The electron emission properties of an array of ZnO nanowires were studied in the temperature range of 300-473 K. An almost doubling of the current density at 473 K under an electric field of 8 V/μm (j(T=473 K) = 190 μA/cm2, j(T=300 K) = 114 μA/cm2) was observed together with a reduction of the turn-on field from 552 V/μm to 482 V/μm. Theoretical model that combines the thermal-field emission for high electric field and the Schottky emission for the low field can satisfactorily account for temperature dependence of current at low as well as at high applied bias. The obtained effect is particularly appealing for the application in micro-gun for THz vacuum tubes.

1.
J. X.
Qiu
,
B.
Levush
,
J.
Pasour
,
A.
Katz
,
C. M.
Armstrong
,
D. R.
Whaley
,
J.
Tucek
,
K.
Kreischer
, and
D.
Gallagher
,
IEEE Microw. Mag.
10
,
38
(
2009
).
2.
H. M.
Manohara
,
R.
Toda
,
R. H.
Lin
,
A.
Liao
,
M. J.
Bronikowski
, and
P. H.
Siegel
,
J. Infrared Millim. Terahertz Waves
30
,
1338
(
2009
).
3.
D. R.
Whaley
,
R.
Duggal
,
C. M.
Armstrong
,
C. L.
Bellew
,
C. E.
Holland
, and
C. A.
Spindt
,
IEEE Trans. Electron Devices
56
,
896
(
2009
).
4.
G.
Ulisse
,
F.
Brunetti
, and
A.
Di Carlo
, in
Proceedings of the IEEE International Conference on Vacuum Electronics
(
2010
), pp.
449
450
.
5.
N. P.
Lockwood
,
K. L.
Cartwright
,
P. D.
Gensheimer
,
D. A.
Shiffler
,
C. Y.
D’Aubigny
,
C. K.
Walker
,
A.
Young
,
S. B.
Fairchild
, and
B.
Maruyama
, “
Development of field emission cathodes, electron gun, and a slow wave structure for a terahertz traveling wave tube
,” in
Proceedings of the IEEE International Conference on Vacuum Electronics
(
2010
), pp.
25
26
.
6.
N.
de Jonge
and
J. M.
Bonard
,
Philos. Trans. R. Soc. London, Ser. A
362
,
2239
(
2004
).
7.
K. B. K.
Teo
,
E.
Minoux
,
L.
Hudanski
,
F.
Peauger
,
J.-P.
Schnell
,
L.
Gangloff
,
P.
Legagneux
,
D.
Dieumegard
,
G. A. J.
Amaratunga
, and
W. I.
Milne
,
Nature
437
,
968
(
2005
).
8.
N. S.
Xu
and
S.
Ejaz Huq
,
Mater. Sci. Eng. R
48
,
47
(
2005
).
9.
F.
Brunetti
,
G.
Ulisse
,
C.
Ciceroni
,
A.
Di Carlo
,
E.
Tamburri
,
V.
Gugliemotti
, and
M. L.
Terranova
, in
IEEE-NANO 9th IEEE Conference on Nanotechnology
(
2009
), pp.
160
162
.
10.
J.
Chen
,
S. Z.
Deng
, and
N. S.
Xu
,
Appl. Phys. Lett.
80
,
3620
(
2002
).
11.
C. X.
Xu
,
X. W.
Sun
, and
B. J.
Chen
,
Appl. Phys. Lett.
84
,
1540
(
2004
).
12.
P.-Y.
Yang
,
J.-L.
Wang
,
W.-C.
Tsai
,
S.-J.
Wang
,
J.-C.
Lin
,
I.-C.
Lee
,
C.-T.
Chang
, and
H.-C.
Cheng
,
J. Nanosci. Nanotechnol.
11
,
6013
(
2011
).
13.
A.
Vomiero
,
I.
Concina
,
M. M.
Natile
,
E.
Comini
,
G.
Faglia
,
M.
Ferroni
,
I.
Kholmanov
, and
G.
Sberveglieri
,
Appl. Phys. Lett.
95
,
193104
(
2009
).
14.
Z. W.
Pan
,
Z. R.
Dai
, and
Z. L.
Wang
,
Science
291
,
1947
(
2001
).
15.
JCPDS Card No. 36–1451.
16.
L.
Vayssieres
,
Adv. Mater.
15
,
464
(
2003
).
17.
L.
Liao
,
W. F.
Zhang
,
H. B.
Lu
,
J.
Li
,
D. F.
Wang
,
C.
Liu
, and
D.
Fu
,
J. Nanotechnol.
18
(
22
),
225703
(
2007
).
18.
C. J.
Lee
,
T. J.
Lee
,
S. C.
Lyu
, and
Y.
Zhang
,
H.
Ruh
, and
H. J.
Lee
,
Appl. Phys. Lett.
81
,
3648
(
2002
).
19.
E. L.
Murphy
and
R. H.
Good
, Jr.
,
Phys. Rev.
102
(
6
),
1464
(
1956
).
20.
R. H.
Fowler
and
Dr. L.
Nordheim
,
Proc. R. Soc. London
119
,
173
(
1928
).
21.
J.
Liu
,
S.
Lee
,
Y. H.
Ahn
,
J.-Y.
Park
, and
K. H.
Koh
,
J. Phys. D: Appl. Phys.
42
,
095401
(
2009
).
22.
K.
Vanheusden
,
W. L.
Warren
,
C. H.
Seager
,
D. R.
Tallant
,
J. A.
Voigt
, and
B. E.
Gnade
,
J. Appl. Phys.
79
,
7983
(
1996
);
A.
Umar
,
H. W.
Ra
,
J. P.
Jeong
,
E. K.
Suh
, and
Y. B.
Hahn
,
Korean J. Chem. Eng.
23
,
499
(
2006
).
You do not currently have access to this content.