The science of electronic fluctuations and noise has been one of the most important branches of applied physics. The investigation of noise is essential for the understanding of physical processes in various materials and devices.1–5 Various manifestations of electronic noise are commonly classified into four basic types, which include thermal noise, shot noise, generation–recombination noise, and low-frequency 1/f noise (f is the frequency). Two of these types, thermal and shot noise, have their origin in the random motion of charge carriers, and both have a spectral density that does not depend on frequency. The generation–recombination noise is observed at low frequencies, and its spectral density is described by the Lorentzians associated with the specific charge-trapping states. The low-frequency 1/f noise originates from different fluctuation processes, e.g., in the number of carriers or their mobility or both.6–9 The importance of 1/f noise in electronics has motivated numerous studies on its physical mechanisms and the development of methods for its reduction. However, despite almost a century of research, the 1/f noise research field remains active, and numerous debates continue about its origin and mechanisms.10,11

With downscaling of electrical devices, such as transistors, and sensors, 1/f noise starts to play an ever-growing role.12,13 Individual traps in gate oxide gain more significance, and 1/f noise in transistors tends to grow inversely proportional to the device dimensions. Quantum dots with decreasing size become remarkably influenced by background charge fluctuations with strong implications for their applications, for example, as qubits. For these small devices, 1/f noise and shot noise measurements are indispensable in evaluating their technological applicability. Furthermore, non-equilibrium phenomena become important in small samples.14,15 Lack of thermalization leads to randomness in quantized charge carriers. Consequently, even regular metallic conductors on the submicrometer scale at low temperatures display shot noise when the carriers are not able to thermalize to the environmental heat bath on short distances. This applies similarly to the micrometer-sized samples of the low-dimensional materials that are of great interest at present.16 Hence, shot noise investigations are powerful for studying dynamics in nano-scale devices under various pulsing and non-equilibrium conditions. In the limit of dominating shot noise, the sensitivity of a sensing device is bound by the so-called standard quantum limit, which dictates that the measurement sensitivity improves with the time as ∼1/t0.5 (t is the time).17 The only way to surpass this limit is to utilize quantum resources, for example, entanglement. In the present-day quantum technology, there is a strong effort to employ entanglement for reaching the Heisenberg limit of scaling, which would allow sensitivity improvement as ∼1/t.18 The success of this scaling is related to the control of dephasing of quantum states, which may arise from back action noise from a measuring device, typically, either due to shot noise or 1/f noise.12 These considerations explain the importance of continuing investigation of 1/f and shot noise in the context of new technologies.

Harnessing quantum coherence and entanglement is the key prerequisite for implementation of any quantum technological platform, be it quantum information processing, communication, or something else.19,20 The efficiency of current quantum technologies based on coherent nanodevices is limited by material-inherent noise sources, frequently with 1/f-type spectrum.13,19 The noise sources induce decoherence,21,22 limiting the quantum evolution toward specific targets with fidelities sufficient for error correction codes. Fault-tolerant qubits with topological protection against local sources of noise have emerged as a possible alternative.23,24 Quantum control methods aiming at limiting decoherence also lead to the possibility to reconstruct the frequency spectrum of fluctuations affecting coherent nanodevices, a task commonly referred to as noise spectroscopy, which, nowadays, also deals with higher-order spectral correlation functions.25 While noise is often detrimental to the device's performance, it can reveal information about material quality, electronic transport, temperature, fractionally charged quasiparticles, or recombination and relaxation processes.26–30 Noise spectroscopy approaches have become instrumental in the investigation of electronic transport in two-dimensional (2D) and one-dimensional (1D) charge-density-wave materials and devices.31–34 It has been demonstrated that 1/f and generation–recombination noise can be used as a sensing parameter.35–40 These applied physics discoveries and technological developments have opened up a new research area bridging together materials science, quantum device engineering, advanced quantum control, and, more recently, machine learning methods.41 

The Special Issue on Electronic Noise—From Advanced Materials to Quantum Technologies presents reports on recent developments in experimental and theoretical aspects of electronic noise and fluctuation processes across a wide spectrum of scientific and technological fields. The topics covered in the Special Issue include thermal noise and shot noise in advanced materials and devices; low-frequency 1/f noise and generation–recombination noise in electronics; low-frequency 1/f noise in graphene and 2D materials; charge, flux, and critical current 1/f noise in superconducting systems; noise in semiconductors and in spin qubits; microscopic models for 1/f noise; decoherence in quantum devices due to 1/f noise; low-frequency noise spectroscopy as a reliability tool for electronics; noise in strongly correlated systems; low-frequency noise in magnonic and spintronic devices; noise spectroscopy as the material characterization tool; noise in microwave devices due to two-level systems; noise and correlations in quantum amplifiers; quantum squeezing of noise; measurement techniques beyond standard quantum limit; noise and entanglement in pumped systems; and low-frequency phase noise in spin Hall nano-oscillators.

A large number of papers describe noise in new material systems, such as ZrS3 van der Waals semiconductor nanoribbons, IrO2 Dirac nanowires, hafnia-based ferroelectric tunnel junctions, HZO ferroelectrics, Er3+ single-ion magnets, monolithic Al–Ge–Al nanowires, indium tin oxide transistor channels under stress, and fluoropolymer dielectric organic transistors.42–49 A few papers report the noise studies specifically in ultra-wide-band-gap (UWBG) semiconductor devices based on AlGaN, β-(AlxGa1−x)2O3, and β-Ga2O3.28,50,51 A group of papers in this Special Issue deals with low-frequency noise in metal–oxide–semiconductor transistors (MOSFETs), the correlations between noise and trap distribution in such devices, as well the effect of scaling on the noise in complementary metal–oxide semiconductor (CMOS) transistors.52–55 The noise in graphene and other two-dimensional (2D) materials and devices continues to attract significant attention. Several papers in this Special Issue cover noise in 2D MoS2, dual-gated graphene devices, 2D semi-Dirac material systems, graphene–Si Schottky barrier diodes, and suspended graphene.56–60 

This Special Issue offers broad coverage of noise studies pertinent to the development of quantum device technologies, including noise in the semiconductor quantum dots, Josephson junctions, parametric oscillators, Bi2Se3 topological thin films, entangled electron systems, microwave resonators, spin Hall nano-oscillators, superconducting aluminum devices, neuromorphic computing, and silicon spin-qubits.61–71 The theory developments, covered in this Special Issue, include simulation of noise in the ground state energy of electrons in gated quantum dots, theory of full counting statistics of ultrafast quantum transport, key exchanger, noise of topological insulators, thermal fluctuations in magnetic nanoparticle systems, non-Gaussian noise, second spectrum of fluctuations in graphene, noise–dissipation relation for nonlinear electronic circuits, and approaches for squeezing electronic noise.72–80 

In conclusion, this Special Issue presents an exciting selection of new experimental and theoretical results associated with electronic noise, including noise in advanced materials, electronic and optoelectronic devices, and quantum technologies. We hope that this Special Issue will be stimulating for researchers, engineers, and students.

We thank all the authors who contributed to this Special Issue. Special thanks go to Professor Lesley F. Cohen, Editor-in-Chief, Dr. Jenny Stein, Journal Manager, and Jaimee-Ian Rodriguez, Editorial Assistant of Applied Physics Letters, for their help in the preparation of this Special Issue. A.A.B. acknowledges the support of the Vannevar Bush Faculty Fellowship from the Office of Secretary of Defense, under the Office of Naval Research Contract No. N00014-21-1-2947. P.J.H. is grateful to the Research Council of Finland, Grant No. 341913, EFT, and to the Ministry of Education and Culture in Finland, Aalto University's MEC Global Program. E.P. acknowledges the PNRR MUR Project PE0000023-NQSTI and COST Action CA 21144 Superqumap. Special thanks go to Dr. Subhajit Ghosh, UCLA, for useful discussions and help in manuscript preparation.

The authors have no conflicts to disclose.

Alexander A. Balandin: Conceptualization (lead). Elisabetta Paladino: Conceptualization (equal). Pertti J. Hakonen: Conceptualization (equal).

The data that support the findings of this study are available from the corresponding author upon reasonable request.

1.
F. C.
Motchenbacher
and
C. D.
Fitchen
,
Low-Noise Electronic Design
(
Wiley-VCH Verlag
,
1973
).
2.
R.
Pettai
,
Noise in Receiving Systems
(
Wiley-VCH Verlag
,
1984
).
3.
A. A.
Balandin
,
Noise and Fluctuations Control Electronic Devices
(
American Scientific Publishers
,
2002
).
4.
T.
Grasser
,
Noise in Nanoscale Semiconductor Devices
(
Springer
,
2020
).
5.
S.
Kogan
,
Electronic Noise and Fluctuations in Solids, Electron
(
Cambridge University Press
,
1996
).
6.
P.
Dutta
and
P. M.
Horn
, “
Low-frequency fluctuations in solids: 1/f noise
,”
Rev. Mod. Phys.
53
(
3
),
497
516
(
1981
).
7.
S. M.
Kogan
, “
Low-frequency current noise with a 1/f spectrum in solids
,”
Sov. Phys. - Usp.
28
(
2
),
170
195
(
1985
).
8.
M. B.
Weissman
, “
Low-frequency noise as a tool to study disordered materials
,”
Annu. Rev. Mater. Sci.
26
(
1
),
395
429
(
1996
).
9.
F. N.
Hooge
, “
1/f noise sources
,”
IEEE Trans. Electron Devices
41
(
11
),
1926
1935
(
1994
).
10.
A.
Rehman
,
J. A.
Delgado Notario
,
J.
Salvador Sanchez
,
Y. M.
Meziani
,
G.
Cywiński
,
W.
Knap
,
A. A.
Balandin
,
M.
Levinshtein
, and
S.
Rumyantsev
, “
Nature of the 1/f noise in graphene—Direct evidence for the mobility fluctuation mechanism
,”
Nanoscale
14
(
19
),
7242
7249
(
2022
).
11.
M.
Kamada
,
W.
Zeng
,
A.
Laitinen
,
J.
Sarkar
,
S. S.
Yeh
,
K.
Tappura
,
H.
Seppä
, and
P.
Hakonen
, “
Suppression of 1/f noise in graphene due to anisotropic mobility fluctuations induced by impurity motion
,”
Commun. Phys.
6
,
207
(
2023
).
12.
O.
Marinov
,
M. J.
Deen
, and
J. A.
Jiménez-Tejada
, “
Low-frequency noise in downscaled silicon transistors: Trends, theory and practice
,”
Phys. Rep.
990
,
1
179
(
2022
).
13.
G.
Falci
,
P. J.
Hakonen
, and
E.
Paladino
, “
1/f noise in quantum nanoscience
,”
Encycl. Condens. Matter Phys.
1
,
1003
1017
(
2024
).
14.
Y. M.
Blanter
and
M.
Büttiker
, “
Shot noise in mesoscopic conductors
,”
Phys. Rep.
336
,
1
166
(
2000
).
15.
F.
Giazotto
,
T. T.
Heikkilä
,
A.
Luukanen
,
A. M.
Savin
, and
J. P.
Pekola
, “
Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications
,”
Rev. Mod. Phys.
78
(
1
),
217
274
(
2006
).
16.
A. C.
Ferrari
,
F.
Bonaccorso
,
V.
Fal'ko
,
K. S.
Novoselov
,
S.
Roche
,
P.
Bøggild
,
S.
Borini
,
F. H. L.
Koppens
,
V.
Palermo
,
N.
Pugno
,
J. A.
Garrido
,
R.
Sordan
,
A.
Bianco
,
L.
Ballerini
,
M.
Prato
,
E.
Lidorikis
,
J.
Kivioja
,
C.
Marinelli
,
T.
Ryhänen
,
A.
Morpurgo
,
J. N.
Coleman
,
V.
Nicolosi
,
L.
Colombo
,
A.
Fert
,
M.
Garcia-Hernandez
,
A.
Bachtold
,
G. F.
Schneider
,
F.
Guinea
,
C.
Dekker
,
M.
Barbone
,
Z.
Sun
,
C.
Galiotis
,
A. N.
Grigorenko
,
G.
Konstantatos
,
A.
Kis
,
M.
Katsnelson
,
L.
Vandersypen
,
A.
Loiseau
,
V.
Morandi
,
D.
Neumaier
,
E.
Treossi
,
V.
Pellegrini
,
M.
Polini
,
A.
Tredicucci
,
G. M.
Williams
,
B.
Hee Hong
,
J. H.
Ahn
,
J.
Min Kim
,
H.
Zirath
,
B. J.
Van Wees
,
H.
Van Der Zant
,
L.
Occhipinti
,
A.
Di Matteo
,
I. A.
Kinloch
,
T.
Seyller
,
E.
Quesnel
,
X.
Feng
,
K.
Teo
,
N.
Rupesinghe
,
P.
Hakonen
,
S. R. T.
Neil
,
Q.
Tannock
,
T.
Löfwander
, and
J.
Kinaret
, “
Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems
,”
Nanoscale
7
(
11
),
4598
4810
(
2015
).
17.
V.
Giovannetti
,
S.
Lloyd
, and
L.
Maccone
, “
Quantum-enhanced measurements: Beating the standard quantum limit
,”
Science
306
(
5700
),
1330
1336
(
2004
).
18.
N. N.
Gusarov
,
M. R.
Perelshtein
,
P. J.
Hakonen
, and
G. S.
Paraoanu
, “
Optimized emulation of quantum magnetometry via superconducting qubits
,”
Phys. Rev. A
107
(
5
),
052609
(
2023
).
19.
E.
Paladino
,
Y.
Galperin
,
G.
Falci
, and
B. L.
Altshuler
, “
1/f noise: Implications for solid-state quantum information
,”
Rev. Mod. Phys.
86
(
2
),
361
418
(
2014
).
20.
C. H.
Bennett
and
D. P.
Divincenzo
, “
Quantum information and computation
,”
Nature
404
(
6775
),
247
255
(
2000
).
21.
E.
Paladino
,
L.
Faoro
,
G.
Falci
, and
R.
Fazio
, “
Decoherence and 1/f noise in Josephson qubits
,”
Phys. Rev. Lett.
88
(
22
),
228304
(
2002
).
22.
G.
Falci
,
A.
D'Arrigo
,
A.
Mastellone
, and
E.
Paladino
, “
Initial decoherence in solid state qubits
,”
Phys. Rev. Lett.
94
(
16
),
167002
(
2005
).
23.
A. Y.
Kitaev
, “
Unpaired Majorana fermions in quantumwires
,”
Phys.-Usp.
44
(
10S
),
131
(
2001
).
24.
A. Y.
Kitaev
, “
Fault-tolerant quantum computation by anyons
,”
Ann. Phys.
303
(
1
),
2
30
(
2003
).
25.
C. L.
Degen
,
F.
Reinhard
, and
P.
Cappellaro
, “
Quantum sensing
,”
Rev. Mod. Phys.
89
(
3
),
035002
(
2017
).
26.
M. E.
Levinshtein
and
S. L.
Rumyantsev
, “
Noise spectroscopy of local levels in semiconductors
,”
Semicond. Sci. Technol.
9
(
6
),
1183
(
1994
).
27.
S.
Ghosh
,
H.
Surdi
,
F.
Kargar
,
F. A.
Koeck
,
S.
Rumyantsev
,
S.
Goodnick
,
R. J.
Nemanich
, and
A. A.
Balandin
, “
Excess noise in high-current diamond diodes
,”
Appl. Phys. Lett.
120
(
6
),
62103
(
2022
).
28.
S.
Ghosh
,
D. H.
Mudiyanselage
,
S.
Rumyantsev
,
Y.
Zhao
,
H.
Fu
,
S.
Goodnick
,
R.
Nemanich
, and
A. A.
Balandin
, “
Low-frequency noise in β-(AlxGa1−x)2O3 Schottky barrier diodes
,”
Appl. Phys. Lett.
122
(
21
),
212109
(
2023
).
29.
S.
Ghosh
,
D. H.
Mudiyanselage
,
F.
Kargar
,
Y.
Zhao
,
H.
Fu
, and
A. A.
Balandin
, “
Temperature dependence of low-frequency noise characteristics of NiOx/β-Ga2O3 p–n heterojunction diodes
,”
Adv. Elect. Mater.
2023
,
2300501
.
30.
F. M. D.
Pellegrino
,
G.
Falci
, and
E.
Paladino
, “
Effect of dilute impurities on short graphene Josephson junctions
,”
Commun. Phys.
5
(
1
),
265
(
2022
).
31.
G.
Liu
,
S.
Rumyantsev
,
M. A.
Bloodgood
,
T. T.
Salguero
, and
A. A.
Balandin
, “
Low-frequency current fluctuations and sliding of the charge density waves in two-dimensional materials
,”
Nano Lett.
18
(
6
),
3630
3636
(
2018
).
32.
M.
Taheri
,
J.
Brown
,
A.
Rehman
,
N.
Sesing
,
F.
Kargar
,
T. T.
Salguero
,
S.
Rumyantsev
, and
A. A.
Balandin
, “
Electrical gating of the charge-density-wave phases in two-dimensional h-BN/1T-TaS2 devices
,”
ACS Nano
16
(
11
),
18968
18977
(
2022
).
33.
A. A.
Balandin
,
F.
Kargar
,
T. T.
Salguero
, and
R. K.
Lake
, “
One-dimensional van der Waals quantum materials
,”
Mater. Today
55
,
74
91
(
2022
).
34.
S.
Ghosh
,
F.
Kargar
,
N. R.
Sesing
,
Z.
Barani
,
T. T.
Salguero
,
D.
Yan
,
S.
Rumyantsev
, and
A. A.
Balandin
, “
Low-frequency current fluctuations in quasi-1D (TaSe4)2I Weyl semimetal nanoribbons
,”
Adv. Electron. Mater.
9
(
2
),
2200860
(
2023
).
35.
L. B.
Kish
,
R.
Vajtai
, and
C. G.
Granqvist
, “
Extracting information from noise spectra of chemical sensors: Single sensor electronic noses and tongues
,”
Sens. Actuators B
71
(
1–2
),
55
59
(
2000
).
36.
V. M.
Aroutiounian
,
Z. H.
Mkhitaryan
,
A. A.
Shatveryan
,
F. V.
Gasparyan
,
M. Z.
Ghulinyan
,
L.
Pavesi
,
L. B.
Kish
, and
C. G.
Granqvist
, “
Noise spectroscopy of gas sensors
,”
IEEE Sens. J.
8
(
6
),
786
790
(
2008
).
37.
S.
Rumyantsev
,
G.
Liu
,
M. S.
Shur
,
R. A.
Potyrailo
, and
A. A.
Balandin
, “
Selective gas sensing with a single pristine graphene transistor
,”
Nano Lett.
12
(
5
),
2294
2298
(
2012
).
38.
A. A.
Balandin
, “
Low-frequency 1/f noise in graphene devices
,”
Nat. Nanotechnol.
8
(
8
),
549
555
(
2013
).
39.
R.
Samnakay
,
C.
Jiang
,
S. L.
Rumyantsev
,
M. S.
Shur
, and
A. A.
Balandin
, “
Selective chemical vapor sensing with few-layer MoS2 thin-film transistors: Comparison with graphene devices
,”
Appl. Phys. Lett.
106
(
2
),
023115
(
2015
).
40.
F. M. D.
Pellegrino
,
G.
Falci
, and
E.
Paladino
, “
1/f critical current noise in short ballistic graphene Josephson junctions
,”
Commun. Phys.
3
(
1
),
6
(
2020
).
41.
L.
Giannelli
,
P.
Sgroi
,
J.
Brown
,
G. S.
Paraoanu
,
M.
Paternostro
,
E.
Paladino
, and
G.
Falci
, “
A tutorial on optimal control and reinforcement learning methods for quantum technologies
,”
Phys. Lett. A
434
,
128054
(
2022
).
42.
A.
Rehman
,
G.
Cywinski
,
W.
Knap
,
J.
Smulko
,
A. A.
Balandin
, and
S.
Rumyantsev
, “
Low-frequency noise in ZrS3 van der Waals semiconductor nanoribbons
,”
Appl. Phys. Lett.
122
(
9
),
090602
(
2023
).
43.
P. Y.
Chien
,
C. Y.
Wu
,
R. T.
Wang
,
S. P.
Chiu
,
S.
Kirchner
,
S. S.
Yeh
, and
J. J.
Lin
, “
Quantum-interference origin and magnitude of 1/f noise in Dirac nodal line IrO2 nanowires at low temperatures
,”
Appl. Phys. Lett.
122
(
14
),
143102
(
2023
).
44.
W.
Shin
,
R. H.
Koo
,
K. K.
Min
,
B.
Kwak
,
D.
Kwon
,
D.
Kwon
, and
J. H.
Lee
, “
Effects of temperature and DC cycling stress on resistive switching mechanisms in hafnia-based ferroelectric tunnel junction
,”
Appl. Phys. Lett.
122
(
15
),
152901
(
2023
).
45.
S.
Jin
,
J.
Jeon
,
M. J.
Kim
,
K.
Heo
,
J. H.
Kim
,
J. P.
Im
,
S. M.
Yoon
,
S. E.
Moon
,
J.
Woo
, and
J. W.
Lee
, “
Interrelation between ferroelectric properties and defects based on low-frequency noise analysis of HZO ferroelectric capacitor
,”
Appl. Phys. Lett.
122
(
16
),
162904
(
2023
).
46.
R. B.
Morgunov
,
R. S.
Allayarov
,
E. I.
Kunitsyna
, and
O. V.
Koplak
, “
Spin noise in Er3+ single-ion magnets surrounded by ferromagnetic microparticles
,”
Appl. Phys. Lett.
122
(
17
),
174002
(
2023
).
47.
R.
Behrle
,
M.
Sistani
,
A.
Lugstein
,
Z.
Sadre Momtaz
,
M. I.
Den Hertog
,
D.
Pogany
, and
W. M.
Weber
, “
Low-frequency noise in quasi-ballistic monolithic Al-Ge-Al nanowire field effect transistors
,”
Appl. Phys. Lett.
122
(
24
),
243504
(
2023
).
48.
C.
Gu
,
Q.
Hu
,
Q.
Li
,
S.
Zhu
,
J.
Kang
, and
Y.
Wu
, “
1/f noise of short-channel indium tin oxide transistors under stress
,”
Appl. Phys. Lett.
122
(
25
),
252104
(
2023
).
49.
W.
Shin
,
J.
Shin
,
J. H.
Lee
,
H.
Yoo
, and
S. T.
Lee
, “
Observation of interface trap reduction in fluoropolymer dielectric organic transistors by low-frequency noise spectroscopy
,”
Appl. Phys. Lett.
122
(
26
),
263506
(
2023
).
50.
T.
Zhu
,
X. F.
Zheng
,
T. X.
Yin
,
H.
Zhang
,
X. H.
Wang
,
S. Z.
Yue
,
T.
Wang
,
T.
Han
,
X. H.
Ma
, and
Y.
Hao
, “
A thorough study on the electrical performance change and trap evolution of AlGaN/GaN MIS-HEMTs under proton irradiation
,”
Appl. Phys. Lett.
122
(
18
),
183502
(
2023
).
51.
M.
Tang
,
L.
Liu
,
C.
Jia
,
S.
Wu
,
Y. J.
Lee
,
G.
Wang
,
Y.
Ma
,
D. W.
Jeon
,
J. H.
Park
,
Y.
Zhang
,
X.
Yi
,
Y.
Wang
,
J.
Wang
, and
J.
Li
, “
Low frequency noise in β-Ga2O3 based nanoelectronic devices
,”
Appl. Phys. Lett.
123
(
1
),
13506
(
2023
).
52.
D. M.
Fleetwood
, “
Interface traps, correlated mobility fluctuations, and low-frequency noise in metal-oxide-semiconductor transistors
,”
Appl. Phys. Lett.
122
(
17
),
173504
(
2023
).
53.
H.
Chen
,
Y.
Zhang
, and
L.
He
, “
Low-frequency noise characterization of gate oxide trap depth distribution of MOSFETs
,”
Appl. Phys. Lett.
122
(
22
),
222107
(
2023
).
54.
O.
Gauthier
,
S.
Haendler
,
Q.
Rafhay
, and
C.
Theodorou
, “
Universality of trap-induced mobility fluctuations between 1/f noise and random telegraph noise in nanoscale FD-SOI MOSFETs
,”
Appl. Phys. Lett.
122
(
23
),
233503
(
2023
).
55.
S.
Bonaldo
and
D. M.
Fleetwood
, “
Random telegraph noise in nanometer-scale CMOS transistors exposed to ionizing radiation
,”
Appl. Phys. Lett.
122
(
17
),
173508
(
2023
).
56.
J. M.
Iglesias
,
E.
Pascual
,
S.
García-Sánchez
, and
R.
Rengel
, “
2D MoS2 under switching field conditions: Study of high-frequency noise velocity fluctuations
,”
Appl. Phys. Lett.
123
(
5
),
52105
(
2023
).
57.
A.
Mehra
,
R. J.
Mathew
, and
C.
Kumar
, “
Origin of electrical noise near charge neutrality in dual gated graphene device
,”
Appl. Phys. Lett.
123
(
12
),
123103
(
2023
).
58.
W. J.
Chan
,
L. K.
Ang
, and
Y. S.
Ang
, “
Quantum transport and shot noise in two-dimensional semi-Dirac system
,”
Appl. Phys. Lett.
122
(
16
),
163102
(
2023
).
59.
J.
Smulko
,
K.
Drozdowska
,
A.
Rehman
,
T.
Welearegay
,
L.
Österlund
,
S.
Rumyantsev
,
G.
Cywiński
,
B.
Stonio
,
A.
Krajewska
,
M.
Filipiak
, and
P.
Sai
, “
Low-frequency noise in Au-decorated graphene-Si Schottky barrier diode at selected ambient gases
,”
Appl. Phys. Lett.
122
(
21
),
211901
(
2023
).
60.
W.
Zeng
,
K.
Tappura
,
M.
Kamada
,
A.
Laitinen
,
H.
Seppä
, and
P.
Hakonen
, “
Second spectrum of 1/f noise due to mobility fluctuations: Simulations vs experiments in suspended graphene
,”
Appl. Phys. Lett.
123
(
1
),
13509
(
2023
).
61.
M.
Kȩpa
,
Cywiński
, and
J. A.
Krzywda
, “
Correlations of spin splitting and orbital fluctuations due to 1/f charge noise in the Si/SiGe quantum dot
,”
Appl. Phys. Lett.
123
(
3
),
034003
(
2023
).
62.
G.
Lakshmi Bhai
,
H.
Mukai
, and
J. S.
Tsai
, “
Mitigation of noise in Josephson parametric oscillator by injection locking
,”
Appl. Phys. Lett.
122
(
5
),
54002
(
2023
).
63.
Y.
Raffel
,
R.
Olivo
,
M.
Simon
,
L.
Vieler
,
R.
Hoffmann
,
S.
De
,
T.
Kämpfe
,
K.
Seidel
, and
M.
Lederer
, “
Importance of temperature dependence of interface traps in high-k metal gate stacks for silicon spin-qubit development
,”
Appl. Phys. Lett.
123
(
3
),
034002
(
2023
).
64.
C.
Barone
,
P.
Orgiani
,
G.
Carapella
,
V.
Granata
,
S. K.
Chaluvadi
, and
S.
Pagano
, “
Investigation of topological regime in Bi2Se3 thin films through low-frequency electric noise
,”
Appl. Phys. Lett.
122
(
14
),
143103
(
2023
).
65.
C.
Cheng
,
S.
Pagano
,
C.
Barone
,
N.
Grønbech-Jensen
,
G.
Salina
,
J. A.
Blackburn
, and
M.
Cirillo
, “
Interpretation of Josephson junction fluctuations at very low temperatures by superfluid flow equations
,”
Appl. Phys. Lett.
122
(
19
),
192606
(
2023
).
66.
B.
Bertin-Johannet
,
L.
Raymond
,
F.
Ronetti
,
J.
Rech
,
T.
Jonckheere
,
B.
Grémaud
, and
T.
Martin
, “
An on-demand source of energy-entangled electrons using Levitons
,”
Appl. Phys. Lett.
122
(
20
),
202601
(
2023
).
67.
M.
Kristen
,
J. N.
Voss
,
M.
Wildermuth
,
H.
Rotzinger
, and
A. V.
Ustinov
, “
Random telegraph fluctuations in granular microwave resonators
,”
Appl. Phys. Lett.
122
(
20
),
202602
(
2023
).
68.
K.
Chida
,
A.
Fujiwara
, and
K.
Nishiguchi
, “
Noise-to-energy conversion in a nanometer-scale dot observed with electron counting statistics
,”
Appl. Phys. Lett.
122
(
21
),
213502
(
2023
).
69.
A.
Litvinenko
,
A.
Kumar
,
M.
Rajabali
,
A. A.
Awad
,
R.
Khymyn
, and
J.
Åkerman
, “
Phase noise analysis of mutually synchronized spin Hall nano-oscillators
,”
Appl. Phys. Lett.
122
(
22
),
222401
(
2023
).
70.
J. A.
Nava Aquino
and
R.
de Sousa
, “
Model for 1/f flux noise in superconducting aluminum devices: Impact of external magnetic fields
,”
Appl. Phys. Lett.
122
(
22
),
224003
(
2023
).
71.
N.
Ikeda
,
D.
Akita
, and
H.
Takahashi
, “
Noise and spike-time-dependent plasticity drive self-organized criticality in spiking neural network: Toward neuromorphic computing
,”
Appl. Phys. Lett.
123
(
2
),
023701
(
2023
).
72.
M.
Kȩpa
,
N.
Focke
,
Ł.
Cywiński
, and
J. A.
Krzywda
, “
Simulation of 1/f charge noise affecting a quantum dot in a Si/SiGe structure
,”
Appl. Phys. Lett.
123
(
3
),
034005
(
2023
).
73.
M.
Hübler
and
W.
Belzig
, “
Full counting statistics of ultrafast quantum transport
,”
Appl. Phys. Lett.
123
(
3
),
034006
(
2023
).
74.
S.
Ferdous
and
L. B.
Kish
, “
Transient attacks against the Kirchhoff-Law-Johnson-Noise (KLJN) secure key exchanger
,”
Appl. Phys. Lett.
122
(
14
),
143503
(
2023
).
75.
M.
Mihaila
,
S.
Dinulescu
, and
P.
Varasteanu
, “
Phonons in the 1/f noise of topological insulators
,”
Appl. Phys. Lett.
122
(
17
),
174003
(
2023
).
76.
K.
Everaert
,
B.
Van Waeyenberge
,
F.
Wiekhorst
, and
J.
Leliaert
, “
The impact of temperature on thermal fluctuations in magnetic nanoparticle systems
,”
Appl. Phys. Lett.
122
(
21
),
211902
(
2023
).
77.
W.
Dong
,
G. A.
Paz-Silva
, and
L.
Viola
, “
Resource-efficient digital characterization and control of classical non-Gaussian noise
,”
Appl. Phys. Lett.
122
(
24
),
244001
(
2023
).
78.
F. M. D.
Pellegrino
,
G.
Falci
, and
E.
Paladino
, “
Second spectrum of charge carrier density fluctuations in graphene due to trapping/detrapping processes
,”
Appl. Phys. Lett.
122
(
25
),
253102
(
2023
).
79.
L.
Van Brandt
and
J. C.
Delvenne
, “
Noise-dissipation relation for nonlinear electronic circuits
,”
Appl. Phys. Lett.
122
(
26
),
263507
(
2023
).
80.
C.
Paradis
,
P.
Février
,
E.
Pinsolle
, and
B.
Reulet
, “
Squeezing electronic noise with two tones
,”
Appl. Phys. Lett.
122
(
26
),
264004
(
2023
).