Advances in interface science over the last 20 years have demonstrated the use of molecular nanolayers (MNLs) at inorganic interfaces to access emergent phenomena and enhance a variety of interfacial properties. Here, we capture important aspects of how a MNL can induce multifold enhancements and tune multiple interfacial properties, including chemical stability, fracture energy, thermal and electrical transport, and electronic structure. Key challenges that need to be addressed for the maturation of this emerging field are described and discussed. MNL-induced interfacial engineering has opened up attractive opportunities for designing organic–inorganic hybrid nanomaterials with high interface fractions, where properties are determined predominantly by MNL-induced interfacial effects for applications.

Organic molecular nanolayers (MNLs), sometimes referred to as nanomolecular layers (NMLs),1,2 have been extensively studied on planar inorganic surfaces for diverse applications, including tribology,3 lithography,4,5 micro-electro-mechanical systems (MEMS),6,7 sensors,8 transistors,9,10 and corrosion protection.11,12 These applications are enabled by MNL-induced chemical changes, and concomitant properties, on inorganic surfaces. MNLs typically consist of a monolayer13 or multiple layers14 of organic molecules bonded to a substrate surface and/or with each other.15 MNLs with ordered arrays of oriented molecules formed by self-assembly are referred to as self-assembled molecular-/mono-layers (SAMs).

The effects of inserting MNLs at inorganic interfaces have been much less explored. Molecular engineering of inorganic interfaces offers potential for modifying interface properties, gaining understanding of interface phenomena, and realizing inorganic–organic hybrid materials with unusual properties and responses. Yet, MNL-engineered interfacial materials are still very much a solution in search of a problem. This article seeks to summarize important findings over the last 20 years on the use of MNLs at inorganic thin-film interfaces for accessing emergent phenomena and remarkable enhancements of multiple properties. The focus is to capture key insights on interfacial MNL-induced enhancement of properties, e.g., inhibiting metal diffusion, multifold increases in interfacial fracture energy, thermal and electrical conductivities, and metal work function tuning. We emphasize how such effects can be accessed and tailored by using MNLs of molecules with different chain structures, lengths, and terminal groups and point to the work that remains to be done to harness MNLs for applications. Finally, we also provide an outlook of how interfacial MNLs can be attractive for designing high-interfacial-fraction inorganic–organic hybrid nanomaterials and discuss computational and synthesis strategies necessary for realizing such materials for applications.

The 2022 edition of the International Roadmap for Devices and Systems16 anticipates the use of interfacial MNLs as barriers to deleterious diffusion and mixing in nanodevice wiring structures. MNL diffusion barriers were first demonstrated at metal–dielectric interfaces [Fig. 1(a)], wherein MNLs curtail copper ion diffusion into silica.17,18 Leakage current behaviors of Cu/MNL/SiO2 capacitors with Al back-contacts [Fig. 1(b)] show that MNLs can result in more than 10-fold longer times to failure defined by the time taken for metal-diffusion-induced electrical breakdown of silica. These, and subsequent results, indicate that the chain length, structure, and terminal moieties of the molecules in the MNL are key determinants of the efficacy of MNL diffusion barriers [Fig. 1(c)].17,19–22

FIG. 1.

Schematic sketches of (a) a MNL-bonded copper-silica interface and (b) a metal-oxide-semiconductor capacitor structure used for accelerated Cu-diffusion-induced failure time measurements during bias thermal annealing at 200–250 °C under an electric field Vg = 2 MV cm−1 where leakage currents above a threshold value of 1–10 µA cm−2 are defined as failure. (c) MNL-induced factor increases in mean failure times (blue; left ordinate) and the relative magnitudes of the mean failure times in the MNL-modified structures (red; right ordinate) for a variety of interfacial MNL chemistries.17,20–26 The factor increase (blue) is the ratio of the failure times for capacitors with and without the MNL, respectively, in each study. The relative magnitudes (red) are plotted on a scale of 0–1 to allow a comparison of the absolute failure times indicated by MNL barrier responses reported in different studies.

FIG. 1.

Schematic sketches of (a) a MNL-bonded copper-silica interface and (b) a metal-oxide-semiconductor capacitor structure used for accelerated Cu-diffusion-induced failure time measurements during bias thermal annealing at 200–250 °C under an electric field Vg = 2 MV cm−1 where leakage currents above a threshold value of 1–10 µA cm−2 are defined as failure. (c) MNL-induced factor increases in mean failure times (blue; left ordinate) and the relative magnitudes of the mean failure times in the MNL-modified structures (red; right ordinate) for a variety of interfacial MNL chemistries.17,20–26 The factor increase (blue) is the ratio of the failure times for capacitors with and without the MNL, respectively, in each study. The relative magnitudes (red) are plotted on a scale of 0–1 to allow a comparison of the absolute failure times indicated by MNL barrier responses reported in different studies.

Close modal

Detailed investigations have shown that MNL-induced copper-ion immobilization27 through electrostatic,28,29 covalent21 or coordinate-covalent20–22 bonding, and steric effects,17 are important diffusion barrier mechanisms. For instance, steric hindrance due to aromatic moieties17 in pyridine-terminated MNLs results in a fourfold increase in failure time. Similar improvements are obtained due to copper bonding with amino- and mercapto-termini of organosilane MNLs.21,22,26 MNL barrier properties are tunable by modifying the terminal groups. For example, ultraviolet light-induced conversion of mercapto-termini to sulfonates results in superior MNL barrier properties, indicating that Cun+/O3S linkages block Cu diffusion more effectively than Cun+/S linkages.26 Carboxyl- and alkylphosphine-terminated MNLs result in more than 10-fold greater times to failure due to strong Cun+/O2C- chelation22 and Cun+/P- bonding,25 respectively. Such improvements imply device lifetimes greater than ten years, which is comparable to that seen for 20-nm-thick Ta barriers.25 Thus, MNLs have the potential to displace much thicker inorganic barriers in nanodevice wiring.

MNLs can also block in-plane diffusion and, hence, mitigate electromigration. For example, amino-phenyl-terminated MNLs are more effective at inhibiting in-plane copper ion diffusion than MNLs with mercapto- or amino-propyl termini.30 Further studies are needed to understand if MNL-induced in-plane and out-of-plane barrier properties involve different mechanisms. Interfacial MNLs with hydrophobic chain backbone and termini, e.g., fluoroalkylsilanes, yield nearly fivefold higher time to failure due to MNL-induced interfacial desiccation that inhibits the formation of copper ions, which are the diffusing species.24 

Stacking MNLs, e.g., organosilane bilayers connected with Si-O-Si linkages28 and polyelectrolyte bilayers,20,23 also result in barrier responses comparable to that of MNLs consisting of assemblies of shorter molecules. Systematically varying the number of bilayers reveals that the barrier properties are more sensitive to the Cu/MNL interface chemistry20 than MNL layering and thickness. This result points to the possibility of designing extremely thin MNL barriers.31 

Although MNLs can inhibit diffusion across thin film interfaces, the individual effects of multiple factors, such as molecular termini, backbone structure and length, and the interplay between them, are yet to be revealed. Studies on MNL diffusion barriers have typically involved MNLs with unoptimized molecular coverage, orientation, and order, the effects of which remain to be understood. MNLs are compatible with nanodevice fabrication processes such as lithography and have been used to create low-resistivity Cu metallization patterns.32–34 However, a further understanding of the stability of MNLs to chemical and physical treatments—e.g., during reactive ion etching and chemical mechanical planarization, and consistency in performance with the presence of defects and non-planar topographies19,35,36—is critical for integrating MNLs into a variety of nanodevices for logic, memory, and energy applications.

Introducing high-energy bonds at metal–ceramic interfaces using an interfacial MNL can result in severalfold increases in the interfacial fracture energy [Fig. 2(a)]. The use of a MNL as a nanoglue was first demonstrated at Cu/SiO2 interfaces, where inserting a mercapto-propyl-trimethoxysilane (MPTMS) nanolayer led to a threefold higher interface debond energy due to strong Cun+/S and siloxane (Si–O–Si) bonding with the MNL.21 Fracture occurs at the MNL/silica interface through the scission of water-sensitive siloxane bridges weakened by ambient moisture.21 The approach of MNL-induced interfacial toughening has also been demonstrated at metal/metal heterointerfaces.40 

FIG. 2.

(a) A schematic illustration of the interfacial MNL-nanoglue concept. (b) MNL-induced multifold increases in interface toughness upon thermal annealing.37 (c) A schematic sketch illustrating loading-frequency-dependent MNL-induced interfacial toughening in a polymer/metal/MPTMS MNL/SiO2 laminate.38 (d) Experimental results showing that MPTMS MNL-induced dynamic interfacial toughening at a certain loading frequency range38 yields toughness values higher than the static-loading interfacial toughness. (e) Experimentally captured variation of interfacial toughness as a function of water activity revealing the (f) relationship between metal plasticity and interfacial work of adhesion39 at a Cu/MNL/SiO2 interface. Panel (b) is adapted with permission from Gandhi et al., Nature 447, 299 (2007). Copyright 2007 Nature Publishing Group. Panels (c) and (d) are adapted with permission from Kwan et al., Nat. Commun. 9, 5249 (2018). Copyright 2018 licensed under a Creative Commons CC-BY license. Panels (e) and (f) are adapted with permission from Jain et al., Phys. Rev. B 83, 35412 (2011). Copyright 2011 American Physical Society.

FIG. 2.

(a) A schematic illustration of the interfacial MNL-nanoglue concept. (b) MNL-induced multifold increases in interface toughness upon thermal annealing.37 (c) A schematic sketch illustrating loading-frequency-dependent MNL-induced interfacial toughening in a polymer/metal/MPTMS MNL/SiO2 laminate.38 (d) Experimental results showing that MPTMS MNL-induced dynamic interfacial toughening at a certain loading frequency range38 yields toughness values higher than the static-loading interfacial toughness. (e) Experimentally captured variation of interfacial toughness as a function of water activity revealing the (f) relationship between metal plasticity and interfacial work of adhesion39 at a Cu/MNL/SiO2 interface. Panel (b) is adapted with permission from Gandhi et al., Nature 447, 299 (2007). Copyright 2007 Nature Publishing Group. Panels (c) and (d) are adapted with permission from Kwan et al., Nat. Commun. 9, 5249 (2018). Copyright 2018 licensed under a Creative Commons CC-BY license. Panels (e) and (f) are adapted with permission from Jain et al., Phys. Rev. B 83, 35412 (2011). Copyright 2011 American Physical Society.

Close modal

Thermal annealing below 400 °C promotes interfacial siloxane bridging37 at Cu/MNL/silica interfaces, but siloxane bond rehydration during cooling decreases the fracture energy. Higher temperature treatments, including rapid thermal annealing,41 result in up to sevenfold increases in fracture energy [Fig. 2(b)] due to increased siloxane bridging coverage and the preclusion of siloxane bond rehydration during cooling.42 Furthermore, degradation of the organic molecules in the interfacial MNL can lead to inorganic phase formation that can contribute to toughening.43 The MNL structure and chemistry can profoundly influence interfacial phase formation paths. For instance, while both organosilane and organogermane MNLs degrade into their inorganic components and get incorporated at the Cu/SiO2 interface, only the latter results in interfacial copper silicate formation.43 

Hybrid MNLs, e.g., a mixture of organothiol, organosilane, and metal alkoxide molecules,44 have also been shown to reduce the copper oxide while simultaneously providing strong interfacial bonds, e.g., Cun+/S, resulting in a ninefold improvement to Cu/epoxy interfacial adhesion. Polymeric MNLs also have the potential to enhance interfacial adhesion. For instance, a stand-alone anionic polyelectrolyte MNL has been shown to serve as a sacrificial layer that chemically reduces the native copper oxide to metallic Cu to improve interfacial adhesion of subsequently deposited layers.45 However, MNLs of polyelectrolyte bilayers tend to weaken the interface due to insufficient bonding between the cationic and anionic layers23 even though the Cun+/anionic polyelectrolyte bonding is sufficient to inhibit Cu2+ diffusion.20 These results indicate that a variety of different MNL-induced mechanisms are available for chemically tailoring interfacial adhesion that are yet to be fully explored. The challenge here is to understand the individual and combined effects of bonding at the MNL-tailored interfaces for realizing desired property enhancements.

MNL-induced interfacial toughening is sensitive to both the molecular chain structure and the terminal moieties in the MNL. For instance, stronger bonding of Cu with amino-phenyl-terminated organosilane MNLs at Cu/SiO2 interfaces results in higher toughening than with pyridine-terminated organosilane MNLs.46 Toughening can also be induced by metal-catalyzed reactions and bonding with the MNL, e.g., Cu-catalyzed disilacyclobutane ring opening in a sub-nm-thick carbosilane MNL leads to a sevenfold higher fracture energy.47 Such effects can be harnessed for adhering low dielectric constant polymers to metals,48,49 formulating improved metallization inks,50 and devising contacts for thin film solar cells.51 

Interfacial MNLs have been shown to activate unusual phenomena such as loading-frequency-induced toughening38 [Fig. 2(c)] which results in fracture energies that exceed values obtained during static loading [Fig. 2(d)]. For example, inserting a MPTMS MNL at Cu/SiO2 interfaces in polymer/Cu/SiO2 laminates results in fracture energy enhancements in the 75–300 Hz range due to MNL-induced interfacial strengthening that enables plasticity in both the proximal Cu and the distal polymer layers. These effects are not observed without an MNL. The frequency characteristics and the extent of dynamic toughening can be controlled by appropriate choices of the MNL, ductile and elastic inorganic layers, their thicknesses, and temperature. Such phenomena could be attractive for designing materials and interfaces for various applications such as biomedicine,52 electronics devices,53 and smart degrading and self-healing systems.54 

Interfacial MNLs can serve as an excellent means for experimentally accessing and modeling atomistic aspects of interfacial fracture. In particular, interfacial MNLs can be used to facilitate fracture through scission of specific kinds of bonds at the interface. This eliminates uncertainties in crack paths that otherwise confound fracture energy determination and modeling. Inserting an organosilane MNL at the Cu/SiO2 interface allows the partitioning of the fracture energy39 into work of adhesion γa, which correlates with the fissure of interfacial siloxane bonds, and metal layer plasticity γp. Sub-critical mechanical loading experiments under controlled water partial pressures allow the variation and determination of moisture-sensitive γa, the onset of metal plasticity γp, and reveal the dependence of γp on γa in terms of the Griffith–Irwin model55,56 [Figs. 2(e)–2(f)]. The individual and combined effects of moisture, temperature, and metal film thickness on γa and γp have been studied in detail for organosilane MNL-treated Cu/SiO2.57 This approach of determining the fracture energy of MNL-treated interfaces in controlled environments combined with fracture surface spectroscopy and interfacial bonding energetics calculations can be adapted to understand mechanisms of interfacial fracture and stress-corrosion in diverse materials systems.58 

Almost all demonstrations of MNL-induced adhesion and toughening have involved thin film interfaces with negligible roughness. As a consequence, the current knowledge in this field is directly applicable to materials and systems wherein MNLs are introduced at interfaces involving inorganic thin films deposited on planar surfaces of inorganic bulk materials and substrates. MNL nanoglues could conceivably be used for joining pre-deposited films and/or bulk materials, to complement, or even potentially replace, conventional methods such as welding and diffusion bonding, but interfacial roughness is expected to be a major challenge that needs to be understood and addressed. Thus, a comprehensive fundamental understanding of the combined effects of MNLs and varied surface morphologies, e.g., corrugation-induced toughening due to debond shielding and plasticity,59 will be essential to realize such possibilities.

MNL-induced toughening and metal-diffusion blocking have been demonstrated in mesoporous silica films on copper. Integrating organosilane MNL barriers into mesoporous silica during sol-gel synthesis not only suppresses moisture-induced capacitance instabilities and Cu-diffusion-induced leakage currents, but also lowers the dielectric constant.60–64 Functionalizing mesoporous silica films with cyano- and mercapto-terminated MNLs render the films stable up to 400 °C in different chemical environments.65 

Integrating more than one organosilane MNL into mesoporous silica offers the possibility of realizing severalfold greater protection against moisture uptake and metal diffusion.60,61 For instance, using both bis[3-(triethoxysilyl) propyl] tetrasulfide (BTPTS) and trimethylchlorosilane (TMCS) MNLs provides sevenfold better protection than when only one of them is used, and more than 280-times better protection than when no MNLs are used. The improvement is due to complementary effects of effective Cu immobilization by tetrasulfide groups in BTPTS and decreased moisture uptake due to hydrophobic TMCS.60 Films treated first with TMCS followed by BTPTS exhibit lower dielectric constants, leakage currents, and stress compared with films treated with the same MNLs applied in the reverse order, indicating the sensitivity of chemical and steric effects to MNL treatment sequence.61 

Silylation of mesoporous silica using alkylsilane MNLs also has a strong influence on the mechanical properties of the silica film and copper-silica interface fracture behavior.64,66 Hydrophobic pore passivation with trimethylsilane MNLs not only hinders interfacial Cu ionization and diffusion64 but also decreases the residual tensile stress and the fracture toughness. However, the relative extents of the decreases in film stress and toughness result in lowering the overall driving force for crack propagation.66 

Interfaces are often thermal transport bottlenecks in nanostructured materials, composites, and devices, necessitating strategies to increase the interfacial thermal conductance Gint.67,68 Inserting a high thermal conductivity material at the interface to increase Gint works well in many instances. However, there is a great deal of interest in unobtrusively increasing Gint, e.g., in nanodevice applications where inserting interfacial layers thicker than a few nanometers of a high thermal conductivity material is not viable.69 Interfacial MNLs can serve a means to manipulate the interface chemistry to tailor Gint.67,70 Engineering the interfacial energy through chemical functionalization has been theoretically predicted71–73 and experimentally demonstrated to be an effective means to tailor Gint at MNL interfaces with liquids74 as well as organic75,76 and inorganic77–79 solids. Introducing even a sub-monolayer of water molecules has been shown to double the Gint across a quartz–quartz interface due to improved vibrational state overlap between water and hydrophilic surfaces.80 

Inserting MNLs at metal–dielectric interfaces has been shown to result in up to 13-fold increases in Gint1 for a Cu/SiO2 interface (Fig. 3). Such a remarkable Gint enhancement correlates with MNL-induced interfacial strengthening, as demonstrated for Cu/MNL/SiO2 interfaces with organosilane MNLs and for Au/MNL/TiO2 interfaces with alkylphosphonate MNLs.1 The enhanced interfacial thermal conductance is attributed to the interfacial MNLs providing an additional band of vibrational states that facilitate interfacial phonon transport across materials with vastly different thermal conductivities.73,81,82 The Gint increase caused by strongly bonding short-chained interfacial MNLs83 with a backbone of C-C bonds outweighs the tendency of organic layers to inhibit thermal transport at inorganic interfaces. This feature has also been exploited for tailoring thermal transport across soft-hard interfaces.75 

FIG. 3.

Experimental results showing a strong correlation between interfacial thermal conductance and MNL-induced interfacial toughness for metal/MNL/oxide structures.1 Adapted with permission from O'Brien et al., Nat. Mater. 12, 118 (2013). Copyright 2012 Nature Publishing Group.

FIG. 3.

Experimental results showing a strong correlation between interfacial thermal conductance and MNL-induced interfacial toughness for metal/MNL/oxide structures.1 Adapted with permission from O'Brien et al., Nat. Mater. 12, 118 (2013). Copyright 2012 Nature Publishing Group.

Close modal

Interfacial MNLs have been shown to be attractive for either increasing84,85 or decreasing81 Gint across metal–semiconductor interfaces and metal-ceramic composites. Molecular chain branching in MNLs has been predicted to suppress Gint due to additional internal vibrational modes and phonon scattering86 without adversely impacting electrical transport.

Interfacial MNLs have also been used to obtain multifold increases in bulk thermal conductivities of composites. For example, coating diamond and copper nanoparticles with MNLs prior to sintering has been shown to result in threefold Gint increases and yield the highest-in-class bulk thermal conductivity copper-diamond composites.79 To rationally translate this possibility to a variety of materials systems requires further studies aimed to reveal correlations between Gint and the nature and strength of bonding between the MNL and the materials comprising the interface, the backbone structure (aliphatic, aromatic, and conjugated groups) of the molecules constituting the MNL, and the MNL morphology and coverage.

Recent works have demonstrated that interfacial MNLs can enhance electronic transport across metal–semiconductor thermoelectric interfaces.84,87,88 These enhancements, however, are not due to enhanced charge carrier transport through the aliphatic backbones of the molecules, but are due to MNL-induced alterations of interfacial chemistry, phase formation, and/or diffusion pathways84,87–90 specific to the materials comprising the interface.

Introducing octanedithiol (ODT) MNLs at Cu/Bi2Te3 (n-type) interfaces result in up to 13-fold higher electrical contact conductivity Σc (Fig. 4).84 The enhanced carrier transport is attributed to the suppression of copper telluride formation due to strong Cu/ODT bonding. In contrast, weak Ni/ODT bonding hinders Ohmic-transport-promoting interfacial nickel tellurides,91 thereby yielding a lower Σc.84 Longer chain length aliphatic dithiol MNLs curtail Cu diffusion more effectively17 and increase the Σc for Cu, but have no significant effect for Ni.87 The strong correlation between Σc and the dithiol length for Cu is contrary to decreased charge carrier transport89,90 expected through longer molecules. This anomaly is explained by the more dominant effects of MNL coverage and morphology, which are sensitive to chain length. Short-chained (e.g., ≲1.4 nm) dithiols produce low-surface-coverage multilayers that are not conducive for blocking Cu diffusion, while longer dithiols form monolayers with higher surface coverage87 resulting in higher Σc. The MNL thicknesses and coverages at which these effects would be offset by the inherently low conductivity of the non-conducting molecules are yet to be identified.

FIG. 4.

A compilation of MNL-induced changes in electrical contact conductance across metal/MNL/thermoelectric interfaces for Cu and Ni metallization with different MNL chemistries labeled A–D.84,87,88

FIG. 4.

A compilation of MNL-induced changes in electrical contact conductance across metal/MNL/thermoelectric interfaces for Cu and Ni metallization with different MNL chemistries labeled A–D.84,87,88

Close modal

MPTMS MNLs at metal/Bi2Te3 interfaces lead to much higher Σc values than those obtained by dithiol MNLs for Cu and Ni metallization.88 Since both dithiol and mercapto-terminated silane MNLs decrease interfacial oxygen at metal/Bi2Te3 interfaces, curtailed metal diffusion and altered phase formation at the Cu/MNL interface appear to be the differentiating factors that lead to larger improvements in Σc. For Cu, the MNL-induced increase in Σc is due to curtailed Cu diffusion underpinned by strong bonding interactions at the Cu/MPTMS interface. For Ni, MPTMS-induced interfacial nickel tellurides formation enhances Σc.88 Thus, choosing appropriate MNL terminal chemistries is crucial to tailor the contact conductance Σc for a variety of material systems and device applications. MNLs have also been shown to increase the interfacial dielectric constant by adjusting the molecular structure and chemistry.92 Further studies aimed at understanding the individual and combined effects of molecular chain length and structure (e.g., aliphatic, conjugate moieties), and coverage and morphology, on interfacial MNL-mediated electrical transport should enable the use of MNLs for device contact engineering applications.

Manipulating the metal work function Φeff is essential in thin-film field-effect transistors and light emitting and photovoltaics devices to counter deleterious effects of interface defects93–96 and to prevent ambipolar carrier injection.97–102 Depositing MNLs on the metal surface to tune the metal Φeff is a well-known approach.93,103–111 Recent work has shown that introducing MNLs at metal–oxide interfaces2,112–114 is also an effective strategy to tune the metal Φeff. This approach is attractive, because interfacial MNLs offer possibilities to simultaneously enhance other properties, as described above.1,17,21,37,115

The nature and magnitude of the interfacial MNL-induced changes in metal Φeff depend on the metal-MNL bonding chemistry.2,108,112,113 The MNL orientation, molecular length, and chemical interactions strongly influence the interfacial dipole strength and, hence, the effective work function. Studies of MNL-functionalized HfO2 and Au surfaces, and Au/MNL/HfO2 interfaces, indicate that Φeff scales with MNL/metal bonding dipole strength. The dipoles at MNL/HfO2 and Au/MNL interfaces combine to give the effective work function shift ΔΦeff for the Au/MNL/HfO2 interface.2 In contrast, the molecular-length-induced changes in Φeff at Cu/MNL/HfO2 interfaces exceed the mutually opposing dipole contributions at MNL/HfO2 and Cu/MNL interfaces, respectively.113 These findings are in agreement with earlier works on thiol-terminated MNLs on Au surfaces (Fig. 5)93,105–110 and are similar to results of MNLs on Pt108, Ag,93,104,105,109 and SiO2114 surfaces, and MNL-treated Al/SiO2114 and Hg/SiO2116  interfaces.

FIG. 5.

A compilation of experimentally determined MNL-induced work function changes ΔΦeff on Au surfaces for different MNLs chemistries.93,105–110

FIG. 5.

A compilation of experimentally determined MNL-induced work function changes ΔΦeff on Au surfaces for different MNLs chemistries.93,105–110

Close modal

MNL morphology and molecular configuration are also important determinants of Φeff because the nature of bonding interactions within the MNL (e.g., permanent or induced dipole forces, or π stacking) and between the MNL and the metal (e.g., covalent bonds) strongly influence Φeff by impacting the molecular organization in the MNL.113,117 Ab initio and molecular dynamics calculations confirm experimental Φeff trends at Au-MNL interfaces, wherein the MNL consists of a bilayer of thiol- and phosphonic acid-terminated molecules formed by hydrogen bonding between phosphonic acid moieties108 and variable-length thiol-terminated alkanes.118 MNLs composed of a mixture of molecules with different termini, e.g., fluorine- and carboxyl-terminated thiol MNLs,119 can be used to simultaneously tune multiple properties of the interface: e.g., the fluorine termini result in large changes in the metal Φeff, while carboxyl moieties molecules allow the retention of interfacial wetting. A comprehensive understanding of the effects resulting from the interplay between MNL structure morphology, coverage, and layering effects on Φeff will be needed for harnessing interfacial MNLs for work function tuning applications.

The above-described body of work focused predominantly on heterointerface sandwiches comprised of two inorganic materials connected by a single organic, MNL and MNL-functionalized porous materials. The approach of reaping remarkable enhancements in multiple properties by MNL functionalization of a single interface can be potentially harnessed for designing multilayered hybrid nanomaterials with high interface fractions. For example, we envision that stacking MNL-bonded inorganic interfaces would amplify MNL-induced property enhancements and/or lead to emergent phenomena arising from the superposition of effects from proximal and distal interfaces (see Fig. 6). Our prior results indicating that the influence of an interfacial MNL extends beyond the immediately adjacent layers38 supports this hypothesis. Furthermore, nanoscale multilayers with high organic-inorganic interface fractions offer opportunities to transcend crystallographically constrained inorganic-organic hybrid materials (e.g., metal-organic frameworks120 and organic-halide perovskites121) and facilitate nanomaterials that overcome biology-limited compositions, layering scale and structure in natural biomaterials such as nacre.122 

FIG. 6.

Schematic illustration of (a) a high-interfacial-area nanomaterial obtained by building multiple stacks of MNL-bonded inorganic interfaces, e.g., by alternating ALD of the inorganic layer and MLD of the MNL, leading to emergent properties such as (b) mechanical bandgaps and (c) enhanced interfacial electrical conductance as a function of the MNL interface chemistry and structure.

FIG. 6.

Schematic illustration of (a) a high-interfacial-area nanomaterial obtained by building multiple stacks of MNL-bonded inorganic interfaces, e.g., by alternating ALD of the inorganic layer and MLD of the MNL, leading to emergent properties such as (b) mechanical bandgaps and (c) enhanced interfacial electrical conductance as a function of the MNL interface chemistry and structure.

Close modal

Structures with a single MNL-inorganic layer interface can be synthesized relatively easily by sequentially combining wet-chemical and vacuum-based deposition methods. For example, MNLs can be formed from molecular fluxes in vacuum or wet-chemical solutions, and inorganic layers can be obtained by physical/chemical vapor deposition or sol-gel processing.21,37 However, not all such simple methods are well-suited for scalable processing, e.g., to create multilayer stacks of MNL-tailored inorganic interfaces. In vacuo deposition of both inorganic layers and MNLs is desirable for scalable fabrication of such structures and their large-scale integration with nanodevices and packaging architectures. Combining atomic layer deposition (ALD) for growing the inorganic layers together with MNL formation using a single cycle of molecular layer deposition (MLD) offers tremendous potential for in vacuo synthesis of structures with multiple stacks of MNL-tailored inorganic interfaces123–125 through repeated ALD-MLD cycles. Both ALD and MLD involve pulsed delivery of vaporous precursors followed by adsorption and/or surface reactions that have been demonstrated for the synthesis of conformal films of nanoscale-thickness of a plethora of materials systems126 for a variety of applications including nanoelectronics devices.127 

Recent works have combined ALD and MLD for synthesizing MNL-interfaced oxide multilayers with unusual properties. For instance, TiO2:C superlattices synthesized by alternating ALD of TiO2 and MLD of hydroquinone (HQ) followed by post-deposition annealing exhibit 10-fold lower thermal conductivities than TiO2 alone, attractive for thermoelectrics applications.128 Similar property enhancements have been obtained in hybrid multilayers with other inorganic materials such as ZnO, TiO2, Al2O3, and NbO2,129 and MNLs with HQ, terephthalatic acid (TPA), para-phenylenediamine (PPD), and 4,4′-oxydianiline (ODA).130 Additionally, flexible magnets have been synthesized by inserting TPA MNLs by MLD between ALD Fe2O3 layers.131 The field is wide open for rationally designing hybrid structures that combine a wider variety of inorganic materials (e.g., nitrides, carbides, borides) and MNL chemistries. Such synthetically grown structures are reminiscent of biological structures such as nacre and bone grown at near-room temperatures,122 but at a much more miniaturized length scale, offering previously unrealized properties and responses.

Realizing hybrid multilayer architectures with inorganic layers bonded by interfacial MNLs is a challenge because low deposition temperatures are necessary to prevent MNL degradation and deleterious reactions, e.g., during subsequent deposition of inorganic layers. However, low deposition temperatures are often not conducive to obtain high quality crystalline layers, especially of high-melting inorganic materials. The use of remote plasmas during ALD would be one approach to obtain low-temperature process windows that yield high-quality inorganic layers while preventing MNL damage.132 Synthetic molecular chemistry to design MNL-forming molecules and ALD precursors with controlled volatility and reactivity will be an important competence for engineering MNL-interfaced hybrid inorganic materials using a combination of ALD and MLD.

Until now, classical1 simulations and first-principles37,58,96,108,133,134 calculations have played an important supportive role in interpreting experimental results to unveil mechanisms of MNL-induced fracture toughening, enhanced thermal transport and work function tuning. Moving forward, we envision the increased importance of proactive computational modeling that inspires and guides experimental design and synthesis of MNL-interfaced hybrid materials, and provides theoretical predictions and frameworks to identify and explain multiple emergent phenomena and property enhancements. Key aspects of such a multipronged modeling effort that guides efficient experimental exploration, understanding, and design of MNL-interfaced hybrid materials are described below with illustrative examples.

A fundamental understanding of the nucleation and growth mechanisms of MNLs on inorganic layers and inorganic layers on MNLs—a topic that is just beginning to be explored135—will be essential in optimizing ALD and MLD conditions for crafting desired microstructures and properties. We anticipate atomistic simulations to be a key for building models that capture MNL-induced effects on inorganic layer microstructure development and interface properties. Classical and ab initio molecular dynamics (CMD and AIMD) simulations, complemented by density-functional theory (DFT) calculations at 0 K, would offer insight136,137 into molecular adsorption–desorption energetics and kinetics138 of surface/precursor reactions139 on the inorganic surface, as well as intralayer140 and interlayer141 migration rates. Understanding the effects of multiple parameters on the MNL-inorganic interface chemistry and structure during initial stages of inorganic layer nucleation and growth135,142 may require machine-learning interatomic-potentials (MLIP) to overcome the limits of semi-empirical force fields. Amalgamation of such studies will help us to identify and understand the individual and combined effects of factors such as molecular chain lengths, conformation, orientation and packing, and bonding energetics at different inorganic surfaces.

Inorganic multilayers bonded by interfacial MNLs offer possibilities for accessing a variety of unusual properties (e.g., chemical, electronic, thermal, optical, and mechanical) underpinned by the MNL-tailored interface chemistry. Given the miniaturized scale of the MNL-tailored interface, it is crucial to devise a theoretical framework to predict relationships between inorganic nanolayer-MNL interface chemistry and properties, guide the design of effective experiments, support data interpretation, and complement experimental results. The challenge will be to choose and combine appropriate computational approaches and techniques134 that efficiently capture effects at different length scales (electronic structure, nano-/micro-/macro-structure), at least qualitatively. Two illustrative examples are provided below.

1. Mechanical properties

Recent molecular dynamics simulations of cyclic shear of Au/octanedithiol MNL/Au multilayers reveal a viscoelastic bandgap143 in the GHz regime [schematically captured in Fig. 6(b)] that scales with the Au-MNL interface bonding strength and density. These results and interfacial vibrational spectra143 indicate that the viscoelastic bandgap is an interface effect that cannot be explained by weighted averages of bulk responses of the individual layers. These findings provide a basis for designing experiments for accessing and tuning dynamic mechanical properties for applications, e.g., in smart composites and sensors with self-healing/-destructing mechanical responses,54 as discussed in Sec. III B. Capturing thermally activated nano- to micro-scale effects induced by the interfacial MNL by using AIMD144–147 would be important to understand key features of mechanical properties such as elasticity, plasticity, resilience, toughness, and fracture resistance. AIMD simulations of bonding at inorganic–inorganic and MNL-modified inorganic interfaces37,148–151 at finite temperatures will provide a strong basis for understanding energetics at small material domains (≲10 nm3) and short timeframes (≲ns). The latter would also contribute to develop training sets152–155 for computationally efficient and accurate semi-empirical and/or machine-learning interatomic-potentials to obtain insight into atomistic mechanisms of micro- and macro-scale phenomena in the interfacial MNL-modified inorganic multilayers.

2. Cross-interfacial electronic transport

Interfacial MNLs could facilitate control over electronic transport via magnetoresistance effects by serving as non-magnetic spacers between ferromagnetic layers.156–161, Ab initio calculations of spin transport across MNL-bonded cobalt layers using recently developed computational methods162–167 indicate a strong magnetoresistance effect characterized by a twofold difference between parallel and anti-parallel magnetization currents (Fig. 7). Additionally, interfacial MNLs formed from molecules with conjugated backbones exhibit greater conduction than those with the saturated counterparts, while longer chains increase the current ratio as tunneling probabilities decrease. Efficiently combining MNL growth predictions with high-fidelity electronic structure and transport calculations168–171 will require the creation of machine learning models that can combine the complexity of the interfaces with electronic property predictions that are currently beyond the reach of MLIP for molecular dynamics.

FIG. 7.

First-principles predictions of current density-voltage characteristics for alkane- and alkene-dithiol bonded Co(0001) thin film multilayers for MNLs with (a) two-carbon and (b) four-carbon chains. Conduction is consistently almost twofold larger for parallel magnetization (solid lines) compared to anti-parallel magnetization (dashed lines) of the Co films. In addition, conduction increases with conjugation and decreases with chain length, potentially providing a platform for finely tunable magnetoresistance.

FIG. 7.

First-principles predictions of current density-voltage characteristics for alkane- and alkene-dithiol bonded Co(0001) thin film multilayers for MNLs with (a) two-carbon and (b) four-carbon chains. Conduction is consistently almost twofold larger for parallel magnetization (solid lines) compared to anti-parallel magnetization (dashed lines) of the Co films. In addition, conduction increases with conjugation and decreases with chain length, potentially providing a platform for finely tunable magnetoresistance.

Close modal

MNLs interfacing inorganic materials have shown promise for obtaining multifold enhancements of a variety of properties and have provided glimpses into multiple MNL-induced interfacial phenomena that can be tapped. The harnessing of this knowledge for applications requires a further understanding of the fundamental mechanisms of property changes for different MNL/inorganic interface combinations as a function of MNL chemistry, structure, layering, morphology, and coverage. While studies so far have revealed the importance of these factors, further investigations are necessary to understand the relative contributions of these factors and their synergistic effects on specific properties.

The results of studies on interfacial MNLs have also opened up possibilities for designing nanomaterials and systems, where molecularly tailored interfaces constitute a significant fraction. For example, multilayering MNL-bonded inorganic interfaces could be used to amplify and/or access emergent properties through the superposition of MNL effects from multiple interfaces. This possibility is supported by demonstrations that interfacial MNLs can influence and activate phenomena in proximal as well as distal layers.38 Such effects can be used to tune frequency-dependent phenomena (e.g., interface toughening) to access emergent features such as bandgaps in fracture energy and viscoelastic damping.143 Tailoring the inorganic layers thicknesses and the MNLs in such multilayers could enable the transformative design of high-interface-fraction hybrid nanomaterials, wherein the MNL-interface properties become the material properties. The properties of such all-interfacial materials can presumably be further altered by manipulating layer spacings and periodicity. For instance, one could envision multilayers of nanoscale metallic nanolayers bonded by MNLs for designing optically transparent electrical conductors172 with tunable transparency and electrical transport through interface chemistry. Such structures could also provide options to simultaneously tune thermal and electrical conductivities and Seebeck coefficient for realizing layered thermoelectrics128,129,173 that are amenable to integration with flexible substrates.174–178 

We gratefully acknowledge funding from the U.S. National Science Foundation via Grant No. CMMI 2135725 from the BRITE program, the Knut and Alice Wallenberg Foundation through the Wallenberg Academy Fellows program via Grant No. KAW 2020-0196, the Swedish Research Council via Grant Nos. VR 2021-03826, VR 2018-07070, and VR 2021-04426, the Swedish National Infrastructure for Computing partially funded by grants via No. VR 2018-05973, and the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University supported by the SFO-Mat-LiU grant via No. 2009 00971.

The authors have no conflicts to disclose.

Ganpati Ramanath: Conceptualization (lead); Investigation (lead); Project administration (lead); Supervision (lead); Visualization (lead); Writing – original draft – Yes (lead); Writing – review & editing – Yes (lead). Collin Rowe: Visualization (lead); Writing – review & editing (equal). Geetu Sharma: Writing – review & editing (equal). Venkat Venkataramani: Writing – review & editing (supporting). Johan Alauzun: Writing – review & editing (supporting). Ravishankar Sundararaman: Investigation (lead), Writing – review & editing (supporting). Pawel Keblinski: Writing – review & editing (supporting). Davide Sangiovanni: Writing – review & editing (equal). Per Eklund: Project administration (equal); Writing – review & editing (equal). Henrik Pedersen: Writing – review & editing (equal).

The data that support the findings of this study are available within the article and/or the cited references.

1.
P. J.
O'Brien
,
S.
Shenogin
,
J. X.
Liu
,
P. K.
Chow
,
D.
Laurencin
,
P. H.
Mutin
,
M.
Yamaguchi
,
P.
Keblinski
, and
G.
Ramanath
,
Nat. Mater.
12
(
2
),
118
122
(
2013
).
2.
M.
Kwan
,
T.
Cardinal
,
P. H.
Mutin
, and
G.
Ramanath
,
Appl. Phys. Lett.
108
(
19
),
191607
(
2016
).
3.
A.
Erdemir
,
Tribol. Int.
38
(
3
),
249
256
(
2005
).
4.
X.-M.
Zhao
,
Y.
Xia
, and
G. M.
Whitesides
,
J. Mater. Chem.
7
(
7
),
1069
1074
(
1997
).
5.
D.
Zabetakis
and
W. J.
Dressick
,
ACS Appl. Mater. Interfaces
1
(
1
),
4
25
(
2009
).
6.
R. L.
Jones
,
B. L.
Harrod
, and
J. D.
Batteas
,
Langmuir
26
(
21
),
16355
16361
(
2010
).
7.
M. A.
Baker
and
J.
Li
,
Surf. Interface Anal.
38
(
4
),
863
867
(
2006
).
8.
S. K.
Arya
,
P. R.
Solanki
,
M.
Datta
, and
B. D.
Malhotra
,
Biosens. Bioelectron.
24
(
9
),
2810
2817
(
2009
).
9.
X.
Guo
,
M.
Myers
,
S.
Xiao
,
M.
Lefenfeld
,
R.
Steiner
,
G. S.
Tulevski
,
J.
Tang
,
J.
Baumert
,
F.
Leibfarth
,
J. T.
Yardley
,
M. L.
Steigerwald
,
P.
Kim
, and
C.
Nuckolls
,
Proc. Natl. Acad. Sci. U. S. A.
103
(
31
),
11452
11456
(
2006
).
10.
S. G. J.
Mathijssen
,
E. C. P.
Smits
,
P. A.
Van Hal
,
H. J.
Wondergem
,
S. A.
Ponomarenko
,
A.
Moser
,
R.
Resel
,
P. A.
Bobbert
,
M.
Kemerink
,
R. A. J.
Janssen
, and
D. M.
De Leeuw
,
Nat. Nanotechnol.
4
(
10
),
674
680
(
2009
).
11.
P. E.
Laibinis
and
G. M.
Whitesides
,
J. Am. Chem. Soc.
114
(
23
),
9022
9028
(
1992
).
12.
A.
Fiala
,
A.
Chibani
,
A.
Darchen
,
A.
Boulkamh
, and
K.
Djebbar
,
Appl. Surf. Sci.
253
(
24
),
9347
9356
(
2007
).
13.
M. D.
Porter
,
T. B.
Bright
,
D. L.
Allara
, and
C. E. D.
Chidsey
,
J. Am. Chem. Soc.
109
(
12
),
3559
3568
(
1987
).
14.
M. F.
Durstock
and
M. F.
Rubner
,
Langmuir
17
(
25
),
7865
7872
(
2001
).
15.
A.
Ulman
,
Chem. Rev.
96
(
4
),
1533
1554
(
1996
).
16.
See https://irds.ieee.org/editions/2022 for “
International Roadmap for Devices and Systems (IRDS™)
,” 2022 Edition, More Moore. (
2022
).
17.
A.
Krishnamoorthy
,
K.
Chanda
,
S. P.
Murarka
,
G.
Ramanath
, and
J. G.
Ryan
,
Appl. Phys. Lett.
78
(
17
),
2467
2469
(
2001
).
18.
M.
Baklanov
,
P. S.
Ho
, and
E.
Zschech
,
Advanced Interconnects for ULSI Technology
(
Wiley
,
2012
).
19.
A.
Maestre Caro
,
G.
Maes
,
G.
Borghs
, and
C. M.
Whelan
,
Microelectron. Eng.
85
(
10
),
2047
2050
(
2008
).
20.
P. G.
Ganesan
,
J.
Gamba
,
A.
Ellis
,
R. S.
Kane
, and
G.
Ramanath
,
Appl. Phys. Lett.
83
(
16
),
3302
3304
(
2003
).
21.
G.
Ramanath
,
G.
Cui
,
P. G.
Ganesan
,
X.
Guo
,
A. V.
Ellis
,
M.
Stukowski
,
K.
Vijayamohanan
,
P.
Doppelt
, and
M.
Lane
,
Appl. Phys. Lett.
83
(
2
),
383
385
(
2003
).
22.
P. G.
Ganesan
,
A. P.
Singh
, and
G.
Ramanath
,
Appl. Phys. Lett.
85
(
4
),
579
581
(
2004
).
23.
D. D.
Gandhi
,
A. P.
Singh
,
M.
Lane
,
M.
Eizenberg
, and
G.
Ramanath
,
J. Appl. Phys.
101
(
8
),
084505
(
2007
).
24.
S.
Garg
,
B.
Singh
,
R.
Teki
,
M. W.
Lane
, and
G.
Ramanath
,
Appl. Phys. Lett.
96
(
14
),
143121
(
2010
).
25.
N.
Mikami
,
N.
Hata
,
T.
Kikkawa
, and
H.
Machida
,
Appl. Phys. Lett.
83
(
25
),
5181
5183
(
2003
).
26.
D. D.
Gandhi
,
U.
Tisch
,
B.
Singh
,
M.
Eizenberg
, and
G.
Ramanath
,
Appl. Phys. Lett.
91
(
14
),
143503
(
2007
).
27.
A.
Mallikarjunan
,
S. P.
Murarka
, and
T.-M.
Lu
,
Appl. Phys. Lett.
79
(
12
),
1855
1857
(
2001
).
28.
P. G.
Ganesan
,
A.
Kumar
, and
G.
Ramanath
,
Appl. Phys. Lett.
87
(
1
),
011905
(
2005
).
29.
B. L.
Rivas
,
N.
Schiappacasse
, and
L. A.
Basáez
,
Polym. Bull.
45
(
3
),
259
265
(
2000
).
30.
D. D.
Gandhi
,
P. G.
Ganesan
,
V.
Chandrasekar
,
Z.
Gan
,
S. G.
Mhaisalkar
,
H.
Li
, and
G.
Ramanath
,
Appl. Phys. Lett.
90
(
16
),
163507
(
2007
).
31.
G.
Ramanath
,
M.
Stukowski
,
H.
Kim
, and
M. J.
Frederick
, in
Proceedings of the 6th International Conference on Solid-State and Integrated Circuit Technology
, Cat. No. 01EX443 (
2001
).
32.
S.
Sawada
,
Y.
Masuda
,
P.
Zhu
, and
K.
Koumoto
,
Langmuir
22
(
1
),
332
337
(
2006
).
33.
P.
Zhu
,
Y.
Masuda
, and
K.
Koumoto
,
J. Mater. Chem.
14
(
6
),
976
(
2004
).
34.
E.
Glickman
,
A.
Inberg
,
N.
Fishelson
, and
Y.
Shaham-Diamand
,
Microelectron. Eng.
84
(
11
),
2466
2470
(
2007
).
35.
A. M.
Caro
,
S.
Armini
,
O.
Richard
,
G.
Maes
,
G.
Borghs
,
C. M.
Whelan
, and
Y.
Travaly
,
Adv. Funct. Mater.
20
(
7
),
1125
1131
(
2010
).
36.
S. W.
King
,
ECS J. Solid State Sci.
4
(
1
),
N3029
N3047
(
2015
).
37.
D. D.
Gandhi
,
M.
Lane
,
Y.
Zhou
,
A. P.
Singh
,
S.
Nayak
,
U.
Tisch
,
M.
Eizenberg
, and
G.
Ramanath
,
Nature
447
(
7142
),
299
302
(
2007
).
38.
M.
Kwan
,
M.
Braccini
,
M. W.
Lane
, and
G.
Ramanath
,
Nat. Commun.
9
,
5249
(
2018
).
39.
A.
Jain
,
B.
Singh
,
S.
Garg
,
N.
Ravishankar
,
M.
Lane
, and
G.
Ramanath
,
Phys. Rev. B
83
(
3
),
35412
(
2011
).
40.
C.
Hoppe
,
C.
Ebbert
,
M.
Voigt
,
H. C.
Schmidt
,
D.
Rodman
,
W.
Homberg
,
H. J.
Maier
, and
G.
Grundmeier
,
Adv. Eng. Mater.
18
(
6
),
1066
1074
(
2016
).
41.
P.-H.
Wu
,
Y.-Z.
Lai
,
Y.-P.
Zhang
,
M. C.
Sil
,
P.-H. H.
Lee
,
T.-C.
Wei
, and
C.-M.
Chen
,
ACS Appl. Nano Mater.
3
(
4
),
3741
3749
(
2020
).
42.
A. S.
D'Souza
and
C. G.
Pantano
,
J. Am. Ceram. Soc.
85
(
6
),
1499
1504
(
2002
).
43.
S.
Garg
,
A.
Jain
,
C.
Karthik
,
B.
Singh
,
R.
Teki
,
V. S.
Smentkowski
,
M. W.
Lane
, and
G.
Ramanath
,
J. Appl. Phys.
108
(
3
),
034317
(
2010
).
44.
Q.
Xiao
,
B. L.
Watson
, and
R. H.
Dauskardt
,
Adv. Mater. Interfaces
3
(
14
),
1600118
(
2016
).
45.
Y.
Zong
,
X.
Shan
, and
J. J.
Watkins
,
Langmuir
20
(
21
),
9210
9216
(
2004
).
46.
P. G.
Ganesan
,
G.
Cui
,
K.
Vijayamohanan
,
M.
Lane
, and
G.
Ramanath
,
J. Vac. Sci. Technol. B
23
(
1
),
327
(
2005
).
47.
S.
Garg
,
B.
Singh
,
X.
Liu
,
A.
Jain
,
N.
Ravishankar
,
L.
Interrante
, and
G.
Ramanath
,
J. Phys. Chem. Lett.
1
(
1
),
336
340
(
2010
).
48.
B.
Singh
,
S.
Garg
,
J.
Rathore
,
R.
Moore
,
N.
Ravishankar
,
L.
Interrante
, and
G.
Ramanath
,
ACS Appl. Mater. Interf.
2
(
5
),
1275
1280
(
2010
).
49.
B.
Singh
,
J. Y.
Hyun
,
A. P.
Singh
,
D.
Gandhi
,
Z.
Wu
,
L. V.
Interrante
, and
G.
Ramanath
,
ACS Appl. Mater. Interf.
2
(
8
),
2180
2184
(
2010
).
50.
Y.-I.
Lee
and
Y.-H.
Choa
,
J. Mater. Chem.
22
(
25
),
12517
(
2012
).
51.
Z.
Dai
,
S. K.
Yadavalli
,
M.
Chen
,
A.
Abbaspourtamijani
,
Y.
Qi
, and
N. P.
Padture
,
Science
372
(
6542
),
618
622
(
2021
).
52.
S.-K.
Kang
,
R. K. J.
Murphy
,
S.-W.
Hwang
,
S. M.
Lee
,
D. V.
Harburg
,
N. A.
Krueger
,
J.
Shin
,
P.
Gamble
,
H.
Cheng
,
S.
Yu
,
Z.
Liu
,
J. G.
McCall
,
M.
Stephen
,
H.
Ying
,
J.
Kim
,
G.
Park
,
R. C.
Webb
,
C. H.
Lee
,
S.
Chung
,
D. S.
Wie
,
A. D.
Gujar
,
B.
Vemulapalli
,
A. H.
Kim
,
K.-M.
Lee
,
J.
Cheng
,
Y.
Huang
,
S. H.
Lee
,
P. V.
Braun
,
W. Z.
Ray
, and
J. A.
Rogers
,
Nature
530
(
7588
),
71
(
2016
).
53.
H. L.
Hernandez
,
S.-K.
Kang
,
O. P.
Lee
,
S.-W.
Hwang
,
J. A.
Kaitz
,
B.
Inci
,
C. W.
Park
,
S.
Chung
,
N. R.
Sottos
,
J. S.
Moore
,
J. A.
Rogers
, and
S. R.
White
,
Adv. Mater.
26
(
45
),
7637
7642
(
2014
).
54.
J. F.
Patrick
,
M. J.
Robb
,
N. R.
Sottos
,
J. S.
Moore
, and
S. R.
White
,
Nature
540
(
7633
),
363
370
(
2016
).
55.
A. A.
Griffith
,
Phil. Trans. Royal Soc. London Series A
221
(
582–593
),
163
198
(
1921
).
56.
G.
Irwin
, “Fracture Dynamics, Fracturing of Metals,” in
1947 ASM Symp. Trans. 40A
(
ASM
,
Cleveland
,
1948
), pp.
147
166
.
57.
M.
Kwan
,
M.
Braccini
,
A.
Jain
,
M. W.
Lane
, and
G.
Ramanath
,
Scr. Mater.
121
,
42
44
(
2016
).
58.
D.
Vijayashankar
,
H.
Zhu
,
S.
Garg
,
R.
Teki
,
R.
Ramprasad
,
M. W.
Lane
, and
G.
Ramanath
,
Appl. Phys. Lett.
99
(
13
),
133103
(
2011
).
59.
S.
Garg
,
R.
Teki
,
M. W.
Lane
, and
G.
Ramanath
,
Appl. Phys. Lett.
99
(
13
),
133101
(
2011
).
60.
B.
Singh
,
D. D.
Gandhi
,
A. P.
Singh
,
R.
Moore
, and
G.
Ramanath
,
Appl. Phys. Lett.
92
(
11
),
113516
(
2008
).
61.
B.
Singh
,
S.
Garg
,
A.
Jain
,
R.
Moore
, and
G.
Ramanath
,
J. Vac. Sci. Technol. B
29
(
1
),
010602
(
2011
).
62.
A. P.
Singh
,
D. D.
Gandhi
,
E.
Lipp
,
M.
Eizenberg
, and
G.
Ramanath
,
J. Appl. Phys.
100
(
11
),
114504
(
2006
).
63.
J. J.
Senkevich
,
P.-I.
Wang
,
C. J.
Wiegand
, and
T.-M.
Lu
,
Appl. Phys. Lett.
84
(
14
),
2617
2619
(
2004
).
64.
A. P.
Singh
,
D. D.
Gandhi
,
B.
Singh
,
E.
Simonyi
,
E. G.
Liniger
,
S. V.
Nitta
,
M. W.
Lane
, and
G.
Ramanath
,
Appl. Phys. Lett.
94
(
9
),
093502
(
2009
).
65.
A. P.
Singh
,
D. D.
Gandhi
,
R.
Moore
, and
G.
Ramanath
,
J. Appl. Phys.
102
(
4
),
044507
(
2007
).
66.
D. D.
Gandhi
,
B.
Singh
,
A. P.
Singh
,
R.
Moore
,
E.
Simonyi
,
M. W.
Lane
, and
G.
Ramanath
,
J. Appl. Phys.
106
(
5
),
054502
(
2009
).
67.
P.
Zhang
,
P.
Yuan
,
X.
Jiang
,
S.
Zhai
,
J.
Zeng
,
Y.
Xian
,
H.
Qin
, and
D.
Yang
,
Small
14
(
2
),
1702769
(
2018
).
68.
I.
Seshadri
,
T.
Borca-Tasciuc
,
P.
Keblinski
, and
G.
Ramanath
,
Appl. Phys. Lett.
103
(
17
),
173113
(
2013
).
70.
S.
Park
,
J.
Jang
,
H.
Kim
,
D. I.
Park
,
K.
Kim
, and
H. J.
Yoon
,
J. Mater. Chem. A
8
(
38
),
19746
19767
(
2020
).
71.
Y.
Ren
,
K.
Wu
,
D. F.
Coker
, and
N.
Quirke
,
J. Chem. Phys.
151
(
17
),
174708
(
2019
).
72.
N.
Shenogina
,
R.
Godawat
,
P.
Keblinski
, and
S.
Garde
,
Phys. Rev. Lett.
102
(
15
),
156101
(
2009
).
73.
D.
Segal
,
A.
Nitzan
, and
P.
Hänggi
,
J. Chem. Phys.
119
(
13
),
6840
6855
(
2003
).
74.
Z.
Ge
,
D. G.
Cahill
, and
P. V.
Braun
,
Phys. Rev. Lett.
96
(
18
),
186101
(
2006
).
75.
F.
Sun
,
T.
Zhang
,
M. M.
Jobbins
,
Z.
Guo
,
X.
Zhang
,
Z.
Zheng
,
D.
Tang
,
S.
Ptasinska
, and
T.
Luo
,
Adv. Mater.
26
(
35
),
6093
6099
(
2014
).
76.
K.
Zheng
,
F.
Sun
,
J.
Zhu
,
Y.
Ma
,
X.
Li
,
D.
Tang
,
F.
Wang
, and
X.
Wang
,
ACS Nano
10
(
8
),
7792
7798
(
2016
).
77.
S.
Majumdar
,
J. A.
Sierra-Suarez
,
S. N.
Schiffres
,
W.-L.
Ong
,
C. F.
Higgs
,
A. J. H.
Mcgaughey
, and
J. A.
Malen
,
Nano Lett.
15
(
5
),
2985
2991
(
2015
).
78.
M. D.
Losego
,
M. E.
Grady
,
N. R.
Sottos
,
D. G.
Cahill
, and
P. V.
Braun
,
Nat. Mater.
11
(
6
),
502
506
(
2012
).
79.
B.
Xu
,
S.-W.
Hung
,
S.
Hu
,
C.
Shao
,
R.
Guo
,
J.
Choi
,
T.
Kodama
,
F.-R.
Chen
, and
J.
Shiomi
,
Carbon
175
,
299
306
(
2021
).
80.
M.
Hu
,
J. V.
Goicochea
,
B.
Michel
, and
D.
Poulikakos
,
Nano Lett.
10
(
1
),
279
285
(
2010
).
81.
L.
Cui
,
R.
Miao
,
C.
Jiang
,
E.
Meyhofer
, and
P.
Reddy
,
J. Chem. Phys.
146
(
9
),
092201
(
2017
).
82.
Z.
Cheng
,
R.
Li
,
X.
Yan
,
G.
Jernigan
,
J.
Shi
,
M. E.
Liao
,
N. J.
Hines
,
C. A.
Gadre
,
J. C.
Idrobo
,
E.
Lee
,
K. D.
Hobart
,
M. S.
Goorsky
,
X.
Pan
,
T.
Luo
, and
S.
Graham
,
Nat. Commun.
12
(
1
),
6901
(
2021
).
83.
T.
Meier
,
F.
Menges
,
P.
Nirmalraj
,
H.
Hölscher
,
H.
Riel
, and
B.
Gotsmann
,
Phys. Rev. Lett.
113
(
6
),
060801
(
2014
).
84.
T.
Cardinal
,
Devender
,
T.
Borca-Tasciuc
, and
G.
Ramanath
,
ACS Appl. Mater. Interfaces
8
(
7
),
4275
4279
(
2016
).
85.
Devender
,
R. J.
Mehta
,
K.
Lofgreen
,
R.
Mahajan
,
M.
Yamaguchi
,
T.
Borca-Tasciuc
, and
G.
Ramanath
,
J. Vac. Sci. Technol. A
33
(
2
),
020605
(
2015
).
86.
M.
Famili
,
I.
Grace
,
H.
Sadeghi
, and
C. J.
Lambert
,
ChemPhysChem
18
(
10
),
1234
1241
(
2017
).
87.
T.
Cardinal
,
M.
Kwan
,
T.
Borca-Tasciuc
, and
G.
Ramanath
,
Appl. Phys. Lett.
109
(
17
),
173904
(
2016
).
88.
T.
Cardinal
,
M.
Kwan
,
T.
Borca-Tasciuc
, and
G.
Ramanath
,
ACS Appl. Mater. Interfaces.
9
(
3
),
2001
2005
(
2017
).
89.
S.-P.
Feng
,
Y.-H.
Chang
,
J.
Yang
,
B.
Poudel
,
B.
Yu
,
Z.
Ren
, and
G.
Chen
,
Phys. Chem. Chem. Phys.
15
(
18
),
6757
(
2013
).
90.
T.
Lee
,
W.
Wang
, and
M. A.
Reed
,
Jpn. J. Appl. Phys.
44
(
1B
),
523
529
(
2005
).
91.
K.
Xiong
,
W.
Wang
,
H. N.
Alshareef
,
R. P.
Gupta
,
J. B.
White
,
B. E.
Gnade
, and
K.
Cho
,
J. Phys. D: Appl. Phys.
43
(
11
),
115303
(
2010
).
92.
X.
Chen
,
T.
Salim
,
Z.
Zhang
,
X.
Yu
,
I.
Volkova
, and
C. A.
Nijhuis
,
ACS Appl. Mater. Interfaces
12
(
40
),
45111
45121
(
2020
).
93.
B.
De Boer
,
A.
Hadipour
,
M. M.
Mandoc
,
T.
Van Woudenbergh
, and
P. W. M.
Blom
,
Adv. Mater.
17
(
5
),
621
625
(
2005
).
94.
J.
Robertson
,
Rep. Prog. Phys.
69
(
2
),
327
396
(
2006
).
95.
J.
Robertson
,
Solid State Electron.
49
(
3
),
283
293
(
2005
).
96.
H.
Zhu
,
G.
Ramanath
, and
R.
Ramprasad
,
J. Appl. Phys.
114
(
11
),
114310
(
2013
).
97.
I. H.
Campbell
,
S.
Rubin
,
T. A.
Zawodzinski
,
J. D.
Kress
,
R. L.
Martin
,
D. L.
Smith
,
N. N.
Barashkov
, and
J. P.
Ferraris
,
Phys. Rev. B
54
(
20
),
R14321
R14324
(
1996
).
98.
S.
Das
,
A.
Sebastian
,
E.
Pop
,
C. J.
McClellan
,
A. D.
Franklin
,
T.
Grasser
,
T.
Knobloch
,
Y.
Illarionov
,
A. V.
Penumatcha
,
J.
Appenzeller
,
Z.
Chen
,
W.
Zhu
,
I.
Asselberghs
,
L.-J.
Li
,
U. E.
Avci
,
N.
Bhat
,
T. D.
Anthopoulos
, and
R.
Singh
,
Nat. Electron.
4
(
11
),
786
799
(
2021
).
99.
S.
Kobayashi
,
T.
Nishikawa
,
T.
Takenobu
,
S.
Mori
,
T.
Shimoda
,
T.
Mitani
,
H.
Shimotani
,
N.
Yoshimoto
,
S.
Ogawa
, and
Y.
Iwasa
,
Nat. Mater.
3
(
5
),
317
322
(
2004
).
100.
Y.
Takeda
,
K.
Hayasaka
,
R.
Shiwaku
,
K.
Yokosawa
,
T.
Shiba
,
M.
Mamada
,
D.
Kumaki
,
K.
Fukuda
, and
S.
Tokito
,
Sci. Rep.
6
(
1
),
25714
(
2016
).
101.
M.
Kitamura
,
Y.
Kuzumoto
,
S.
Aomori
,
M.
Kamura
,
J. H.
Na
, and
Y.
Arakawa
,
Appl. Phys. Lett.
94
(
8
),
083310
(
2009
).
102.
Y.
Xie
,
S.
Cai
,
Q.
Shi
,
S.
Ouyang
,
W.-Y.
Lee
,
Z.
Bao
,
J. R.
Matthews
,
R. A.
Bellman
,
M.
He
, and
H. H.
Fong
,
Org. Electron.
15
(
9
),
2073
2078
(
2014
).
103.
S. D.
Evans
and
A.
Ulman
,
Chem. Phys. Lett.
170
(
5–6
),
462
466
(
1990
).
104.
J.-P.
Hong
,
A.-Y.
Park
,
S.
Lee
,
J.
Kang
,
N.
Shin
, and
D. Y.
Yoon
,
Appl. Phys. Lett.
92
(
14
),
143311
(
2008
).
105.
D. M.
Alloway
,
A. L.
Graham
,
X.
Yang
,
A.
Mudalige
,
R.
Colorado
,
V. H.
Wysocki
,
J. E.
Pemberton
,
T. R.
Lee
,
R. J.
Wysocki
, and
N. R.
Armstrong
,
J. Phys. Chem. C
113
(
47
),
20328
20334
(
2009
).
106.
D.
Boudinet
,
M.
Benwadih
,
Y.
Qi
,
S.
Altazin
,
J.-M.
Verilhac
,
M.
Kroger
,
C.
Serbutoviez
,
R.
Gwoziecki
,
R.
Coppard
,
G.
Le Blevennec
,
A.
Kahn
, and
G.
Horowitz
,
Org. Electron.
11
(
2
),
227
237
(
2010
).
107.
Y.
Kuzumoto
and
M.
Kitamura
,
Appl. Phys. Express
7
(
3
),
035701
(
2014
).
108.
G.
Ramanath
,
M.
Kwan
,
P. K.
Chow
,
Y. C.
Quintero
,
P. H.
Mutin
, and
R.
Ramprasad
,
Appl. Phys. Lett.
105
(
8
),
081601
(
2014
).
109.
S.
Tatara
,
Y.
Kuzumoto
, and
M.
Kitamura
,
Jpn. J. Appl. Phys.
55
(
3S2
),
03DD02
(
2016
).
110.
T.
Yoshioka
,
H.
Fujita
,
Y.
Kimura
,
Y.
Hattori
, and
M.
Kitamura
,
Flex. Print. Electron.
5
(
1
),
014011
(
2020
).
111.
V.
De Renzi
,
R.
Rousseau
,
D.
Marchetto
,
R.
Biagi
,
S.
Scandolo
, and
U.
Del Pennino
,
Phys. Rev. Lett.
95
(
4
),
046804
(
2005
).
112.
R.
Winter
,
M.
Kwan
,
P. H.
Mutin
,
G.
Ramanath
, and
M.
Eizenberg
,
Appl. Phys. Lett.
110
(
18
),
181604
(
2017
).
113.
M.
Kwan
,
T.
Cardinal
,
P. H.
Mutin
, and
G.
Ramanath
,
Appl. Phys. Lett.
110
(
11
),
111601
(
2017
).
114.
M.
Kwan
,
R.
Winter
,
P. H.
Mutin
,
M.
Eizenberg
, and
G.
Ramanath
,
Appl. Phys. Lett.
111
(
12
),
121602
(
2017
).
115.
R. C.
Setiawan
,
M.
Wu
, and
D. Y.
Li
,
Langmuir
38
(
5
),
1672
1679
(
2022
).
116.
Y.-J.
Liu
and
H.-Z.
Yu
,
J. Phys. Chem. B
107
(
31
),
7803
7811
(
2003
).
117.
H. J.
Lee
,
A. C.
Jamison
, and
T. R.
Lee
,
Acc. Chem. Res.
48
(
12
),
3007
3015
(
2015
).
118.
M. L.
Sushko
and
A. L.
Shluger
,
Adv. Mater.
21
(
10–11
),
1111
1114
(
2009
).
119.
C.-Y.
Chen
,
K.-Y.
Wu
,
Y.-C.
Chao
,
H.-W.
Zan
,
H.-F.
Meng
, and
Y.-T.
Tao
,
Org. Electron.
12
(
1
),
148
153
(
2011
).
120.
H.
Furukawa
,
K. E.
Cordova
,
M.
O'Keeffe
, and
O. M.
Yaghi
,
Science
341
(
6149
),
1230444
(
2013
).
121.
T. M.
Brenner
,
D. A.
Egger
,
L.
Kronik
,
G.
Hodes
, and
D.
Cahen
,
Nat. Rev. Mater.
1
(
1
),
15007
(
2016
).
122.
Z. Y.
Tang
,
N. A.
Kotov
,
S.
Magonov
, and
B.
Ozturk
,
Nat. Mater.
2
(
6
),
413
418
(
2003
).
123.
N. E.
Richey
,
C.
De Paula
, and
S. F.
Bent
,
J. Chem. Phys.
152
(
4
),
040902
(
2020
).
124.
S. M.
George
,
A. A.
Dameron
, and
B.
Yoon
,
Acc. Chem. Res.
42
(
4
),
498
508
(
2009
).
125.
P.
Sundberg
and
M.
Karppinen
,
Beilstein J. Nanotechnol.
5
,
1104
1136
(
2014
).
126.
See https://www.atomiclimits.com/alddatabase/ for “
Atomic Layer Deposition Database
” (
2022
).
127.
J.
Multia
and
M.
Karppinen
,
Adv. Mater. Inter.
9
(
15
),
2200210
(
2022
).
128.
J.-P.
Niemelä
,
A.
Giri
,
P. E.
Hopkins
, and
M.
Karppinen
,
J. Mater. Chem. A
3
(
21
),
11527
11532
(
2015
).
129.
J.-P.
Niemelä
,
A. J.
Karttunen
, and
M.
Karppinen
,
J. Mater. Chem. C
3
(
40
),
10349
10361
(
2015
).
130.
R.
Ghiyasi
,
M.
Milich
,
J.
Tomko
,
P. E.
Hopkins
, and
M.
Karppinen
,
Appl. Phys. Lett.
118
(
21
),
211903
(
2021
).
131.
J.-P.
Niemelä
,
A.
Philip
,
N.
Rohbeck
,
M.
Karppinen
,
J.
Michler
, and
I.
Utke
,
ACS Appl. Nano Mater.
4
(
2
),
1692
1701
(
2021
).
132.
H. C. M.
Knoops
,
T.
Faraz
,
K.
Arts
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
37
(
3
),
030902
(
2019
).
133.
P. K.
Chow
,
Y.
Cardona Quintero
,
P.
O'Brien
,
P.
Hubert Mutin
,
M.
Lane
,
R.
Ramprasad
, and
G.
Ramanath
,
Appl. Phys. Lett.
102
(
20
),
201605
(
2013
).
134.
Y.
Cardona Quintero
,
G.
Ramanath
, and
R.
Ramprasad
,
J. Appl. Phys.
114
(
16
),
163503
(
2013
).
135.
J.
Westermayr
,
S.
Chaudhuri
,
A.
Jeindl
,
O. T.
Hofmann
, and
R. J.
Maurer
,
Digit. Discov.
1
(
4
),
463
475
(
2022
).
136.
D.
Edström
,
D. G.
Sangiovanni
,
L.
Hultman
,
I.
Petrov
,
J. E.
Greene
, and
V.
Chirita
,
J. Vac. Sci. Technol. A
34
(
4
),
041509
(
2016
).
137.
D.
Edström
,
D. G.
Sangiovanni
,
L.
Hultman
,
I.
Petrov
,
J. E.
Greene
, and
V.
Chirita
,
Thin Solid Films
688
,
137380
(
2019
).
138.
D. G.
Sangiovanni
,
D.
Edström
,
L.
Hultman
,
I.
Petrov
,
J. E.
Greene
, and
V.
Chirita
,
Surf. Sci.
624
,
25
31
(
2014
).
139.
D. G.
Sangiovanni
,
G. K.
Gueorguiev
, and
A.
Kakanakova-Georgieva
,
Phys. Chem. Chem. Phys.
20
(
26
),
17751
17761
(
2018
).
140.
D. G.
Sangiovanni
,
D.
Edström
,
L.
Hultman
,
I.
Petrov
,
J. E.
Greene
, and
V.
Chirita
,
Surf. Sci.
627
,
34
41
(
2014
).
141.
D. G.
Sangiovanni
,
A. B.
Mei
,
D.
Edström
,
L.
Hultman
,
V.
Chirita
,
I.
Petrov
, and
J. E.
Greene
,
Phys. Rev. B
97
(
3
),
035406
(
2018
).
142.
V. L.
Deringer
,
M. A.
Caro
, and
G.
Csányi
,
Adv. Mater.
31
(
46
),
1902765
(
2019
).
143.
R.
Khadka
,
G.
Ramanath
, and
P.
Keblinski
,
Sci. Rep.
12
(
1
),
10788
(
2022
).
144.
D. G.
Sangiovanni
,
F.
Tasnádi
,
L. J. S.
Johnson
,
M.
Odén
, and
I. A.
Abrikosov
,
Phys. Rev. Mater.
4
(
3
),
033605
(
2020
).
145.
A. B.
Mei
,
H.
Kindlund
,
E.
Broitman
,
L.
Hultman
,
I.
Petrov
,
J. E.
Greene
, and
D. G.
Sangiovanni
,
Acta Mater.
192
,
78
88
(
2020
).
146.
D. G.
Sangiovanni
,
W.
Mellor
,
T.
Harrington
,
K.
Kaufmann
, and
K.
Vecchio
,
Mater. Des.
209
,
109932
(
2021
).
147.
N.
Koutná
,
L.
Löfler
,
D.
Holec
,
Z.
Chen
,
Z.
Zhang
,
L.
Hultman
,
P. H.
Mayrhofer
, and
D. G.
Sangiovanni
,
Acta Mater.
229
,
117809
(
2022
).
148.
D.
Holec
,
F.
Tasnádi
,
P.
Wagner
,
M.
Friák
,
J.
Neugebauer
,
P. H.
Mayrhofer
, and
J.
Keckes
,
Phys. Rev. B
90
(
18
),
184106
(
2014
).
149.
F.
Wang
,
D.
Holec
,
M.
Odén
,
F.
Mücklich
,
I. A.
Abrikosov
, and
F.
Tasnádi
,
Acta Mater.
127
,
124
132
(
2017
).
150.
N.
Koutná
,
P.
Řehák
,
Z.
Chen
,
M.
Bartosik
,
M.
Fallmann
,
M.
Černý
,
Z.
Zhang
,
M.
Friák
,
M.
Šob
,
P. H.
Mayrhofer
, and
D.
Holec
,
Scr. Mater.
165
,
159
163
(
2019
).
151.
W.
Setyawan
,
J. Appl. Phys.
128
(
14
),
145101
(
2020
).
152.
Y.
Zuo
,
C.
Chen
,
X.
Li
,
Z.
Deng
,
Y.
Chen
,
J.
Behler
,
G.
Csányi
,
A. V.
Shapeev
,
A. P.
Thompson
,
M. A.
Wood
, and
S. P.
Ong
,
J. Phys. Chem. A
124
(
4
),
731
745
(
2020
).
154.
B.
Mortazavi
,
E. V.
Podryabinkin
,
I. S.
Novikov
,
T.
Rabczuk
,
X.
Zhuang
, and
A. V.
Shapeev
,
Comput. Phys. Commun.
258
,
107583
(
2021
).
155.
M.
Wen
,
Y.
Afshar
,
R. S.
Elliott
, and
E. B.
Tadmor
,
Comput. Phys. Commun.
272
,
108218
(
2022
).
156.
M. N.
Baibich
,
J. M.
Broto
,
A.
Fert
,
F. N.
Vandau
,
F.
Petroff
,
P.
Eitenne
,
G.
Creuzet
,
A.
Friederich
, and
J.
Chazelas
,
Phys. Rev. Lett.
61
(
21
),
2472
2475
(
1988
).
157.
G.
Binasch
,
P.
Grünberg
,
F.
Saurenbach
, and
W.
Zinn
,
Phys. Rev. B
39
(
7
),
4828
4830
(
1989
).
158.
J. M.
Kikkawa
and
D. D.
Awschalom
,
Nature
397
(
6715
),
139
141
(
1999
).
159.
Y.
Ohno
,
D. K.
Young
,
B.
Beschoten
,
F.
Matsukura
,
H.
Ohno
, and
D. D.
Awschalom
,
Nature
402
(
6763
),
790
792
(
1999
).
160.
A. T.
Hanbicki
,
B. T.
Jonker
,
G.
Itskos
,
G.
Kioseoglou
, and
A.
Petrou
,
Appl. Phys. Lett.
80
(
7
),
1240
1242
(
2002
).
161.
T. L. A.
Tran
,
T. Q.
Le
,
J. G. M.
Sanderink
,
W. G.
van der Wiel
, and
M. P.
de Jong
,
Adv. Funct. Mater.
22
(
6
),
1180
1189
(
2012
).
162.
R.
Sundararaman
,
K.
Letchworth-Weaver
,
K. A.
Schwarz
,
D.
Gunceler
,
Y.
Ozhabes
, and
T. A.
Arias
,
SoftwareX
6
,
278
284
(
2017
).
163.
R.
Sundararaman
,
P.
Narang
,
A. S.
Jermyn
,
W. A.
Goddard Iii
, and
H. A.
Atwater
,
Nat. Commun.
5
(
1
),
5788
(
2014
).
164.
A. M.
Brown
,
R.
Sundararaman
,
P.
Narang
,
W. A.
Goddard
, and
H. A.
Atwater
,
ACS Nano
10
(
1
),
957
966
(
2016
).
165.
P.
Narang
,
L.
Zhao
,
S.
Claybrook
, and
R.
Sundararaman
,
Adv. Opt. Mater.
5
(
15
),
1600914
(
2017
).
166.
A.
Habib
,
F.
Florio
, and
R.
Sundararaman
,
J. Opt.
20
(
6
),
064001
(
2018
).
167.
A. S.
Jermyn
,
G.
Tagliabue
,
H. A.
Atwater
,
W. A.
Goddard
,
P.
Narang
, and
R.
Sundararaman
,
Phys. Rev. Mater.
3
(
7
),
075201
(
2019
).
168.
A.
Habib
,
J.
Xu
,
Y.
Ping
, and
R.
Sundararaman
,
Phys. Rev. B
105
(
11
),
115122
(
2022
).
169.
L.
Zhang
,
J.
Jiang
,
C.
Multunas
,
C.
Ming
,
Z.
Chen
,
Y.
Hu
,
Z.
Lu
,
S.
Pendse
,
R.
Jia
,
M.
Chandra
,
Y.-Y.
Sun
,
T.-M.
Lu
,
Y.
Ping
,
R.
Sundararaman
, and
J.
Shi
,
Nat. Photonics
16
(
7
),
529
537
(
2022
).
170.
J.
Xu
,
A.
Habib
,
R.
Sundararaman
, and
Y.
Ping
,
Phys. Rev. B
104
(
18
),
184418
(
2021
).
171.
J.
Xu
,
A.
Habib
,
S.
Kumar
,
F.
Wu
,
R.
Sundararaman
, and
Y.
Ping
,
Nat. Commun.
11
(
1
),
2780
(
2020
).
172.
B.
Yoon
,
B. H.
Lee
, and
S. M.
George
,
J. Phys. Chem. C
116
(
46
),
24784
24791
(
2012
).
173.
J.
Liu
,
B.
Yoon
,
E.
Kuhlmann
,
M.
Tian
,
J.
Zhu
,
S. M.
George
,
Y.-C.
Lee
, and
R.
Yang
,
Nano Lett.
13
(
11
),
5594
5599
(
2013
).
174.
Y.
Du
,
J.
Xu
,
B.
Paul
, and
P.
Eklund
,
Appl. Mater. Today
12
,
366
388
(
2018
).
175.
Y.
Wang
,
L.
Yang
,
X.-L.
Shi
,
X.
Shi
,
L.
Chen
,
M. S.
Dargusch
,
J.
Zou
, and
Z.-G.
Chen
,
Adv. Mater.
31
(
29
),
1807916
(
2019
).
176.
B.
Paul
,
J.
Lu
, and
P.
Eklund
,
ACS Appl. Mater. Interfaces
9
(
30
),
25308
25316
(
2017
).
177.
B.
Xin
,
A.
Le Febvrier
,
R.
Shu
,
A.
Elsukova
,
V.
Venkataramani
,
Y.
Shi
,
G.
Ramanath
,
B.
Paul
, and
P.
Eklund
,
ACS Appl. Nano Mater.
4
(
9
),
9904
9911
(
2021
).
178.
C.
Wan
,
R.
Tian
,
M.
Kondou
,
R.
Yang
,
P.
Zong
, and
K.
Koumoto
,
Nat. Commun.
8
(
1
),
1024
(
2017
).