We report on the utilization of MgyZn1−yO/MgxZn1−xO heterostructures having two different Mg-contents (0 < y < x ≤ 0.5, wurtzite structure) for the construction of wavelength selective metal-semiconductor-metal ultraviolet photodetectors. The MgxZn1−xO thin film acts as an optical edge filter and the MgyZn1−yO layer is the active layer of the devices. A FWHM of only 7 nm was achieved for a photodetector operating around 3.4 eV and the center of band (370–325 nm) was shifted by different y:x-combinations. A maximum spectral photo response of about 1.8 A/W was achieved in visible-blind range. An internal gain mechanism in the device was observed and attributed to trapping of minority carriers at PdOz/(Mg,Zn)O-interface.

1.
M.
Razeghi
and
A.
Rogalski
,
J. Appl. Phys.
79
,
7433
(
1996
).
2.
J. L.
Pau
,
E.
Monroy
,
M. A.
Sánchez-García
,
E.
Calleja
, and
E.
Muñoz
,
Mater. Sci. Eng., B
93
,
159
(
2002
).
3.
S. J.
Pearton
,
F.
Ren
,
Y.-L.
Wang
,
B. H.
Chu
,
K. H.
Chen
,
C. Y.
Chang
,
W.
Lim
,
J.
Lin
, and
D. P.
Norton
,
Prog. Mater. Sci.
55
,
1
(
2010
).
4.
A.
Ohtomo
,
R.
Shiroki
,
I.
Ohkubo
,
H.
Koinuma
, and
M.
Kawasaki
,
Appl. Phys. Lett.
75
,
4088
(
1999
).
5.
Ü.
Özgür
,
Y. I.
Alivov
,
C.
Liu
,
A.
Teke
,
M. A.
Reshchikov
,
S.
Doğan
,
V.
Avrutin
,
S.-J.
Cho
, and
H.
Morkoç
,
J. Appl. Phys.
98
,
041301
(
2005
).
6.
S.
Liang
,
H.
Sheng
,
Y.
Liu
,
Z.
Hou
,
Y.
Lu
, and
H.
Shen
,
J. Cryst. Growth
225
,
110
(
2001
).
7.
S. M.
Sze
,
D. J.
Coleman
, Jr.
, and
A.
Loya
,
Solid-State Electron.
14
,
1209
(
1971
).
8.
U.
Karrer
,
A.
Dobner
,
O.
Ambacher
, and
M.
Stutzmann
,
J. Vac. Sci. Technol. B
18
,
757
(
2000
).
9.
S. K.
Zhang
,
W. B.
Wang
,
F.
Yun
,
L.
He
,
H.
Morkoç
,
X.
Zhou
,
M.
Tamargo
, and
R. R.
Alfano
,
Appl. Phys. Lett.
81
,
4628
(
2002
).
10.
M.
Lorenz
,
E. M.
Kaidashev
,
H.
von Wenckstern
,
V.
Riede
,
C.
Bundesmann
,
D.
Spemann
,
G.
Benndorf
,
H.
Hochmuth
,
A.
Rahm
,
H.-C.
Semmelhack
, and
M.
Grundmann
,
Solid-State Electron.
47
,
2205
(
2003
).
11.
M. W.
Allen
,
S. M.
Durbin
, and
J. B.
Metson
,
Appl. Phys. Lett.
91
,
053512
(
2007
).
12.
A.
Lajn
,
H.
von Wenckstern
,
Z.
Zhang
,
C.
Czekalla
,
G.
Biehne
,
J.
Lenzner
,
H.
Hochmuth
,
M.
Lorenz
,
M.
Grundmann
,
S.
Wickert
,
C.
Vogt
, and
R.
Denecke
,
J. Vac. Sci. Technol. B
27
,
1769
(
2009
).
13.
H.
von Wenckstern
,
Z. P.
Zhang
,
M.
Lorenz
,
C.
Czekalla
,
H.
Frenzel
,
A.
Lajn
, and
M.
Grundmann
,
Mater. Res. Soc. Symp. Proc.
1201
,
H04
02
(
2010
).
14.
H.
von Wenckstern
,
K.
Brachwitz
,
M.
Schmidt
,
C. P.
Dietrich
,
M.
Ellguth
,
M.
Stölzel
,
M.
Lorenz
, and
M.
Grundmann
,
J. Electron. Mater.
39
,
584
(
2010
).
15.
M.
Grundmann
,
The Physics of Semiconductors
, 2nd ed. (
Springer
,
New York
,
2010
).
16.
A.
Lajn
,
M.
Schmidt
,
H.
von Wenckstern
, and
M.
Grundmann
,
J. Electron. Mater.
40
,
473
(
2011
).
17.
J. C.
Carrano
,
T.
Li
,
P. A.
Grudowski
,
C. J.
Eiting
,
R. D.
Dupuis
, and
J. C.
Campbell
,
J. Appl. Phys.
83
,
6148
(
1998
).
18.
O.
Katz
,
G.
Bahir
, and
J.
Salzman
,
Appl. Phys. Lett.
84
,
4092
(
2004
).
19.
M.
Grundmann
and
C. P.
Dietrich
,
J. Appl. Phys.
106
,
123521
(
2009
).
20.
M.
Nakano
,
T.
Makino
,
A.
Tsukazaki
,
K.
Oeno
,
A.
Ohtomo
,
T.
Fukumura
,
H.
Yuji
,
Y.
Nishimoto
,
S.
Akasaka
,
D.
Takamizu
,
K.
Nakahara
,
T.
Tanabe
,
A.
Kamisawa
, and
M.
Kawasaki
,
Appl. Phys. Express
1
,
121201
(
2008
).
You do not currently have access to this content.