

i U j) = δi, jd,250 so that the pro-
tocol can be extended beyond 2 dimensions and designed for any
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finite-dimensional Hilbert space of dimension, d. Here, the protocol
remains similar to that of the 2-dimensional case, with Pj changed to
U j and d2 possible outcomes to be communicated classically.

While theoretical protocols and proposals have been
suggested,250,251 this has proven difficult to implement phys-
ically, not from a lack of available properties to use as high
dimensional states but rather from difficulty in mixing the carrier
and entangled particle such that high-dimensional Bell projections
can be made. Consequently, the limiting factor has been the black
box in Fig. 18 to which two emerging solutions have been recently
realized.

The first retains the traditional linear mixing tool where the two
inputs are incident on different ports of a beam-splitter, and corre-
lation measurements at the outputs allow one to select out a Bell
state and thus render teleportation. Here, Refs. 41 and 42 exploit the
path degree of freedom to realize three-dimensional teleportation,
marking the first demonstrations to break the high-dimensional bar-
rier. Previously, this was not achieved as linear optics is not able to
distinguish d > 2 Bell states alone.252 With the introduction of addi-
tional ancillary photons to the projection measurements, however,
the degeneracy may be broken.252,253 Refs. 41 and 42 subsequently
constructed setups to achieve this with a scaling of d − 2 additional
single photons and log2(d) − 1 additional pair, respectively. The
demonstrations here remained in three dimensions, however, as this
quickly becomes resource intensive and practically complex as d
increases. It may be further noted that an intrinsic bound on effi-
ciency exists with using a beam-splitter, as not all the Bell states may
be detected and thus projected onto. Nevertheless, the schemes rep-
resent implementable high-dimensional teleportation of quantum
states.

The second approach instead utilizes non-linear
principles87,254,255 to mix the carrier and channel photon. Here,
instead of the linear element, a non-linear crystal is used in
reverse.43,256 Where before, one pump photon produced two entan-
gled daughter photons, now two inputs (the carrier and channel
photons) mix in the crystal such that an up-converted photon
shares the properties and energy of the inputs. The upconverted
photon thus forms a superposition of correlations that can be the
projected onto the crystal by measurement and thus realize the
necessary Bell projection. This can be understood using OAM as
an example, with the projection of the upconverted photon onto
the ℓBell = 0 state. From Eq. (23), we know that a pump photon of
ℓp = 0 generates ℓB = −ℓC. When using the process in reverse, the
same conservation rules apply, such that projection onto ℓBell = 0
results in coincidences only when ℓA = −ℓB = ℓC. It follows then
that for the coincidences detected, Bob’s photon must have the
same state as A. Projection onto a different ℓBell then only requires
a unitary ℓ-related rotation on Bob’s side, as was demonstrated
in Ref. 256.

Here, the limitations in terms of dimensionality are only
dependent on the capacity of the entanglement resource and
the supported overlap resolution in the Bell projection crystal.
To this end, the dimensions of the supported modes may be
determined by43

K =
[∫ T2

(qA, qB)d
2qAd2qB]

2

∫ [∫ T(qA, qC)T(qC, qB)d
2qC]

2
d2qAd2qB

, (69)

where

T(qA, qB) = ∫ ψ∗UC(qA, qC)ψ SPDC(qC, qB)d
2qC, (70)

and, as described in Sec. IV A 2, qi represents the transverse wave
vectors of photon i, ψSPDC is the SPDC wavefunction, and ψUC
is the up-conversion wavefunction, which is the SPDC modeled
reciprocally.

Accordingly, teleportation in dimensions significantly exceed-
ing three was demonstrated.43,256 Interestingly, this approach holds
versatility in that the system supports spatial modes as a whole,
such that various bases could be used, ranging from OAM states
and arbitrary superpositions thereof43 to pixels states256 without
adjustment. A point to note here, however, is that due to the low
efficiencies associated with the non-linear process, the carrier is
forced to be in a bright coherent state, such that enough single
photons are present that the probability of upconvertion is large
enough. As such, the nature of the carrier is classical until sig-
nificant improvements in efficiency result, leading to this being
called stimulated teleportation. A main consequence is that the tele-
portation technique is now limited in that correlations cannot be
teleported, as this is a feature of quantum carriers.257 Nonetheless,
it has facilitated a significant development in that high-dimensional
teleportation exceeds three dimensions several times over as well
as offering on-demand teleportation across the spatial mode basis
with potential toward quantum entangled states with technological
development.

C. Quantum imaging
1. Ghost imaging protocol with structured
pixel modes

It is known that the spatial correlations between signal and
idler photon pairs produced by SPDC can be used within a quantum
imaging system.91,258–260 Image information is revealed by the corre-
lations between the signal and idler photons and is not present in the
detection of each individual photon. Fundamental to this approach
to imaging, widely known as ghost imaging, is that the output plane
of the NC in which the down-conversion process occurs is imaged
such that each photon (signal and idler) is imaged onto the detector
array and the object [O(r)], respectively. The photons that inter-
act with the object (idler) are collected by a “bucket detector,” i.e.,
a detector with no spatial resolution. This can be a single mode
or multi-mode fiber that is coupled to a single pixel detector. All
that remains is to measure the spatial information of the idler
photon.

Raster scanning was historically used to detect the signal pho-
ton, and the required spatial resolution for the signal photons was
achieved by spatially scanning the transverse plane in the x-y direc-
tion by a scanning fiber.91,261 Following the ghost imaging protocol,
one workaround to a mechanical single-pixel scanning detector was
the introduction of spatial projective patterned masks, such as turn-
ing on a single pixel on a photon modulating device such as an
SLM. The use of a photon modulating device avoids the instabil-
ity caused by a mechanical scanning fiber. The natural choice would
be to construct a small detector scanning system by using single-
pixel masks to accomplish single-pixel scanning. Employing a single
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pixel detector, however, considerably decreases the collection effi-
ciency and results in an increase in the time required to reconstruct
the image (extended integration times per mask are required),53 i.e.,
the time spent on a single position on the transverse plane is con-
siderably more to detect enough photons to establish a signal; if this
is not performed, the image quality is compromised. Instead, 2-D
patterned masks were developed that consist of pixels judiciously
turned on and off and distributed across a grid of a pre-determined
size (determined by the SLM screen size). Here, the signal photons
are subsequently projected onto patterned masks, Pk(r), where k
indices the masks, i.e., k = 1, 2, . . . , N. Given that the photons are
produced by SPDC, the measured coincidence events for each kth
projection can be estimated from

Ck = ∣∫ ψsi(r)O(r)P∗k (r)d
2 r∣

2
. (71)

Here, ψsi(r), is the joint probability function of the signal and idler
photons in the near field.

After completing the sequence of N measurements, the detec-
tion probabilities (Ck) are subsequently used to reconstruct the
object. To achieve this, the second order coherence function is
computed from262

I(r) =
1
N

N

∑
k=1
[Ck − ⟨Ck⟩N]Pk, (72)

where ⟨⋅⟩N is the ensemble average over the detection probabilities.
Example reconstructions are shown in Fig. 19(b). The masks that are
commonly used for the projections can be formed from pixel states

that are discussed in Sec. II B. Here, we can describe the projection
states as

∣Pk⟩ =∑
j

p jk∣r j⟩, (73)

where ∣rj⟩ maps onto a pixel mode located at rj = (xj, yj), with
the index j labeling the said pixel mode. Accordingly, the corre-
sponding mask is Pk(r) = ⟨r∣Pk⟩. There are several ways to choose
the weightings pjk. To construct these projections, one can choose
between using (i) uncorrelated binary random masks or synthesis-
ing masks that are constructed from an (ii) orthogonal set of pixel
modes.

For binary random masks, each pixel is randomly assigned a
value of either 0 or 1. In this way, the masks contain randomly dis-
tributed binary pixels that are either turned on or off.263 In the top
panel of Fig. 19(b), we show examples of random patterned mask
types used in a typical ghost image reconstruction. A drawback is
that a large number of patterns are required (2N2 or more, where
N ×N is the number of pixels in the image) to reconstruct an image
that is noisy and, therefore, of poor quality.264 Small improvements
can be seen if half the pixels in each pattern are activated.265

In the bottom panel of Fig. 19(b), we show an alternative set
of masks that can be formed from the family of Walsh–Hadamard
basis masks that constitute an orthogonal basis.266,267 Each element
is generated from the Walsh–Hadamard matrix transform268 of spe-
cific order N where the number of pixels making up the image is N2.
The Walsh–Hadamard transform is commonly used for recording
spatial frequencies,269 or for multiplexing the direction of the illumi-
nation of an object.270,271 Walsh–Hadamard masks are generated by

FIG. 19. Conceptualization of a quan-
tum imaging. (a) One photon from a
pair of spatially entangled photons inter-
acts with an object and is collected by a
detector without spatial resolution, while
the photon that does not interact with the
object is spatially resolved. When both
photons are detected in coincidence, an
image of the object is reconstructed.
(b) The image [I(x, y)] is reconstructed
as a linear combination of each pat-
terned mask [Pi(x, y)], weighted by
the detected coincidences (ci). The top
panel shows an example of image recon-
struction by the random basis, while the
bottom panel is an example of image
reconstruction by the Hadamard basis.
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extracting the Walsh functions from the Walsh–Hadamard matrix
of order N. The masks can be chosen so that

Pk(r) ∈ {
1
√

2
(Wn ⊗W⊺

m + IN2)(x, y), m, n = 1, 2, . . .N}. (74)

Here ⊗ is the outer-product; the indices m and n label the corre-
sponding columns of the Nth order Walsh–Hadamard transform
that is used to construct the kth mask. The resulting outer-product
is added to the N2-dimensional identity matrix so that the normal-
ized mask has pixels that scale from 0 to 1. Finally, the matrix is
re-sampled to fit onto the SLM [defined in cartesian coordinates
(x, y)]. The bottom panel of Fig. 19(b) shows an example of an image
reconstruction with the Walsh–Hadamard mask type.

The mask resolution, independent of the type of mask chosen
to spatially resolve the signal photons, will determine the resolu-
tion at which the object will be imaged. A higher resolution results
in a larger number of basis elements and, therefore, an increased
number of masks is needed to reconstruct the image. Increasing the
resolution has direct consequences for the reconstruction time; the
number of Walsh–Hadamard masks required to form a complete set
scales as N2. Specifically, for a complete or general image solution on
the Walsh–Hadamard basis, N2 masks are required. Although N2

masks are required for a general image solution, it has been shown
that it is possible to acquire image information up to 10× faster with
the use of smart algorithms.272,273

Masks are generated as a pre-measurement step, i.e., they are
generated prior to starting the experiment and stored in memory
or in a local directory. Many programming languages can be used
to generate the masks as they are defined earlier. Programming lan-
guages often come with native functions, allowing the user quick and
easy mask generation. As an example, in the MATLAB program-
ming language, by calling the function Hadamard(N), a Hadamard
matrix of order N is generated, where N defines the number of pix-
els in the mask. Similarly, to generate a random mask, one would use
rand(N,N) in MATLAB.

2. Resolution limits for ghost imaging
with SPDC photons

Importantly, one must assess the resolution limit of the quan-
tum imaging system to determine the number of available effective
pixels for image resolution. In a quantum imaging system, the res-
olution of the image (or the number of pixels the system is able to
resolve) is limited by the point spread function (PSF) of the optics
comprising the spatially resolving detector which is further reduced
by the strength of the spatial correlations inherent in SPDC.274 As
aforementioned, the uniqueness of quantum imaging lies in choos-
ing whether one measures the position or momentum correlations
between the signal and idler photons in a single imaging setup. Here,
we present the resolution limit calculation for the measurement of
the momentum anti-correlations as measured in the far field. The
strength of the momentum anti-correlations is set by the momentum
uncertainty in the pump beam, which is controlled by the diameter
of the pump mode field. Accordingly, the position correlation radius
(as measured in the far field) between the signal and idler photons is
given by274

σx ≈ f
2λp

πwp
, (75)

where f is the effective focal length of the Fourier-transform lens,
λp is the wavelength of the pump beam, and wp is the waist of the
pump beam. In Ref. 274, the authors postulate that irrespective of
the resolving power of the optical system, this correlation sets the
resolution limit, which cannot be exceeded by the quantum imaging
system, while the size of the pump beam sets the resolution. The field
of view (FOV) of the imaging system is set by the phase matching
imposed by the length of the chosen NC,274

FOVx ≈ f

√
λp

L
, (76)

where L is the length of the chosen NC. It is, therefore, possible to
infer that a limit on the number of resolution cells available for ghost
imaging is generated by the SPDC,

V = (
FOVx

σx
)

2
≈
π2w2

p

4Lλp
. (77)

This number corresponds to the limit of the number of effective
pixels in the reconstructed ghost images that are resolved due to
the properties of the SPDC. V is also the Schmidt number of the
entanglement in the spatial basis.

3. Structured light in quantum imaging
The quantum imaging approaches we discussed in this tutorial

used structured light modes in the form of patterned pixels encoded
on SLMs as part of the measurements. Interestingly, spiral phases
that are reminiscent of OAM modes, as well as binary phase steps
reminiscent of HG modes, have also been incorporated to improve
the performance of phase contrast images in quantum ghost imaging
experiments with single pixel scanning.22 Recently, it has also been
demonstrated that the necessary information for phase retrieval is
naturally embedded in the correlation measurements formed from
traditional patterned pixels, as detailed earlier.275

While these projective approaches that make use of struc-
tured pixels are cost effective, quantum imaging with single photon
sensitive cameras has recently taken center stage (see Refs. 276
and 277), making it easier to execute quantum imaging experi-
ments. Recent approaches involve using quantum sources (mainly
SPDC photons) to illuminate objects and measure the spatially and
temporally modulated photons using single photon cameras.278–280

In addition, these cameras have also been used for performing
fundamental tests of quantum mechanics (spatial Bell-inequality
tests,281,282 spatial quantum interference283) and for characterizing
quantum structured light (spatial-momentum entanglement wit-
nessing,284 OAM entanglement state tomography285). Entanglement
sources beyond single degrees of freedom, i.e., hyper-entanglement
being the simultaneous entanglement of multiple degrees of free-
dom (polarization-spatial, in this case), have been used for quantum
holography.286

On the other hand, interaction free (see early papers on this
topic287–289) imaging approaches are becoming prevalent, where
single photon interference is used as the main tool for imaging trans-
parent objects.290 Alternatively, image formation can be achieved
through quantum interference,291 i.e., using the Hong–Ou–Mandel
interference effect. While these techniques make use of linear opti-
cal elements to achieve the interference, the authors in Ref. 292
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used multiple nonlinear crystals, inducing coherence between pump
and signal photons that share a common idler mode, allowing the
transfer of information from signal to idler through SPDC293,294 (see
Ref. 295 for a detailed tutorial). Here, the degrees of freedom that are
manipulated are the transverse spatial and wavelength/frequency of
photons, demonstrating superb control of quantum information in
an imaging experiment by exploiting nonlinear optics.

VII. CONCLUDING REMARKS
In this tutorial, we have outlined the basic theory behind realiz-

ing high-dimensional quantum states on the basis of spatial modes.
We have explained with practical examples how to get started with
the experiment, how to prepare and measure quantum states, and
finally, how to use this as a resource in quantum information pro-
cessing and imaging. Rather than a comprehensive monograph, it is
a quick guide that serves as a useful starting point for both students
and new researchers in the field. As such, we have used common
“vanilla” forms of experiments as a means to convey the message, for
example, using SPDC as the source of entangled photons and OAM
as the basis for measurement. We stress that the state-of-the-art is far
more versatile and encourage the interested reader to explore more
widely for an advanced treatment beyond this tutorial.
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