Kondo physics has long been interesting for studying correlated topology in isolation, as it occurs in heavy fermion compounds where myriad phenomena are well-separated in energy. We introduce magnetic topological Kondo semimetal phases of matter into the literature in this work to advance the understanding of correlated topological semimetal physics by studying a layered three-dimensional heterostructure in which two types of Kondo insulators are stacked alternatingly. In the heterostructures considered, one of these Kondo insulators is SmB6, a potential topological Kondo insulator, and the other one is an isostructural Kondo insulator AB6, where A is a rare-earth element, e.g., Eu, Yb, or Ce. We find that if the latter Kondo insulator orders ferromagnetically, the heterostructure generically becomes a magnetic Weyl Kondo semimetal, while antiferromagnetic order can yield a magnetic Dirac Kondo semimetal. We also confirm the realization of the magnetic Weyl (Dirac) Kondo semimetal phase in density functional theory calculations of the heterostructure of SmB6 and EuB6 (CeB6). Our results demonstrate that Kondo insulator heterostructures are a versatile platform for realizing correlated topological semimetal phases.

Topologically protected band structure degeneracies have commanded considerable attention in the last decade1–14 as widespread and relatively practical opportunities to study topology in condensed matter systems, for their great potential for technological applications15,16 and as platforms for table-top experiments on quasiparticles, both analogous to high-energy particles and beyond this framework.17–25 A major undertaking to study these systems in the presence of correlations further suggests far richer physics beyond the weakly correlated regime.26–38 Key challenges in this effort are experimental realization and isolation of this physics for greater understanding and more effective application. These challenges are well-addressed by heavy-fermion systems, which serve as important guides in the study of correlations. Kondo physics has furthermore played a key role in past study of topological matter and magnetic correlations.39,40 In this work, we therefore introduce magnetic topological Kondo semimetal phases of matter into the literature through first construction of both the magnetic Weyl Kondo semimetal and magnetic Dirac Kondo semimetal phases.

We focus on symmetry-protected Weyl and Dirac cones brought about by ferromagnetic and antiferromagnetic order, respectively. While based on a proposal for weakly correlated Weyl semimetals,2 our work goes beyond this proposal by (i) instead deriving topological semimetal phases from topologically non-trivial electronic structures resulting from intrinsically strongly correlated Kondo physics,41 (ii) including the case of three dimensional magnetic Dirac Kondo semimetals, (iii) including realization of both type-I and type-II Weyl/Dirac Kondo semimetal phases, and (iv) utilizing the strong correlations of hexaborides as the sources of requisite magnetic orders as opposed to magnetic dopants.42,43 We note that SmB6 furthermore exhibits evidence of exotic correlated topological surface states,44–48 which could enrich the physics of topological Kondo semimetals constructed from SmB6 surface states. (v) Additionally, we perform density functional theory calculations of the heterostructure of EuB6 (CeB6) and SmB6, confirming the presence of Weyl (Dirac) nodes predicted by tight-binding calculations.

We consider a heterostructure made of periodic stackings of SmB6 and another, possibly magnetic isostructural compound AB6 [see Fig. 1(a)]. The topological properties of SmB6 and AB6 important for realization of topological Kondo semimetals can be realized without taking into account the full multiplet structure of the d- or f-orbitals. We therefore consider a lattice model for a topological Kondo insulator with cubic symmetry49 for the description of the parent compounds SmB6 and AB6:
(1)
Here, cγ,r,s (cγ,r,s) denotes a creation (annihilation) operator for an electron in orbital γ{d,f} with spin s{,} on site r of the cubic lattice, and ·j for j{1,2,3} denotes pairs of first (NN), second (NNN), and third neighbors (NNNN), respectively. The vectors ei connect nearest neighbors in the i{x,y,z} directions. In the middle line of Eq. (1), γ¯=f (γ¯=d) when γ=d (γ=f). The parameters t̃γ(j) stand for jth nearest neighbor hopping integrals, ε̃γ the onsite-energy of γ band, and Ṽ the hybridization between f and d orbitals. The form of the hybridization as a parity-odd hopping term is a consequence of the opposite inversion eigenvalues of the d and f orbitals. Terms containing U govern interactions and reflect the assumption that f electrons locally interact via a Hubbard repulsion, while the d electrons are non-interacting.
FIG. 1.

Heterostructure schematic and key properties of parent compounds. (a) Unit cell of the layered heterostructure consisting of a finite number of layers of each of two isostructural Kondo insulators, here the topological Kondo insulator SmB6 and the trivial narrow-gap insulator AB6. (b) Schematic of the Fermi surface for some chemical potential μ intersecting the three Dirac cones on the (001) surface of SmB6. Bulk electronic structures of the tight-binding models (2) for (c) SmB6 and (d) an example AB6 compound, respectively, arising from the hybridization between flat f bands and dispersive d bands.

FIG. 1.

Heterostructure schematic and key properties of parent compounds. (a) Unit cell of the layered heterostructure consisting of a finite number of layers of each of two isostructural Kondo insulators, here the topological Kondo insulator SmB6 and the trivial narrow-gap insulator AB6. (b) Schematic of the Fermi surface for some chemical potential μ intersecting the three Dirac cones on the (001) surface of SmB6. Bulk electronic structures of the tight-binding models (2) for (c) SmB6 and (d) an example AB6 compound, respectively, arising from the hybridization between flat f bands and dispersive d bands.

Close modal

We consider the case where interactions strongly renormalize band parameters but low-energy excitations are described by well-defined Fermi-liquid quasiparticles. The Fermi-liquid quasiparticles in such a state are then accurately described by a non-interacting Hamiltonian with renormalized parameters49–53  t̃f(j)tf(j)=z2t̃f(j),ṼV=zṼ,ε̃fεf=ε̃f+λ, and U0, while the others remain the same. The additional parameters z and λ are expressed by the self-energy expansion coefficients by z=(1b)1/2 and λ=a/(1b), thus depend on the band parameters of the original Hamiltonian containing the quartic interaction terms between f-orbital electrons. The predominant effect of U is to move the f-electron band closer to the Fermi level, thereby enabling topological band inversion.

To determine which of the possible phases can be realized in the heterostructure, we use the quasiparticle Hamiltonian for a topological Kondo insulator with cubic symmetry, which contains parameters renormalized by the Hubbard U,49 
(2)

To model the heterostructure, we endow the onsite energies εγ,r with a spatial dependence to change their values between the two materials comprising the heterostructure. The parameter εfεd changes the bulk band topology of the translationally invariant model between normal insulator, weak topological insulator, and strong topological insulator.49,54

The heterostructure is then modeled as NTI layers of the topological Kondo insulator SmB6, using the parameter set49  tf(1)=0.1td(1),td(2)=0.4td(1),tf(2)=0.04td(1),td(3)=tf(3)=0,V=0.5td(1),εd=1.76td(1),εf=0.24td(1), where we set td(1)= 100 meV in order to produce the correct band gaps, and NBI layers of a trivial Kondo insulator with the same parameters except for εd=4.02td(1),εf=0.78td(1), corresponding to our example AB6. The bulk band structures of these two parameter sets are shown in Figs. 1(c) and 1(d). The (topological) bandgap of SmB6 is then 24 meV, a value in good agreement with past work.55 For AB6, we choose a bandgap of 84 meV. Additional numerical results on the non-magnetic heterostructure are also provided in the supplementary material.

Ferromagnetic order could emerge via various mechanisms. In this work, we consider two cases: ferromagnetic order in SmB6 or in the trivial Kondo insulator (corresponding to, e.g., ferromagnetic EuB6). We construct phase diagrams showing the number of Weyl cones formed between the two middle bands as a function of the number of AB6 layers and the magnitude of the magnetization for the former case [see Fig. 2(a)] and latter case [see Fig. 2(b)]. Focusing first on the former case, we find four different phases depending on NBI and m, corresponding to 0, 2, 4, and 6 Weyl cones present in the system, which are located along the high-symmetry lines Γ–Z and X–R. Depending on the parameters, these Weyl cones can either be of type I or type II.56,57 A representative band structure for magnetization m=0.25td(1) is shown in Fig. 2(c).

FIG. 2.

Tight-binding calculations for the magnetic Weyl Kondo semimetal phase. Weyl semimetal phases of the ferromagnetic heterostructure. (a) and (b) Phase diagrams indicating the number of Weyl cones between the highest valence and the lowest conduction band for ferromagnetic order (a) in the SmB6 and (b) in the AB6 layers. Here, m is the strength of the magnetization and the number of SmB6 layers is fixed to 2. (c) Band structure of the heterostructure for parameter values corresponding to the black circle in (a). Weyl cones are indicated by black circles. (d) Surface spectral function of the (100) surface for a slab geometry of the heterostructure in (c) at kz=π, showing a chiral mode belonging to a Fermi arc surface state.

FIG. 2.

Tight-binding calculations for the magnetic Weyl Kondo semimetal phase. Weyl semimetal phases of the ferromagnetic heterostructure. (a) and (b) Phase diagrams indicating the number of Weyl cones between the highest valence and the lowest conduction band for ferromagnetic order (a) in the SmB6 and (b) in the AB6 layers. Here, m is the strength of the magnetization and the number of SmB6 layers is fixed to 2. (c) Band structure of the heterostructure for parameter values corresponding to the black circle in (a). Weyl cones are indicated by black circles. (d) Surface spectral function of the (100) surface for a slab geometry of the heterostructure in (c) at kz=π, showing a chiral mode belonging to a Fermi arc surface state.

Close modal

We also compute the spectral function of the heterostructure in a slab geometry, using again the magnetization m=0.25td(1). With the heterostructure stacked in the ẑ direction, we open the system in the x̂ direction and compute the surface spectral function Asurf(ω,ky,kz)=ImTr[G(ω,ky,kz)Psurf], where G(ω,ky,kz) is the Green's function, and Psurf, the projector on one surface layer. This result is presented in Fig. 2(d), where a Fermi arc, a signature of a Weyl semimetal,4 is clearly visible.

We can similarly compute the dispersion, phase diagram, and spectral function for the case of a net magnetization in the trivial Kondo insulator, A=Eu. The same three topologically non-trivial phases—characterized by 2, 4, and 6 Weyl cones, respectively—that appear in Fig. 2(a) also occur in this second phase diagram, shown in Fig. 2(b). They occur over regions in phase space that are comparable in size, indicating the phases are largely unaffected by whether magnetization is derived from the trivial or topological Kondo insulator layers. However, topologically non-trivial regions of the phase diagram Fig. 2(b) are slightly smaller than those of Fig. 2(a), which may be due to the fact that the effective magnetization strength seen by the topologically non-trivial surface states of SmB6 is less than the actual magnetization strength of the trivial Kondo insulator layers.

These results are further supported by a low-energy effective theory of the electronic structure derived in the supplementary material, which illustrate emergence of Weyl nodes in the heterostructure via a mechanism similar to that of Burkov and Balents.2 

We now consider the full heterostructure Hamiltonian with finite magnetization in SmB6 layers corresponding to antiferromagnetic order oriented in the stacking direction. We physically motivate this case as follows: there is evidence of antiferromagnetic order induced in bulk SmB6 by compression.42,43 Also, EuxCa1−xB6, where x = 0.4 and 0.6, was reported to show intrinsic antiferromagnetism below 3 K.58 

For the antiferromagnetic order, we add
(3a)
to the Hamiltonian (2), where r sums over either TI or BI layers depending on the case, and mf,r,sAFM=s(1)i+j+km at r=iex+jey+kez. We take a particular form of md,r,sAFM=0.2mf,r,sAFM if r is in TI layers, and md,r,sAFM=mf,r,sAFM if r is in BI layers, to express compression-based antiferromagnetism in topological Kondo insulator layers dominant in the f orbitals, as well as exciton-based antiferromagnetism that is neither predominantly of d or f orbital character,59,60 respectively. We also add an NNN hybridization,
(3b)
in this section to isolate Dirac cones in the heterostructure bulk, where V denotes the NNN hybridization coefficient, di,i=1,,6, are taken from the set of six directed connections to the NNN sites, {ex±ey,ey±ez,ez±ex}, and d̂i denote the corresponding unit vectors. As representative values, we set tγ(3)=0.16tγ(1) and V=0.2td(1).

Two examples of Dirac semimetal dispersions of the heterostructure are shown in Fig. 3. Both type-I and type-II10 Dirac cones can occur in the full model, shown in Figs. 3(b) and 3(d), respectively. Similarly to the ferromagnetic case, the low-energy effective theory of the electronic structure derived in the supplementary material also supports our numerical findings for the antiferromagnetic case. Notably, the heterostructure has a fourfold rotational symmetry about the z-axis, C4z, that protects Dirac cones on the C4z invariant lines, such as kx=ky=0, as a crossing of two pairs of bands with different C4z eigenvalues.

FIG. 3.

Tight-binding calculations for the magnetic Dirac Kondo semimetal phase. Antiferromagnetic configurations for cases (a) NTI=1,NBI=3,m=1.0 in BI layers, and (c) NTI=3,NBI=1,m=0.5 in TI layers, and corresponding dispersions for the full heterostructure tight-binding Hamiltonian are shown in (b) and (d), respectively. A type-I (type-II) Dirac cone is visible on the M–A high-symmetry line in the BZ in subfigures (b) and (d), highlighted with a black circle.

FIG. 3.

Tight-binding calculations for the magnetic Dirac Kondo semimetal phase. Antiferromagnetic configurations for cases (a) NTI=1,NBI=3,m=1.0 in BI layers, and (c) NTI=3,NBI=1,m=0.5 in TI layers, and corresponding dispersions for the full heterostructure tight-binding Hamiltonian are shown in (b) and (d), respectively. A type-I (type-II) Dirac cone is visible on the M–A high-symmetry line in the BZ in subfigures (b) and (d), highlighted with a black circle.

Close modal

To further support the above-mentioned tight-binding calculations, we calculate the band structure for a heterostructure of SmB6 and EuB6, employing density functional theory (DFT) (additional details of these calculations are provided in the supplementary material). Such band structure calculations are shown in Fig. 4(a) for the 2 × 2 EuB6/SmB6 supercell. We confirm the presence of a Weyl node near the Fermi level along the ΓZ line as expected from the tight-binding calculations, highlighted by a blue box, indicating realization of the magnetic Weyl Kondo semimetal phase in the heterostructure.

FIG. 4.

Density functional theory calculations. Density functional theory calculations of (a) the band structure of the heterostructure of europium hexaboride and samarium hexaboride, with 2 × 2 EuB6/SmB6 supercell and schematic of relevant crystal structure and (b) the band structure of the heterostructure of cerium hexaboride and samarium hexaboride, with 2 × 2 CeB6/SmB6 supercell, and schematic of the relevant crystal structure. The Fermi level in (a) and (b) is highlighted by a red line. A blue box in (a) highlights a Weyl node along the ΓZ line near the Fermi level. A red box in (b) highlights a Dirac node along the M–A line. A green box in (b) further highlights Class I threefold degenerate fermions along the ΓX line.

FIG. 4.

Density functional theory calculations. Density functional theory calculations of (a) the band structure of the heterostructure of europium hexaboride and samarium hexaboride, with 2 × 2 EuB6/SmB6 supercell and schematic of relevant crystal structure and (b) the band structure of the heterostructure of cerium hexaboride and samarium hexaboride, with 2 × 2 CeB6/SmB6 supercell, and schematic of the relevant crystal structure. The Fermi level in (a) and (b) is highlighted by a red line. A blue box in (a) highlights a Weyl node along the ΓZ line near the Fermi level. A red box in (b) highlights a Dirac node along the M–A line. A green box in (b) further highlights Class I threefold degenerate fermions along the ΓX line.

Close modal

We also further support the tight-binding calculations for the magnetic Dirac Kondo semimetal phase by calculating the band structure for a 2 × 2 CeB6/SmB6 supercell. We confirm the presence of a Dirac node in the DFT calculations along the M–A line as shown in Fig. 4(b) corresponding to the magnetic topological Dirac semimetal phase, but further from the Fermi level than the Weyl node in (a).

In addition to the Weyl and Dirac nodes predicted by tight-binding calculations and low-energy effective models, however, we also find additional topologically protected degeneracies near the Fermi level in Fig. 4(b). These are Class I threefold-degenerate fermions with zero topological charge.19,61,62 This illustrates the exceptionally rich phenomenology of magnetic topological Kondo semimetal physics realized through the heterostructure construction and will be explored further in future work.

In conclusion, we introduce magnetic topological Kondo semimetal phases of matter into the literature, showing topological Kondo insulator heterostructures are versatile platforms for the realization of magnetic Weyl and Dirac Kondo semimetal phases. We find ferromagnetism (antiferromagnetism) in the heterostructure generically realizes topologically protected type-I and type-II Weyl (Dirac) cones sufficiently isolated from other states and proximate in energy to the Fermi level to realize type-I and type-II magnetic Weyl (Dirac) Kondo semimetal phases near half filling. Given, in particular, that the magnetic Weyl semimetal phase is the so-called atomic realization of a Weyl semimetal, capable of realizing just two Weyl nodes, our work fills an essential gap in understanding of correlation effects on topological semimetal phases.

We note that thin films of SmB6 have already been grown via molecular beam epitaxy (MBE)63 and Kondo superlattices of other compounds have been grown via MBE for study of quantum criticality.64 Furthermore, evaporation of boron and most rare-earth lanthanides is possible at operating temperatures for effusion cells.65 Negative pressure on SmB6 (lattice constant a= 4.13 Å66,67) due to interfaces with EuB6 (a= 4.19 Å68), YbB6 (a= 4.18 Å69), or CeB6 (a= 4.14 Å70) may also permit the observation of the desired Kondo physics at much higher temperatures of up to 240 K as well as enhancement of one or both parent compound band gaps, given observed effects of tensile strain in SmB6.71 

Since our work was first made public, other later works have considered magnetic topological Kondo semimetal phases,72–74 further supporting our work here introducing the first instances of magnetic topological Kondo semimetal phases of matter.

See the supplementary material for additional information on low-energy effective theory for the heterostructure, phase diagram at zero magnetization, and details of first-principles calculations.

The authors gratefully acknowledge helpful discussions with Jason Hoffman, Manfred Sigrist, Ronny Thomale, Ian Affleck, Marcel Franz, Arun Paramekanti, Victor Galitski, and Piers Coleman. This project was supported by the Swiss National Science Foundation (Grant No. 200021_169061). A.M.C. also wishes to thank the Aspen Center for Physics, which is supported by the National Science Foundation Grant No. PHY-1066293, and the Kavli Institute for Theoretical Physics, which is supported by the National Science Foundation under Grant No. NSF PHY-1125915, for hosting during some stages of this work.

The authors have no conflicts to disclose.

Seulgi Ok: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Software (equal); Validation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). Markus Legner: Methodology (equal); Software (equal). Maia G. Vergniory: Conceptualization (equal); Data curation (equal); Investigation (equal); Methodology (equal); Software (equal); Visualization (equal); Writing – review & editing (equal). Titus Neupert: Conceptualization (equal); Formal analysis (equal); Funding acquisition (equal); Investigation (equal); Methodology (equal); Supervision (equal); Writing – original draft (equal); Writing – review & editing (equal). Ashley M. Cook: Conceptualization (lead); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Supervision (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal).

The data that support the findings of this study are available from the corresponding author upon reasonable request.

1.
H.
Weng
,
C.
Fang
,
Z.
Fang
,
B. A.
Bernevig
, and
X.
Dai
,
Phys. Rev. X
5
,
011029
(
2015
).
2.
A. A.
Burkov
and
L.
Balents
,
Phys. Rev. Lett.
107
,
127205
(
2011
).
3.
S.-M.
Huang
,
S.-Y.
Xu
,
I.
Belopolski
,
C.-C.
Lee
,
G.
Chang
,
B.
Wang
,
N.
Alidoust
,
G.
Bian
,
M.
Neupane
,
C.
Zhang
et al,
Nat. Commun.
6
,
7373
(
2015
).
4.
S.-Y.
Xu
,
I.
Belopolski
,
N.
Alidoust
,
M.
Neupane
,
G.
Bian
,
C.
Zhang
,
R.
Sankar
,
G.
Chang
,
Z.
Yuan
,
C.-C.
Lee
,
S.-M.
Huang
,
H.
Zheng
,
J.
Ma
,
D. S.
Sanchez
,
B.
Wang
,
A.
Bansil
,
F.
Chou
,
P. P.
Shibayev
,
H.
Lin
,
S.
Jia
, and
M. Z.
Hasan
,
Science
349
,
613
(
2015
).
5.
B. Q.
Lv
,
H. M.
Weng
,
B. B.
Fu
,
X. P.
Wang
,
H.
Miao
,
J.
Ma
,
P.
Richard
,
X. C.
Huang
,
L. X.
Zhao
,
G. F.
Chen
,
Z.
Fang
,
X.
Dai
,
T.
Qian
, and
H.
Ding
,
Phys. Rev. X
5
,
031013
(
2015
).
6.
Z.
Wang
,
Y.
Sun
,
X.-Q.
Chen
,
C.
Franchini
,
G.
Xu
,
H.
Weng
,
X.
Dai
, and
Z.
Fang
,
Phys. Rev. B
85
,
195320
(
2012
).
7.
Z. K.
Liu
,
B.
Zhou
,
Y.
Zhang
,
Z. J.
Wang
,
H. M.
Weng
,
D.
Prabhakaran
,
S.-K.
Mo
,
Z. X.
Shen
,
Z.
Fang
,
X.
Dai
,
Z.
Hussain
, and
Y. L.
Chen
,
Science
343
,
864
(
2014
).
8.
S.
Borisenko
,
Q.
Gibson
,
D.
Evtushinsky
,
V.
Zabolotnyy
,
B.
Büchner
, and
R. J.
Cava
,
Phys. Rev. Lett.
113
,
027603
(
2014
).
9.
B.-J.
Yang
and
N.
Nagaosa
,
Nat. Commun.
5
,
4898
(
2014
).
10.
T.-R.
Chang
,
S.-Y.
Xu
,
D. S.
Sanchez
,
S.-M.
Huang
,
G.
Chang
,
C.-H.
Hsu
,
G.
Bian
,
I.
Belopolski
,
Z.-M.
Yu
,
X.
Xu
,
C.
Xiang
,
S. A.
Yang
,
T.
Neupert
,
H.-T.
Jeng
,
H.
Lin
, and
M. Z.
Hasan
, arXiv:1606.07555 (
2016
).
11.
S.-Y.
Xu
,
C.
Liu
,
S. K.
Kushwaha
,
R.
Sankar
,
J. W.
Krizan
,
I.
Belopolski
,
M.
Neupane
,
G.
Bian
,
N.
Alidoust
,
T.-R.
Chang
,
H.-T.
Jeng
,
C.-Y.
Huang
,
W.-F.
Tsai
,
H.
Lin
,
P. P.
Shibayev
,
F.-C.
Chou
,
R. J.
Cava
, and
M. Z.
Hasan
,
Science
347
,
294
(
2015
).
12.
S. M.
Young
and
B. J.
Wieder
, arXiv:1609.06738 (
2016
).
14.
J.
Wang
, arXiv:1701.00896 (
2017
).
15.
D. I.
Pikulin
,
A.
Chen
, and
M.
Franz
,
Phys. Rev. X
6
,
041021
(
2016
).
16.
C. R.
Rajamathi
,
U.
Gupta
,
N.
Kumar
,
H.
Yang
,
Y.
Sun
,
V.
Süβ
,
C.
Shekhar
,
M.
Schmidt
,
B.
Yan
,
S.
Parkin
et al, arXiv:1608.03783 (
2016
).
17.
B.
Bradlyn
,
J.
Cano
,
Z.
Wang
,
M. G.
Vergniory
,
C.
Felser
,
R. J.
Cava
, and
B. A.
Bernevig
,
Science
353
,
aaf5037
(
2016
).
18.
B. J.
Wieder
,
Y.
Kim
,
A. M.
Rappe
, and
C. L.
Kane
,
Phys. Rev. Lett.
116
,
186402
(
2016
).
19.
Z.
Zhu
,
G. W.
Winkler
,
Q. S.
Wu
,
J.
Li
, and
A. A.
Soluyanov
,
Phys. Rev. X
6
,
031003
(
2016
).
20.
T.
Bzdušek
,
Q.
Wu
,
A.
Rüegg
,
M.
Sigrist
, and
A. A.
Soluyanov
,
Nature
538
,
75
(
2016
).
21.
C.-K.
Chiu
and
A. P.
Schnyder
,
Phys. Rev. B
90
,
205136
(
2014
).
22.
L. S.
Xie
,
L. M.
Schoop
,
E. M.
Seibel
,
Q. D.
Gibson
,
W.
Xie
, and
R. J.
Cava
, arXiv:1504.01731 (
2015
).
23.
R.
Yu
,
H.
Weng
,
Z.
Fang
,
X.
Dai
, and
X.
Hu
,
Phys. Rev. Lett.
115
,
036807
(
2015
).
24.
G.
Bian
,
T.-R.
Chang
,
R.
Sankar
,
S.-Y.
Xu
,
H.
Zheng
,
T.
Neupert
,
C.-K.
Chiu
,
S.-M.
Huang
,
G.
Chang
,
I.
Belopolski
et al,
Nat. Commun.
7
,
10556
(
2016
).
25.
B. J.
Wieder
and
C. L.
Kane
,
Phys. Rev. B
94
,
155108
(
2016
).
26.
L.
Lu
,
Z.
Wang
,
D.
Ye
,
L.
Ran
,
L.
Fu
,
J. D.
Joannopoulos
, and
M.
Soljačić
,
Science
349
,
622
(
2015
).
27.
R.-X.
Zhang
,
J. A.
Hutasoit
,
Y.
Sun
,
B.
Yan
,
C.
Xu
, and
C.-X.
Liu
,
Phys. Rev. B
93
,
041108
(
2016
).
28.
A.
Sekine
and
K.
Nomura
,
Phys. Rev. B
90
,
075137
(
2014
).
29.
R.
Lundgren
and
G. A.
Fiete
,
Phys. Rev. B
92
,
125139
(
2015
).
30.
31.
V. V.
Braguta
,
M. I.
Katsnelson
,
A. Y.
Kotov
, and
A. A.
Nikolaev
,
Phys. Rev. B
94
,
205147
(
2016
).
32.
L.-J.
Zhai
,
P.-H.
Chou
, and
C.-Y.
Mou
,
Phys. Rev. B
94
,
125135
(
2016
).
33.
B.
Roy
and
S. D.
Sarma
,
Phys. Rev. B
94
,
115137
(
2016
).
34.
E. C. I.
van der Wurff
and
H. T. C.
Stoof
,
Phys. Rev. B
94
,
155118
(
2016
).
35.
B.
Roy
,
P.
Goswami
, and
V.
Juricic
, arXiv:1610.05762 (
2016
).
36.
H.
Wei
,
S.-P.
Chao
, and
V.
Aji
,
Phys. Rev. Lett.
109
,
196403
(
2012
).
37.
R.
Schaffer
,
E. K.-H.
Lee
,
Y.-M.
Lu
, and
Y. B.
Kim
,
Phys. Rev. Lett.
114
,
116803
(
2015
).
38.
M.
Hermanns
,
K.
O'Brien
, and
S.
Trebst
,
Phys. Rev. Lett.
114
,
157202
(
2015
).
39.
Q.
Liu
,
C.-X.
Liu
,
C.
Xu
,
X.-L.
Qi
, and
S.-C.
Zhang
,
Phys. Rev. Lett.
102
,
156603
(
2009
).
40.
L.
Chotorlishvili
,
A.
Ernst
,
V. K.
Dugaev
,
A.
Komnik
,
M. G.
Vergniory
,
E. V.
Chulkov
, and
J.
Berakdar
,
Phys. Rev. B
89
,
075103
(
2014
).
41.
H.
Chen
,
X.-J.
Liu
, and
X. C.
Xie
,
Phys. Rev. Lett.
116
,
046401
(
2016
).
42.
A.
Barla
,
J.
Derr
,
J. P.
Sanchez
,
B.
Salce
,
G.
Lapertot
,
B. P.
Doyle
,
R.
Rüffer
,
R.
Lengsdorf
,
M. M.
Abd-Elmeguid
, and
J.
Flouquet
,
Phys. Rev. Lett.
94
,
166401
(
2005
).
43.
J.
Derr
,
G.
Knebel
,
D.
Braithwaite
,
B.
Salce
,
J.
Flouquet
,
K.
Flachbart
,
S.
Gabáni
, and
N.
Shitsevalova
,
Phys. Rev. B
77
,
193107
(
2008
).
44.
Y.
Nakajima
,
P.
Syers
,
X.
Wang
,
R.
Wang
, and
J.
Paglione
,
Nat. Phys.
12
,
213
(
2016
).
45.
A.
Thomson
and
S.
Sachdev
,
Phys. Rev. B
93
,
125103
(
2016
).
46.
V.
Alexandrov
,
P.
Coleman
, and
O.
Erten
,
Phys. Rev. Lett.
114
,
177202
(
2015
).
47.
B.
Roy
,
J.
Hofmann
,
V.
Stanev
,
J. D.
Sau
, and
V.
Galitski
,
Phys. Rev. B
92
,
245431
(
2015
).
48.
49.
M.
Legner
,
A.
Rüegg
, and
M.
Sigrist
,
Phys. Rev. B
89
,
085110
(
2014
).
50.
N.
Read
and
D. M.
Newns
,
J. Phys. C: Solid State Phys.
16
,
L1055
(
1983
).
52.
T. M.
Rice
and
K.
Ueda
,
Phys. Rev. Lett.
55
,
995
(
1985
).
53.
G.
Kotliar
and
A. E.
Ruckenstein
,
Phys. Rev. Lett.
57
,
1362
(
1986
).
54.
M.
Dzero
,
J.
Xia
,
V.
Galitski
, and
P.
Coleman
,
Annu. Rev. Condens. Matter Phys.
7
,
249
(
2016
).
55.
T.-R.
Chang
,
T.
Das
,
P.-J.
Chen
,
M.
Neupane
,
S.-Y.
Xu
,
M. Z.
Hasan
,
H.
Lin
,
H.-T.
Jeng
, and
A.
Bansil
,
Phys. Rev. B
91
,
155151
(
2015
).
56.
A. A.
Soluyanov
,
D.
Gresch
,
Z.
Wang
,
Q.
Wu
,
M.
Troyer
,
X.
Dai
, and
B. A.
Bernevig
,
Nature
527
,
495
(
2015
).
57.
Y.
Xu
,
F.
Zhang
, and
C.
Zhang
,
Phys. Rev. Lett.
115
,
265304
(
2015
).
58.
J.-S.
Rhyee
,
B.
Oh
, and
B.
Cho
,
J. Korean Phys. Soc.
44
,
1509
(
2004
); available at https://www.jkps.or.kr/journal/view.html?uid=6156&vmd=Full#n.
59.
S.
Murakami
,
R.
Shindou
,
N.
Nagaosa
, and
A. S.
Mishchenko
,
Phys. Rev. B
66
,
184405
(
2002
).
60.
M.
Zhitomirsky
,
T.
Rice
, and
V.
Anisimov
,
Nature
402
,
251
(
1999
).
61.
H.
Weng
,
C.
Fang
,
Z.
Fang
, and
X.
Dai
,
Phys. Rev. B
93
,
241202
(
2016
).
62.
H.
Weng
,
C.
Fang
,
Z.
Fang
, and
X.
Dai
,
Phys. Rev. B
94
,
165201
(
2016
).
63.
H.
Shishido
,
Y.
Yoneda
,
T.
Yoshida
,
S.
Noguchi
, and
T.
Ishida
,
Phys. Procedia
75
,
405
(
2015
).
64.
T.
Ishii
,
R.
Toda
,
Y.
Hanaoka
,
Y.
Tokiwa
,
M.
Shimozawa
,
Y.
Kasahara
,
R.
Endo
,
T.
Terashima
,
A. H.
Nevidomskyy
,
T.
Shibauchi
, and
Y.
Matsuda
,
Phys. Rev. Lett.
116
,
206401
(
2016
).
65.
J.
Hoffman
, private communication (2019).
66.
J.
Jiang
,
S.
Li
,
T.
Zhang
,
Z.
Sun
,
F.
Chen
,
Z. R.
Ye
,
M.
Xu
,
Q. Q.
Ge
,
S. Y.
Tan
,
X. H.
Niu
,
M.
Xia
,
B. P.
Xie
,
Y. F.
Li
,
X. H.
Chen
,
H. H.
Wen
, and
D. L.
Feng
,
Nat. Commun.
4
,
3010
(
2013
).
67.
S.
Rößler
,
T.-H.
Jang
,
D.-J.
Kim
,
L. H.
Tjeng
,
Z.
Fisk
,
F.
Steglich
, and
S.
Wirth
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
4798
(
2014
).
68.
M.
Kreissl
and
W.
Nolting
,
Phys. Rev. B
72
,
245117
(
2005
).
69.
C.-J.
Kang
,
J. D.
Denlinger
,
J. W.
Allen
,
C.-H.
Min
,
F.
Reinert
,
B. Y.
Kang
,
B. K.
Cho
,
J.-S.
Kang
,
J. H.
Shim
, and
B. I.
Min
,
Phys. Rev. Lett.
116
,
116401
(
2016
).
70.
I. D. R.
Mackinnon
,
J. A.
Alarco
, and
P. C.
Talbot
,
Model. Numer. Simul. Mater. Sci.
3
,
158
(
2013
).
71.
A.
Stern
,
M.
Dzero
,
V. M.
Galitski
,
Z.
Fisk
, and
J.
Xia
, arXiv:1607.07454 (
2016
).
72.
K.
Kuroda
,
T.
Tomita
,
M. T.
Suzuki
,
C.
Bareille
,
A. A.
Nugroho
,
P.
Goswami
,
M.
Ochi
,
M.
Ikhlas
,
M.
Nakayama
,
S.
Akebi
,
R.
Noguchi
,
R.
Ishii
,
N.
Inami
,
K.
Ono
,
H.
Kumigashira
,
A.
Varykhalov
,
T.
Muro
,
T.
Koretsune
,
R.
Arita
,
S.
Shin
,
T.
Kondo
, and
S.
Nakatsuji
,
Nat. Mater.
16
,
1090
(
2017
).
73.
S.
Dzsaber
,
D. A.
Zocco
,
A.
McCollam
,
F.
Weickert
,
R.
McDonald
,
M.
Taupin
,
X.
Yan
,
A.
Prokofiev
,
L. M. K.
Tang
,
B.
Vlaar
,
L.
Stritzinger
,
M.
Jaime
,
Q.
Si
, and
S.
Paschen
, “
Quenching a weyl-kondo semimetal by magnetic field
,” arXiv:1906.01182 (
2019
).
74.
C. Y.
Guo
,
F.
Wu
,
Z. Z.
Wu
,
M.
Smidman
,
C.
Cao
,
A.
Bostwick
,
C.
Jozwiak
,
E.
Rotenberg
,
Y.
Liu
,
F.
Steglich
, and
H. Q.
Yuan
,
Nat. Commun.
9
,
4622
(
2018
).