The unique optoelectronic properties of single layer graphene (SLG) are ideal for the development of photonic devices across a broad range of frequencies from x rays to microwaves. In the terahertz (THz) frequency range (0.1–10 THz), this has led to the development of optical modulators, nonlinear sources, and photodetectors with state-of-the-art performances. A key challenge is the integration of SLG-based active elements with pre-existing technological platforms in a scalable way, while maintaining performance level unperturbed. Here, we report room temperature THz detectors made of large-area SLG, grown by chemical vapor deposition (CVD) and integrated in antenna-coupled field effect transistors. We selectively activate the photo-thermoelectric detection dynamics, and we employ different dielectric configurations of SLG on Al2O3 with and without large-area CVD hexagonal boron nitride capping to investigate their effect on SLG thermoelectric properties underpinning photodetection. With these scalable architectures, response times ∼5 ns and noise equivalent powers (NEPs) ∼1 nW Hz−1/2 are achieved under zero-bias operation. This shows the feasibility of scalable, large-area, layered material heterostructures for THz detection.

Layered materials (LMs) and related heterostructures (LMHs) are a versatile platform for engineering optoelectronic and photonic devices.1–3 They can be synthesized with wafer-scale methods2,4,5 and stacked to form LMHs. Being compatible with Si and a wider range of III–V materials and substrates,2,5–7 they open new prospects for emerging research domains, such as future high-density optical communications,6 high-speed datacom,8 quantum nanophotonics,9 and optoelectronics.1,3 In particular, LMs are a versatile platform for photodetectors (PDs) operating across a broad range of frequencies from microwaves10 to telecom,8 visible,1–3 and x rays.11 

Terahertz (THz) radiation (0.1–10 THz) finds application in biomedicine,12 security,13 spectroscopy,14 cultural heritage,15 astronomy,16 real-time imaging,17 and high data-rate communications.18 In this frequency range, optoelectronic systems employing LMs realized in scalable processes have mostly been developed for light modulation19,20 and nonlinear optics,21,22 whereas similar processes for nanoscale receivers are still at an early stage and limited to few examples involving scalable large-area single layer graphene (SLG).23–28 

The challenge is twofold. 1) The quest for technological maturity requires integration with established platforms, such as complementary metal oxide semiconductors (CMOSs). 2) Performance in SLG grown by chemical vapor deposition (CVD)24–28 still does not match that obtained with exfoliated hexagonal boron nitride (hBN)/SLG/hBN heterostructures.29–34 Above 1 THz, few ns response times (τ) and noise equivalent power (NEP) ∼1 nW Hz−1/2 have been reported at room temperature (RT) on THz PDs based on large-area (∼cm2) CVD SLG,28 but these are still inferior to those reported in high-quality hBN-encapsulated SLG (τ = 880 ps, NEP = 80 pW Hz−1/2),29,31 in Schottky diodes35 (NEP ∼ 100 pW Hz−1/2, electrical bandwidth ∼40 GHz, operation frequency <1.8 THz), in high-electron-mobility transistors36 (HEMTs, NEP ∼ 100 pW Hz−1/2, τ < 10 ps), or in portable THz cameras based on FETs or microbolometer arrays37,38 (NEP ∼30 pW Hz−1/2, τ > 10 μs). Table I summarizes the performance of RT THz detectors realized with scalable graphene-based structures.

TABLE I.

Performance of room-temperature THz detectors based on scalable, large-area graphene.

MaterialFrequency range (THz)NEP (nW Hz−1/2)Response time (ns)
Epitaxial graphene on SiC23  0.2–0.4 80 n.a. 
CVD graphene24  0.36 10 n.a. 
CVD graphene25  0.4 0.13 n.a. 
CVD graphene26  0.6 ∼0.5 n.a. 
CVD graphene27  ∼2 ∼150 n.a. 
CVD graphene28  ∼3 ∼1 (Mean 4.3) ∼5 
CVD graphene, CVD hBN heterostructure ∼3 ∼1 (Mean 3.0) ∼7 
MaterialFrequency range (THz)NEP (nW Hz−1/2)Response time (ns)
Epitaxial graphene on SiC23  0.2–0.4 80 n.a. 
CVD graphene24  0.36 10 n.a. 
CVD graphene25  0.4 0.13 n.a. 
CVD graphene26  0.6 ∼0.5 n.a. 
CVD graphene27  ∼2 ∼150 n.a. 
CVD graphene28  ∼3 ∼1 (Mean 4.3) ∼5 
CVD graphene, CVD hBN heterostructure ∼3 ∼1 (Mean 3.0) ∼7 

As a step toward commercial development of THz PDs based on LMs and LMHs, we propose here the use of substrate treatment39 or large-area encapsulation40 to reach stable and repeatable state-of-the-art performances at RT. We develop RT PDs operating at 2.8 THz based on large-area (∼1 × 1 cm2) CVD SLG with and without large-area (∼1 × 1 cm2) CVD hBN capping, Fig. 1(a).

FIG. 1.

(a) Schematic cross section of GFETs. Top: double-gated Al2O3/SLG/HfO2. Bottom: single-gated Al2O3/SLG/hBN/HfO2. Dashed red circles indicate the position of the THz-induced field enhancement. (b) Raman spectra of as-grown SLG on Cu and SLG transferred on Al2O3 with and without hBN capping. (c) and (d) False color scanning electron micrographs of a single-gated device. The inset shows the U-shaped channel.

FIG. 1.

(a) Schematic cross section of GFETs. Top: double-gated Al2O3/SLG/HfO2. Bottom: single-gated Al2O3/SLG/hBN/HfO2. Dashed red circles indicate the position of the THz-induced field enhancement. (b) Raman spectra of as-grown SLG on Cu and SLG transferred on Al2O3 with and without hBN capping. (c) and (d) False color scanning electron micrographs of a single-gated device. The inset shows the U-shaped channel.

Close modal

A  ∼10 nm thick layer of Al2O3 is deposited on a SiO2/Si substrate (resistivity  ∼10 kΩ cm) by atomic layer deposition (ALD) (see the supplementary material). SLG is grown in a hot wall CVD system using a ∼30 μm thick Cu foil as a substrate. The foil, suspended on a quartz holder and loaded into the CVD system, is annealed at 1050 °C for 2 h under H2 gas (100 sccm) at 760 Torr and cooled down to RT. For the growth, the foil is annealed at 1050 °C with 50 sccm hydrogen flow at 0.4 Torr for 2 h. 5 sccm CH4 is introduced to start growth, which is completed in 30 min by stopping the CH4 flow. The system is then naturally cooled down to RT under 50 sccm H2. As-grown SLG/Cu is spin-coated with poly (methyl methacrylate) (PMMA) (A4-950) at 1000 rpm for 1 min and baked at 80 °C for 10 min. PMMA-coated SLG/Cu is kept in water overnight to oxidize the Cu foil. PMMA/SLG is then electrochemically delaminated by applying 2 V between the Pt anode and PMMA/SLG/Cu cathode in a NaOH aqueous electrolyte (∼1 M). The PMMA/SLG stack is cleaned in water and transferred on Al2O3/SiO2/Si substrates, which are then baked at 80 °C for 10 min after ∼10 h natural drying. PMMA is removed by soaking in acetone and isopropyl alcohol (IPA).

hBN is grown on c-plane Al2O3 (0001) at 1400 °C, 500 mbar for 30 min in an AIXTRON CCS 2D reactor. 10 sccm N2 is used to transport the single-source precursor, borazine, to the reactor. Before hBN growth, the sapphire substrates are annealed in H2 for 5 min at 750 mbar and 1180 °C. As-grown hBN on c-plane sapphire is then spin-coated with PMMA (A4-950) at 1000 rpm for 1 min and baked at 80 °C for 10 min. PMMA-coated hBN on sapphire is kept in ∼8% H3PO4 for ∼10 h to delaminate PMMA/hBN. This is cleaned in water and transferred on SLG/Al2O3/SiO2/Si. After natural drying, this is baked at 80 °C for 10 min. PMMA is removed by soaking it in acetone and IPA.

As-grown and transferred SLG and hBN are characterized by Raman spectroscopy with a Renishaw InVia spectrometer equipped with 100× objective at 514.5 nm. A statistical analysis of seven spectra on as-grown SLG on Cu, 27 spectra on SLG on Al2O3/SiO2/Si, 36 spectra on hBN/Al2O3/SiO2/Si, and 26 spectra on hBN/SLG/Al2O3/SiO2/Si is performed to estimate the defect density and doping. Errors are calculated from the standard deviation across different spectra, the spectrometer resolution (∼1 cm−1), and the uncertainty associated with different methods to estimate doping from the position of G peak Pos(G), its full-width-half-maximum [FWHM(G)], the intensity and area ratios I(2D)/I(G), A(2D)/A(G), and the position of 2D peak Pos(2D).41–43 The Raman spectrum of as-grown SLG on Cu is in Fig. 1(b), after Cu photoluminescence removal.44 The 2D peak is a single Lorentzian with FWHM(2D) = 30 ± 5 cm−1, which is a signature of SLG.45 Pos(G) = 1584 ± 2 cm−1, FWHM(G) = 16 ± 4 cm−1, Pos(2D) = 2698 ± 2 cm−1, and I(2D)/I(G) = 3.8 ± 1.0 A(2D)/A(G) = 7.2 ± 1.8. No D peak is observed, indicating negligible density of Raman active defects.46,47 A typical Raman spectrum of SLG/Al2O3/SiO2/Si is in Fig. 1(b). The 2D peak retains its single-Lorentzian line shape with FWHM(2D) = 36 ± 2 cm−1. Pos(G) = 1597 ± 3 cm−1, FWHM(G) = 14 ± 2 cm−1, Pos(2D) = 2692 ± 2 cm−1, I(2D)/I(G) = 1.9 ± 0.5, and A(2D)/A(G) = 4.9 ± 0.5, indicating a p-doping with Fermi level EF = 290 ± 90 meV,41,42 which corresponds to a carrier concentration n = 6.5 ± 3.3 × 1012 cm−2.41,42 I(D)/I(G) = 0.03 ± 0.04 corresponds to a defect density nD = 1.7 ± 0.7 × 1010 cm−2 for excitation energy 2.41 eV and EF = 290 ± 90 meV.43 A Raman spectrum of the transferred hBN on Al2O3/SiO2/Si is in Fig. 1(b). The position of E2g peak is Pos(E2g) = 1371 ± 1 cm−1, with FWHM(E2g) = 26 ± 1 cm−1.48 A Raman spectrum of SLG capped by hBN is in Fig. 1(b). The single-Lorentzian 2D peak has FWHM(2D) = 37 ± 2 cm−1. Pos(G) = 1598 ± 3 cm−1, FWHM(G) = 13 ± 1 cm−1, Pos(2D) = 2692 ± 2 cm−1, I(2D)/I(G)= 1.8 ± 0.3, and A(2D)/A(G)= 5.1 ± 0.6, indicating a p-doping with EF = 300 ± 100 meV,41,42 which corresponds to n = 7.2 ± 4.1 × 1012 cm−2.41,42

Graphene field-effect transistors (GFETs) are fabricated by electron beam lithography (EBL) (Zeiss UltraPlus), ALD (Oxford, OpAL), and metal evaporation. We define U-shaped channels with length Lc = 2400 nm and width Wc = 1500 nm through reactive ion etching (O2 for uncapped, CF4/O2 mixture for hBN-capped samples). We pattern source (s) and drain (d) contacts via EBL, and fabrication is finalized by depositing a 40 nm thick Pd layer by thermal evaporation and liftoff. For hBN-capped devices, this results in edge-contacts to the SLG channel, showing contact resistance R0 ∼ 1 kΩ similar to the case of uncapped samples. We then define the top-gate oxide (∼40 nm HfO2, grown by ALD) above the channel and finalize the fabrication by depositing 5/90 nm Cr/Au to establish the top-gate (g) electrodes. To reduce the detector shunt capacitance, s and d electrodes are connected to a coplanar strip line.31 A schematic cross section of the fabricated devices is in Fig. 1(a). For each material combination, Al2O3/SLG/HfO2 and Al2O3/SLG/hBN/HfO2, two distinct architectures are conceived, devised, and investigated. The first is based on single-top-gated GFETs integrated with a planar bow-tie antenna with radius 24 μm and flare angle 90° [Figs. 1(c) and 1(d)]. The antenna arms are connected to the s and g electrodes. The second design features two top-gates, connected to the left and right arms of a 24 μm radius bow-tie antenna. The antenna dimensions are chosen to be resonant with a radiation frequency of 2.8 THz.28 

These geometries are selected to activate the photo-thermoelectric (PTE) effect as a dominant detection mechanism.31,32,49 This requires a spatial asymmetry along the source-drain (s-d) channel.3 In single-gated systems, the asymmetry is established by the spatial gradient of the electronic temperature (Te) in the SLG channel, induced by the absorption of THz light in the antenna gap, which is located close to the s electrode.31 Instead, in p–n junctions, the electronic distribution is symmetrically heated at the center of the s-d channel, where the antenna gap is located.29 Here, the asymmetry is determined by the longitudinal variation of the SLG Seebeck coefficient (Sb), whose profile along the s-d direction can be electrostatically defined by applying distinct gate voltages (Vg) on the left and right sides of the junction.

We activate a dominant PTE by design, since SLG displays unique thermoelectric properties, due to its low electronic specific heat (∼2000 kBμm−2 at RT,50 where kB is the Boltzmann constant), ultrafast (∼30 fs) carrier thermalization dynamics,51 and slower (∼4 ps) electron–phonon cooling.52,53 Thus, it offers an outstanding route for performance optimization by means of, e.g., carrier lifetime engineering49 or coupling to plasmonic-polaritonic quasi-particles.54 PTE also allows for broadband,49 RT, zero-bias operation.8 

We first characterize the devices electrically by measuring the source–drain current (Isd) as a function of Vg. The resistance (R) curve for a single-gated device is in Fig. 2(a). Instead, Fig. 2(b) shows the resistance map of a p–n junction device, measured as a function of the left- and right-gate voltages (VgL and VgR). We extract the field-effect mobility (μFE) for electrons and holes and the residual carrier density (n0) by using the fitting function55 R = R0 + (Lc/Wc)·(1/n2deμFE), where n2d = {n02 + [Cg/e·(Vg−VCNP)]2}−1/2 is the carrier density,55 Cg is the gate-capacitance per unit area, and VCNP is the charge neutrality point. We get μFE = 300–2000 cm2 V−1 s−1 for Al2O3/SLG-based GFETs and μFE = 3000–9000 cm2 V−1 s−1 for hBN-capped ones.

FIG. 2.

(a) Channel resistance vs Vg for an hBN-capped, single-gated GFET. (b) Map of R as a function of VgR and VgL for a hBN-capped p–n junction. (c) Chart of n0 vs μFE for all the measured devices. Blue (light-blue) dots represent single-gated (double-gated) FETs without hBN-capping. Orange (red) dots represent hBN-capped single-gated (double-gated) FETs. (d) Sb calculated with the Boltzmann EMT51,56,57 for the R curve in (a).

FIG. 2.

(a) Channel resistance vs Vg for an hBN-capped, single-gated GFET. (b) Map of R as a function of VgR and VgL for a hBN-capped p–n junction. (c) Chart of n0 vs μFE for all the measured devices. Blue (light-blue) dots represent single-gated (double-gated) FETs without hBN-capping. Orange (red) dots represent hBN-capped single-gated (double-gated) FETs. (d) Sb calculated with the Boltzmann EMT51,56,57 for the R curve in (a).

Close modal

Figure 2(c) plots n0 as a function of μ for the complete batch of devices, where μ is the average field-effect mobility of electrons and holes: each GFET is represented by a colored dot. From this comparison, hBN-capped samples show lower n0 and higher μ with respect to Al2O3/SLG/HfO2 devices. The field-effect measurements [Figs. 2(a) and 2(b)] can be used to evaluate Sb, which determines the PTE response of SLG-based PDs. This can be done starting from the experimental conductivity (σ) and using the Mott equation,30 which, however, is not accurate at low carrier densities,56 i.e., close to VCNP. Thus, we theoretically calculate Sb using an effective medium theory (EMT)56 in the framework of the linear Boltzmann equation53,57 (see the supplementary material). Figure 2(d) shows the results of the EMT model applied to the device of Fig. 2(a), for which we get a maximum thermopower of Smax ∼ 70 μV K−1.

We then evaluate the PDs' optical figures of merit: voltage responsivity (Rv), NEP, and τ. The detectors are illuminated by a 2.8 THz quantum cascade laser (QCL), driven in a pulsed mode (repetition rate 40 kHz, duty cycle 4%) delivering a peak power ∼25 mW, corresponding to an average power ∼1 mW. The antenna axis is oriented parallel to the linearly polarized electric field. The beam is focused by two TPX lenses onto a ∼200 μm radius circular spot. We select intermediate average power P0 = 0.4 mW to characterize the PDs to avoid QCL overheating. The corresponding average intensity in the focal point is I0 = 0.32 W cm−2.

We measure the photovoltage (Δu) at the d electrode, while keeping s grounded. Δu is amplified by a voltage preamplifier (DL Instruments, M1201, gain γ = 1000) and sent to a lock-in (Stanford Research, 5210). We use a square-wave envelope with frequency fmod = 1.333 kHz as a lock-in reference and as a triggering signal for the QCL pulse trains. Δu can be inferred from the demodulated lock-in signal (VLI) as30 Δu = (π2/2)VLI/γ, where the pre-factor π2/2 takes into account that the lock-in measures the root mean square of the fundamental Fourier component of the square wave produced by the QCL modulation. Rv is calculated from the ratio between Δu and the power Pa = I0Aeff impinging on the detector, with Aeff the detector effective area, assumed equal to the diffraction limited area30Aeff = λ2/4 = 2800 μm2, where λ is the free-space wavelength. We calculate the curve of Rv vs Vg for each single-gated GFET and the map of Rv vs VgL and VgR for each p–n junction. Typical examples of Rv vs Vg plots are in Figs. 3(a) and 3(b) for a single-gated GFET and a p–n junction, respectively. The photoresponse in single-gated GFETs follows the profile of Sb with an offset of Sbu ∼ Sb (Vg = 0 V) and with PTE voltage30 VPTE = ΔTe·(Sb − Sbu), where ΔTe is the Te gradient between s (hot) and d (cold) sides of the SLG channel and Sbu is the Seebeck coefficient of the ungated region between the s and g electrodes. Figure 3(a) compares the measured Rv vs Vg and the theoretical PTE responsivity, RPTE, vs Vg, with RPTE inferred from VPTE by considering ΔTe/P0 ∼ 1.5 K/mW, showing good qualitative agreement between the two curves. The discrepancy between theoretical and experimental responsivities at large positive Vg is ascribed to the fact that the adopted theoretical model (see the supplementary material) only includes electron scattering with charged Coulomb impurities as dominant effect limiting the conductivity, possibly neglecting additional contributions, e.g., phonon scattering or carrier inhomogeneities at the contacts. A dominant PTE detection mechanism is also observed in p–n junctions. EF in SLG can be tuned across the Dirac point by the electrostatic gating applied to the left and right sides of the junction. The nonmonotonic dependence of Sb on EF leads to multiple sign changes in Rv, resulting in a sixfold pattern29 in the Rv map [Fig. 3(b)], a distinctive feature of PTE.26,29

FIG. 3.

(a) Rv as a function of Vg for an hBN-capped single-gated GFET. The experimental curve (black line) is compared with the theoretical PTE response (blue line), evaluated by EMT. (b) Rv map of an hBN-capped p–n junction as a function of VgL and VgR. (c) NSD of a GFET and of a 50 Ω resistor, measured by sweeping the reference frequency of the lock-in from 100 Hz to 1 MHz. (d) and (e) NEP of single-gated and p–n junction GFETs as a function of the gate voltage(s). (f) Time trace of an intensity fluctuation of the QCL. The rising and falling edges are fitted with exponential functions to retrieve τ.

FIG. 3.

(a) Rv as a function of Vg for an hBN-capped single-gated GFET. The experimental curve (black line) is compared with the theoretical PTE response (blue line), evaluated by EMT. (b) Rv map of an hBN-capped p–n junction as a function of VgL and VgR. (c) NSD of a GFET and of a 50 Ω resistor, measured by sweeping the reference frequency of the lock-in from 100 Hz to 1 MHz. (d) and (e) NEP of single-gated and p–n junction GFETs as a function of the gate voltage(s). (f) Time trace of an intensity fluctuation of the QCL. The rising and falling edges are fitted with exponential functions to retrieve τ.

Close modal

The sensitivity of THz detectors is evaluated through the NEP,29 defined as the ratio between noise figure and responsivity. In order to calculate NEP, it is important to give a rigorous evaluation of the noise spectral density (NSD).26,29–31 Thus, we measure the GFET NSD with a lock-in amplifier (Zurich Inst., UHFLI). The s electrode is grounded and the signal, demodulated by the lock-in, is collected at the d electrode, while a sweep of the modulation frequency is performed. The results are in Fig. 4(c) for a 50 Ω test resistor and for a prototypical SLG-based device. The white noise floor for the 50 Ω resistor is dominated by the lock-in noise figure. The Johnson–Nyquist NSD formula gives30 NJ = (4kBTR)−1/2 = 0.91 nV Hz−1/2 for a 50 Ω resistor operated at RT, whereas our instrumental noise floor is ∼8 nV Hz−1/2, as expected for the noise level of the employed lock-in.58 The NSD of one of the GFETs [R = 9 kΩ in Fig. 4(c)] is dominated by the 1/f component59 for modulation frequency <1 kHz and flattens at NSD < 14 nV Hz−1/2 at higher frequencies in agreement with the theoretically expected NJ = 12.3 nV Hz−1/2. The GFET NJ is, thus, the main contribution to the overall noise figure in our setup (with pre-amplifier NSD ∼7 nV Hz−1/2). The measured NSD at 1.333 kHz is then used to calculate NEP [Figs. 3(d) and 3(e)] as a function of the voltages applied to the gate electrodes.

FIG. 4.

(a) Scatterplot of Smax vs n0. Differently colored dots identify different material/geometry combinations. Smax and n0 have negative correlation. (b) NEP vs n0 chart, showing positive correlation: ρ[log(NEP), log(n0)] = 0.4. The dotted line is a guide for the eye.

FIG. 4.

(a) Scatterplot of Smax vs n0. Differently colored dots identify different material/geometry combinations. Smax and n0 have negative correlation. (b) NEP vs n0 chart, showing positive correlation: ρ[log(NEP), log(n0)] = 0.4. The dotted line is a guide for the eye.

Close modal

We then characterize the detection speed by recording the time trace of Δu with an oscilloscope (Tektronix DPO520–4B, bandwidth 2 GHz). We use a THz pulse duration ∼1.6 μs, and we amplify the PD output with a high-bandwidth (1.1 GHz) voltage preamplifier (Femto, DUPVA-1–70) before the oscilloscope. We drive the QCL into the negative differential resistance regime,30 which results in electronic instabilities that correspond to an intermittent output power: the QCL undergoes intensity fluctuations with characteristic time constants τqcl ∼0.9 ns. This strategy allows us to test the bandwidth of our PDs up to a maximum (2πτqcl)−1 = 180 MHz. Figure 3(f) shows the waveform recorded by a single-gated GFET during an intensity fluctuation of the pulsed QCL. We evaluate τ from exponential fits to the waveform (see the supplementary material). We get τ = 7–20 ns for the investigated devices, with a mean value ∼12 ns, corresponding to a bandwidth ∼15 MHz.

Statistical analysis is applied to 28 devices to evaluate performance variability and identify correlations between electrical and optical properties. We first consider NEP variability. For Al2O3/SLG/HfO2 devices, we get a mean value ∼7.6 nW Hz−1/2 and an interquartile range28 (IQR) ∼4.0 nW Hz−1/2. For hBN-capped PDs, we have mean NEP ∼ 3.0 nW Hz−1/2 with IQR ∼ 1.4 nW Hz−1/2, which represents a variability improvement of factor >2 with respect to SiO2/SLG24 and Al2O3/SLG PDs. We then evaluate correlations among NEP, Sb, and n0 using the Pearson coefficient60 (ρ) as a metric. ρ(v1,v2) represents the measure of linear correlation between two discrete variables v1 and v2: |ρ| = 1 indicates an exact linear dependence and ρ = 0 indicates no linear correlation. We get ρ(Smax,n0) = −0.95 for both hBN-capped and uncapped architectures, where Smax is the maximum |Sb| in the investigated Vg range, calculated with the EMT model. The scatterplot of Smax vs n0 in Fig. 4(a) shows that hBN/SLG/Al2O3 LMHs have slightly larger Smax, even though they have significantly smaller n0. This is due to the different dielectric environment: the larger εr of HfO2 (with respect to hBN) on top of SLG is beneficial in terms of thermopower.56 This similarity in Smax is reflected in the detectors NEP, where the difference between the two material architectures is not as pronounced as the difference in n0 [Fig. 4(b)]. However, in agreement with results obtained on SiO2/SLG/HfO2 heterostructures,28 NEP increases for larger n0: ρ[log(NEP), log(n0)] = 0.4. These correlations confirm that the physical mechanism underpinning THz detection is, as expected, PTE.

Thus, the Al2O3 termination alone does not show a significant performance improvement over SiO2/Si substrates,28 whereas large-area HfO2/hBN/SLG/Al2O3 LMHs present advantages both in terms of absolute optical performance (average NEP ∼ 3.0 nW Hz−1/2) and performance variability (IQR ∼ 1.40 nW Hz−1/2). Large area hBN-top-encapsulation significantly reduces the device performance variability by over a factor 2 with respect to Ref. 28.

In summary, we reported THz PDs realized with large-area graphene and large-area hBN in wafer-scale compliant processes, capable of mitigating material degradation with respect to the quality benchmark of hBN-encapsulated SLG.29–31 We demonstrate THz detection in a layered material heterostructure obtained by consecutive transfer of CVD graphene and CVD hexagonal boron nitride, a fabrication technique compatible with CMOS processing. This makes our PDs suitable for real-time imaging and short-range (∼10 m) THz communication applications, enabling multi-pixel architectures. A further benefit can come from the full large-area encapsulation of SLG in CVD-based hBN/SLG/hBN heterostructures.

See the supplementary material for the description of Al2O3 ALD, thermopower calculation, and detection speed analysis.

We acknowledge funding from ERC Projects via No. 681379 (SPRINT), Hetero2D, GSYNCOR, the EU Graphene and Quantum Flagships, the Marie Curie H2020-MSCA-ITN2017 TeraApps (No. 765426) grant, the CNR project (TEROCODE), EPSRC Grant Nos. EP/L016087/1, EP/K01711X/1, EP/K017144/1, EP/N010345/1, EP/V000055/1, and DSTL, University of Pisa under the “PRA-Progetti di Ricerca di Ateneo” (Institutional Research Grants)—Project No. PRA 2020-2021 92. For the purpose of open access, the authors applied a Creative Commons Attribution (CC BY) license to any Author Accepted Manuscript version arising from this submission.

The authors have no conflicts to disclose.

Mahdi Asgari: Investigation (lead). Clifford McAleese: Investigation (supporting). Ben Conran: Investigation (supporting). Xiaochen Wang: Investigation (supporting). Andrea Tomadin: Formal analysis (supporting). Andrea C. Ferrari: Resources (supporting), Writing – review and editing (supporting). Miriam Serena Vitiello: Conceptualization (Lead); Methodology (equal); Supervision (Lead); Writing – review and editing (equal), Resources (Lead). Leonardo Viti: Investigation (supporting); Methodology (equal); Formal analysis (equal); Writing – original draft (Lead). Osman Balci: Investigation (supporting). Sachin Shinde: Investigation (equal). Jincan Zhang: Investigation (supporting). Hamideh Ramezani: Investigation (supporting). Subash Sharma: Investigation (supporting). Adil Meersha: Investigation (supporting). Guido Menichetti: Formal analysis (equal).

The data that support the findings of this study are available from the corresponding author upon reasonable request.

1.
F.
Bonaccorso
,
Z.
Sun
,
T.
Hasan
, and
A. C.
Ferrari
,
Nat. Photonics
4
,
611
(
2010
).
2.
A. C.
Ferrari
,
F.
Bonaccorso
,
V.
Fal'ko
,
K. S.
Novoselov
,
S.
Roche
,
P.
Bøggild
,
S.
Borini
,
F. H. L.
Koppens
,
V.
Palermo
,
N.
Pugno
,
J. A.
Garrido
,
R.
Sordan
,
A.
Bianco
,
L.
Ballerini
,
M.
Prato
,
E.
Lidorikis
,
J.
Kivioja
,
C.
Marinelli
,
T.
Ryhänen
,
A.
Morpurgo
,
J. N.
Coleman
,
V.
Nicolosi
,
L.
Colombo
,
A.
Fert
,
M.
Garcia-Hernandez
,
A.
Bachtold
,
G. F.
Schneider
,
F.
Guinea
,
C.
Dekker
,
M.
Barbone
,
Z.
Sun
,
C.
Galiotis
,
A. N.
Grigorenko
,
G.
Konstantatos
,
A.
Kis
,
M.
Katsnelson
,
L.
Vandersypen
,
A.
Loiseau
,
V.
Morandi
,
D.
Neumaier
,
E.
Treossi
,
V.
Pellegrini
,
M.
Polini
,
A.
Tredicucci
,
G. M.
Williams
,
B.
Hee Hong
,
J.-H.
Ahn
,
J.
Min Kim
,
H.
Zirath
,
B. J.
van Wees
,
H.
van der Zant
,
L.
Occhipinti
,
A.
Di Matteo
,
I. A.
Kinloch
,
T.
Seyller
,
E.
Quesnel
,
X.
Feng
,
K.
Teo
,
N.
Rupesinghe
,
P.
Hakonen
,
S. R. T.
Neil
,
Q.
Tannock
,
T.
Löfwander
, and
J.
Kinaret
,
Nanoscale
7
,
4598
4810
(
2015
).
3.
F. H. L.
Koppens
,
T.
Mueller
,
P.
Avouris
,
A. C.
Ferrari
,
M. S.
Vitiello
, and
M.
Polini
,
Nat. Nanotechnol.
9
,
780
(
2014
).
4.
F.
Bonaccorso
,
A.
Lombardo
,
T.
Hasan
,
Z.
Sun
,
L.
Colombo
, and
A. C.
Ferrari
,
Mater. Today
15
,
564
(
2012
).
5.
C.
Backes
,
A. M.
Abdelkader
,
C.
Alonso
,
A.
Andrieux-Ledier
,
R.
Arenal
,
J.
Azpeitia
,
N.
Balakrishnan
,
L.
Banszerus
,
J.
Barjon
,
R.
Bartali
,
S.
Bellani
,
C.
Berger
,
R.
Berger
,
M. M.
Bernal Ortega
,
C.
Bernard
,
P. H.
Beton
,
A.
Beyer
,
A.
Bianco
,
P.
Bøggild
,
F.
Bonaccorso
,
G.
Borin Barin
,
C.
Botas
,
R. A.
Bueno
,
D.
Carriazo
,
A.
Castellanos-Gomez
,
M.
Christian
,
A.
Ciesielski
,
T.
Ciuk
,
M. T.
Cole
,
J.
Coleman
,
C.
Coletti
,
L.
Crema
,
H.
Cun
,
D.
Dasler
,
D.
De Fazio
,
N.
Díez
,
S.
Drieschner
,
G. S.
Duesberg
,
R.
Fasel
,
X.
Feng
,
A.
Fina
,
S.
Forti
,
C.
Galiotis
,
G.
Garberoglio
,
J. M.
García
,
J. A.
Garrido
,
M.
Gibertini
,
A.
Gölzhäuser
,
J.
Gómez
,
T.
Greber
,
F.
Hauke
,
A.
Hemmi
,
I.
Hernandez-Rodriguez
,
A.
Hirsch
,
S. A.
Hodge
,
Y.
Huttel
,
P. U.
Jepsen
,
I.
Jimenez
,
U.
Kaiser
,
T.
Kaplas
,
H. K.
Kim
,
A.
Kis
,
K.
Papagelis
,
K.
Kostarelos
,
A.
Krajewska
,
K.
Lee
,
C.
Li
,
H.
Lipsanen
,
A.
Liscio
,
M. R.
Lohe
,
A.
Loiseau
,
L.
Lombardi
,
M. F.
López
,
O.
Martin
,
C.
Martín
,
L.
Martínez
,
J. A.
Martin-Gago
,
J. I.
Martínez
,
N.
Marzari
,
Á.
Mayoral
,
J.
McManus
,
M.
Melucci
,
J.
Méndez
,
C.
Merino
,
P.
Merino
,
A. P.
Meyer
,
E.
Miniussi
,
V.
Miseikis
,
N.
Mishra
,
V.
Morandi
,
C.
Munuera
,
R.
Muñoz
,
H.
Nolan
,
L.
Ortolani
,
A. K.
Ott
,
I.
Palacio
,
V.
Palermo
,
J.
Parthenios
,
I.
Pasternak
,
A.
Patane
,
M.
Prato
,
H.
Prevost
,
V.
Prudkovskiy
,
N.
Pugno
,
T.
Rojo
,
A.
Rossi
,
P.
Ruffieux
,
P.
Samorì
,
L.
Schué
,
E.
Setijadi
,
T.
Seyller
,
G.
Speranza
,
C.
Stampfer
,
I.
Stenger
,
W.
Strupinski
,
Y.
Svirko
,
S.
Taioli
,
K. B. K.
Teo
,
M.
Testi
,
F.
Tomarchio
,
M.
Tortello
,
E.
Treossi
,
A.
Turchanin
,
E.
Vazquez
,
E.
Villaro
,
P. R.
Whelan
,
Z.
Xia
,
R.
Yakimov
,
S.
Yang
,
G. R.
Yazdi
,
C.
Yim
,
D.
Yoon
,
X.
Zhang
,
X.
Zhuang
,
L.
Colombo
,
A. C.
Ferrari
, and
M.
Garcia-Hernandez
,
2D Mater.
7
,
022001
(
2020
).
6.
M.
Romagnoli
,
V.
Sorianello
,
M.
Midrio
,
F. H. L.
Koppens
,
C.
Huyghebaert
,
D.
Neumaier
,
P.
Galli
,
W.
Templ
,
A.
D'Errico
, and
A. C.
Ferrari
,
Nat. Rev. Mater.
3
,
392
(
2018
).
7.
D.
Akinwande
,
C.
Huyghebaert
,
C.-H.
Wang
,
M. I.
Serna
,
S.
Goossens
,
L.-J.
Li
,
H.-S. P.
Wong
, and
F. H. L.
Koppens
,
Nature
573
,
507
(
2019
).
8.
V.
Miseikis
,
S.
Marconi
,
M. A.
Giambra
,
A.
Montanaro
,
L.
Martini
,
F.
Fabbri
,
S.
Pezzini
,
G.
Piccinini
,
S.
Forti
,
B.
Terres
,
I.
Goykhman
,
L.
Hamidouche
,
P.
Legagneux
,
V.
Sorianello
,
A. C.
Ferrari
,
F. H. L.
Koppens
,
M.
Romagnoli
, and
C.
Coletti
,
ACS Nano
14
,
11190
(
2020
).
9.
A.
Reserbat-Plantey
,
I.
Epstein
,
I.
Torre
,
A. T.
Costa
,
P. A. D.
Gonçalves
,
N. A.
Mortensen
,
M.
Polini
,
J. C. W.
Song
,
N. M. R.
Peres
, and
F. H. L.
Koppens
,
ACS Photonics
8
,
85
101
(
2021
).
10.
M.
Saeed
,
P.
Palacios
,
M.-D.
Wei
,
E.
Baskent
,
C.-Y.
Fan
,
B.
Uzlu
,
K.-T.
Wang
,
A.
Hemmetter
,
Z.
Wang
,
D.
Neumaier
,
M. C.
Lemme
, and
R.
Negra
,
Adv. Mater.
2022
,
2108473
.
11.
A.
Glushkova
,
P.
Andričević
,
R.
Smajda
,
B.
Náfrádi
,
M.
Kollár
,
V.
Djokić
,
A.
Arakcheeva
,
L.
Forró
,
R.
Pugin
, and
E.
Horváth
,
ACS Nano
15
,
4077
(
2021
).
12.
M.
Tonouchi
,
Nat. Photonics
1
,
97
105
(
2007
).
13.
S. S.
Dhillon
,
M. S.
Vitiello
,
E. H.
Linfield
,
A. G.
Davies
,
M. C.
Hoffmann
,
J.
Booske
,
C.
Paoloni
,
M.
Gensch
,
P.
Weightman
,
G. P.
Williams
,
E.
Castro-Camus
,
D. R. S.
Cumming
,
F.
Simoens
,
I.
Escorcia-Carranza
,
J.
Grant
,
S.
Lucyszyn
,
M.
Kuwata-Gonokami
,
K.
Konishi
,
M.
Koch
,
C. A.
Schmuttenmaer
,
T. L.
Cocker
,
R.
Huber
,
A. G.
Markelz
,
Z. D.
Taylor
,
V. P.
Wallace
,
J. A.
Zeitler
,
J.
Sibik
,
T. M.
Korter
,
B.
Ellison
,
S.
Rea
,
P.
Goldsmith
,
K. B.
Cooper
,
R.
Appleby
,
D.
Pardo
,
P. G.
Huggard
,
V.
Krozer
,
H.
Shams
,
M.
Fice
,
C.
Renaud
,
A.
Seeds
,
A.
Stöhr
,
M.
Naftaly
,
N.
Ridler
,
R.
Clarke
,
J. E.
Cunningham
, and
M. B.
Johnston
,
J. Phys. D
50
,
043001
(
2017
).
14.
N.
Nagai
,
R.
Kumazawa
, and
R.
Fukasawa
,
Chem. Phys. Lett.
413
,
495
(
2005
).
16.
P. M.
Echternach
,
B. J.
Pepper
,
T.
Reck
, and
C. M.
Bradford
,
Nat. Astron.
2
,
90
(
2018
).
17.
R. I.
Stantchev
,
X.
Yu
,
T.
Blu
, and
E.
Pickwell-MacPherson
,
Nat. Commun.
11
,
2535
(
2020
).
18.
T.
Nagatsuma
,
G.
Ducournau
, and
C. C.
Renaud
,
Nat. Photonics
10
,
371
(
2016
).
19.
B.
Sensale-Rodriguez
,
R.
Yan
,
M. M.
Kelly
,
T.
Fang
,
K.
Tahy
,
W. S.
Hwang
,
D.
Jena
,
L.
Liu
, and
H. G.
Xing
,
Nat. Commun.
3
,
780
(
2012
).
20.
S. J.
Kindness
,
N. W.
Almond
,
W.
Michailow
,
B.
Wei
,
L. A.
Jakob
,
K.
Delfanazari
,
P.
Braeuninger-Weimer
,
S.
Hofmann
,
H. E.
Beere
,
D. A.
Ritchie
, and
R.
Degl'Innocenti
,
ACS Photonics
6
,
1547
(
2019
).
21.
V.
Bianchi
,
T.
Carey
,
L.
Viti
,
L.
Li
,
E. H.
Linfield
,
A. G.
Davies
,
A.
Tredicucci
,
D.
Yoon
,
P. G.
Karagiannidis
,
L.
Lombardi
,
F.
Tomarchio
,
A. C.
Ferrari
,
F.
Torrisi
, and
M. S.
Vitiello
,
Nat. Commun.
8
,
15763
(
2017
).
22.
H. A.
Hafez
,
S.
Kovalev
,
J.-C.
Deinert
,
Z.
Mics
,
B.
Green
,
N.
Awari
,
M.
Chen
,
S.
Germanskiy
,
U.
Lehnert
,
J.
Teichert
,
Z.
Wang
,
K.-J.
Tielrooij
,
Z.
Liu
,
Z.
Chen
,
A.
Narita
,
K.
Müllen
,
M.
Bonn
,
M.
Gensch
, and
D.
Turchinovic
,
Nature
561
,
507
511
(
2018
).
23.
F.
Bianco
,
D.
Perenzoni
,
D.
Convertino
,
S. L.
De Bonis
,
D.
Spirito
,
D. M.
Perenzoni
,
C.
Coletti
,
M. S.
Vitiello
, and
A.
Tredicucci
,
Appl. Phys. Lett.
107
,
131104
(
2015
).
24.
F.
Bianco
,
V.
Miseikis
,
D.
Perenzoni
,
C.
Coletti
,
M.
Perenzoni
, and
A.
Tredicucci
,
IEEE Trans. Terahertz Sci. Technol.
11
,
70
78
(
2021
).
25.
A. A.
Generalov
,
M. A.
Andersson
,
X.
Yang
,
A.
Vorobiev
, and
J.
Stake
,
IEEE Trans. Terahertz Sci. Technol.
7
,
614
616
(
2017
).
26.
A.
Zak
,
M. A.
Andersson
,
M.
Bauer
,
J.
Matukas
,
A.
Lisauskas
,
H. G.
Roskos
, and
J.
Stake
,
Nano Lett.
14
,
5834
(
2014
).
27.
R.
Degl'Innocenti
,
L.
Xiao
,
D. S.
Jessop
,
S. J.
Kindness
,
Y.
Ren
,
H.
Lin
,
J. A.
Zeitler
,
J. A.
Alexander-Webber
,
H. J.
Joyce
, and
P.
Braeuninger-Weimer
,
ACS Photonics
3
,
1747
1753
(
2016
).
28.
M.
Asgari
,
E.
Riccardi
,
O.
Balci
,
D.
De Fazio
,
S. M.
Shinde
,
J.
Zhang
,
S.
Mignuzzi
,
F. H. L.
Koppens
,
A. C.
Ferrari
,
L.
Viti
, and
M. S.
Vitiello
,
ACS Nano
15
,
17966
(
2021
).
29.
S.
Castilla
,
B.
Terrés
,
M.
Autore
,
L.
Viti
,
J.
Li
,
A. Y.
Nikitin
,
I.
Vangelidis
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Lidorikis
,
M. S.
Vitiello
,
R.
Hillenbrand
,
K.-J.
Tielrooij
, and
F. H. L.
Koppens
,
Nano Lett.
19
,
2765
(
2019
).
30.
L.
Viti
,
D. G.
Purdie
,
A.
Lombardo
,
A. C.
Ferrari
, and
M. S.
Vitiello
,
Nano Lett.
20
,
3169
(
2020
).
31.
L.
Viti
,
A. R.
Cadore
,
X.
Yang
,
A.
Vorobiev
,
J. E.
Muench
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Stake
,
A. C.
Ferrari
, and
M. S.
Vitiello
,
Nanophotonics
10
,
89
98
(
2020
).
32.
D. A.
Bandurin
,
I.
Gayduchenko
,
Y.
Cao
,
M.
Moskotin
,
A.
Principi
,
I. V.
Grigorieva
,
G.
Goltsman
,
G.
Fedorov
, and
D.
Svintsov
,
Appl. Phys. Lett.
112
,
141101
(
2018
).
33.
J. A.
Delgado-Notario
,
W.
Knap
,
V.
Clericò
,
J.
Salvador-Sánchez
,
J.
Calvo-Gallego
,
T.
Taniguchi
,
K.
Watanabe
,
T.
Otsuji
,
V. V.
Popov
,
D. V.
Fateev
,
E.
Diez
,
J. E.
Velázquez-Pérez
, and
Y. M.
Meziani
,
Nanophotonics
11
,
519
529
(
2022
).
34.
D.
Yadav
,
S.
Boubanga Tombet
,
T.
Watanabe
,
S.
Arnold
,
V.
Ryzhii
, and
T.
Otsuji
,
2D Mater.
3
,
045009
(
2016
).
35.
See http://www.vadiodes.com for information about commercial Schottky diode detectors.
36.
S.
Regensburger
,
S.
Winnerl
,
J. M.
Klopf
,
H.
Lu
,
A. C.
Gossard
, and
S.
Preu
,
IEEE Trans. Terahertz Sci. Technol.
9
,
262
(
2019
).
37.
F.
Simoens
and
J.
Meilhan
,
Philos. Trans. R. Soc., A
372
,
20130111
(
2014
).
38.
F.
Sizov
,
Semicond. Sci. Technol.
33
,
123001
(
2018
).
39.
H.
Yang
,
S.
Qin
,
X.
Zheng
,
G.
Wang
,
Y.
Tan
,
G.
Peng
, and
X.
Zhang
,
Nanomaterials
7
,
286
(
2017
).
40.
V.
Shautsova
,
A. M.
Gilbertson
,
N. C. G.
Black
,
S. A.
Maier
, and
L. F.
Cohen
,
Sci. Rep.
6
,
30210
(
2016
).
41.
A.
Das
,
S.
Pisana
,
B.
Chakraborty
,
S.
Piscanec
,
S. K.
Saha
,
U. V.
Waghmare
,
K. S.
Novoselov
,
H. R.
Krishnamurthy
,
A. K.
Geim
,
A. C.
Ferrari
, and
A. K.
Sood
,
Nat. Nanotechnol.
3
,
210
(
2008
).
42.
D. M.
Basko
,
S.
Piscanec
, and
A. C.
Ferrari
,
Phys. Rev. B
80
,
165413
(
2009
).
43.
M.
Bruna
,
A. K.
Ott
,
M.
Ijas
,
D.
Yoon
,
U.
Sassi
, and
A. C.
Ferrari
,
ACS Nano
8
,
7432
7441
(
2014
).
44.
A. A.
Lagatsky
,
Z.
Sun
,
T. S.
Kulmala
,
R. S.
Sundaram
,
S.
Milana
,
F.
Torrisi
,
O. L.
Antipov
,
Y.
Lee
,
J. H.
Ahn
,
C. T. A.
Brown
,
W.
Sibbett
, and
A. C.
Ferrari
,
Appl. Phys. Lett.
102
,
013113
(
2013
).
45.
A. C.
Ferrari
,
J. C.
Meyer
,
V.
Scardaci
,
C.
Casiraghi
,
M.
Lazzeri
,
F.
Mauri
,
S.
Piscanec
,
D.
Jiang
,
K. S.
Novoselov
,
S.
Roth
, and
A. K.
Geim
,
Phys. Rev. Lett.
97
,
187401
(
2006
).
46.
A. C.
Ferrari
and
J.
Robertson
,
Phys. Rev. B
61
,
14095
(
2000
).
47.
A. C.
Ferrari
and
D. M.
Basko
,
Nat. Nanotechnol.
8
,
235
(
2013
).
48.
S.
Reich
,
A. C.
Ferrari
,
R.
Arenal
,
A.
Loiseau
,
I.
Bello
, and
J.
Robertson
,
Phys. Rev. B
71
,
205201
(
2005
).
49.
M.
Massicotte
,
G.
Soavi
,
A.
Principi
, and
K.-J.
Tielrooij
,
Nanoscale
13
,
8376
8411
(
2021
).
50.
E.
Pop
,
V.
Varshney
, and
A. K.
Roy
,
MRS Bull.
37
,
1273–1281
(
2012
).
51.
D.
Brida
,
A.
Tomadin
,
C.
Manzoni
,
Y. I.
Kim
,
A.
Lombardo
,
S.
Milana
,
R.
Nair
,
K. S.
Novoselov
,
A. C.
Ferrari
,
G.
Cerullo
, and
M.
Polini
,
Nat. Commun.
4
,
1987
(
2013
).
52.
K.-J.
Tielrooij
,
N. C. H.
Hesp
,
A.
Principi
,
M. B.
Lundeberg
,
E. A. A.
Pogna
,
L.
Banszerus
,
Z.
Mics
,
M.
Massicotte
,
P.
Schmidt
,
D.
Davydovskaya
,
D. G.
Purdie
,
I.
Goykhman
,
G.
Soavi
,
A.
Lombardo
,
K.
Watanabe
,
T.
Taniguchi
,
M.
Bonn
,
D.
Turchinovich
,
C.
Stampfer
,
A. C.
Ferrari
,
G.
Cerullo
,
M.
Polini
, and
F. H. L.
Koppens
,
Nat. Nanotechnol.
13
,
41
(
2018
).
53.
A.
Tomadin
,
D.
Brida
,
G.
Cerullo
,
A. C.
Ferrari
, and
M.
Polini
,
Phys. Rev. B
88
,
035430
(
2013
).
54.
S.
Castilla
,
I.
Vangelidis
,
V.-V.
Pusapati
,
J.
Goldstein
,
M.
Autore
,
T.
Slipchenko
,
K.
Rajendran
,
S.
Kim
,
K.
Watanabe
,
T.
Taniguchi
,
L.
Martín-Moreno
,
D.
Englund
,
K.-J.
Tielrooij
,
R.
Hillenbrand
,
E.
Lidorikis
, and
F. H. L.
Koppens
,
Nat. Commun.
11
,
4872
(
2020
).
55.
S.
Kim
,
J.
Nah
,
I.
Jo
,
D.
Shahrjerdi
,
L.
Colombo
,
Z.
Yao
,
E.
Tutuc
, and
S. K.
Banerjee
,
Appl. Phys. Lett.
94
,
062107
(
2009
).
56.
E. H.
Hwang
,
E.
Rossi
, and
S. D.
Sarma
,
Phys. Rev. B
80
,
235415
(
2009
).
57.
A.
Tomadin
and
M.
Polini
,
Phys. Rev. B
104
,
125443
(
2021
).
58.
See http://zhinst.com for information about the employed lock-in amplifier (model UHFLI).
59.
A. A.
Balandin
,
Nat. Nanotechnol.
8
,
549
555
(
2013
).
60.
A. G.
Asuero
,
A.
Sayago
, and
A. G.
González
,
Crit. Rev. Anal. Chem.
36
,
41
59
(
2006
).

Supplementary Material