We demonstrate reconfigurable terahertz metamaterial (MM) in which constituent resonators can be switched from split-ring resonators (SRRs) to closed-ring resonators via optical excitation of silicon islands strategically placed in the split gap. Both the fundamental and the third-order resonance modes experience monotonic damping due to increasing conductive losses in the photo-doped silicon region. More importantly, increasing the optical fluence (>200 μJ/cm2) results in the excitation of the second-order resonance mode, which is otherwise forbidden in a split-ring resonator for the incidence polarization in our experiments. Such dynamical control of metamaterial resonances could be implemented in active terahertz devices to achieve additional functionalities.

1.
J. B.
Pendry
,
A.
Holden
,
D.
Robbins
, and
W.
Stewart
,
IEEE Trans. Microwave Theory Tech.
7
,
2075
(
1999
).
2.
R. A.
Shelby
,
D. R.
Smith
, and
S.
Schultz
,
Science
292
,
5514
(
2001
).
3.
T. J.
Yen
,
W. J.
Padilla
,
N.
Fang
,
D. C.
Vier
,
D. R.
Smith
,
J. B.
Pendry
,
D. N.
Basov
, and
X.
Zhang
,
Science
303
,
1494
(
2004
).
4.
C. M.
Soukoulis
,
S.
Linden
, and
M.
Wegener
,
Science
315
,
47
(
2007
).
5.
R.
Singh
,
E.
Smirnova
,
A. J.
Taylor
,
J. F.
O’Hara
, and
W.
Zhang
,
Opt. Express
16
,
6537
(
2008
).
6.
T.
Driscoll
,
G. O.
Andreev
,
D. N.
Basov
,
S.
Palit
,
S. Y.
Cho
,
N. M.
Jokerst
, and
D. R.
Smith
,
Appl. Phys. Lett.
91
,
062511
(
2007
).
7.
A. K.
Azad
,
A. J.
Taylor
,
E.
Smirnova
, and
J. F.
O’Hara
,
Appl. Phys. Lett.
92
,
011119
(
2008
).
8.
H.-T.
Chen
,
J. F.
O’Hara
,
A. K.
Azad
, and
A. J.
Taylor
,
Laser Photonics Rev.
5
,
513
(
2011
).
9.
D. R.
Chowdhury
,
R.
Singh
,
M. T.
Reiten
,
J.
Zhou
,
A. J.
Taylor
, and
J. F.
O’Hara
,
Opt. Express
19
,
10679
(
2011
).
10.
O.
Sydoruk
,
E.
Tarartschuk
,
E.
Shamonina
, and
L.
Solymer
,
J. Appl. Phys.
105
,
014903
(
2009
).
11.
W.
Padilla
,
A. J.
Taylor
,
C.
Highstrete
,
M.
Lee
, and
R. D.
Averitt
,
Phys. Rev. Lett.
96
,
107401
(
2006
).
12.
H.-T.
Chen
,
J. F.
O’Hara
,
A. K.
Azad
,
A. J.
Taylor
,
R. D.
Averitt
,
D. B.
Shrekenhamer
, and
W. J.
Padilla
,
Nature Photon.
2
,
295
(
2008
).
13.
H.-T.
Chen
,
W. J.
Padilla
,
M. J.
Clich
,
A. K.
Azad
,
R. D.
Averitt
, and
A. J.
Taylor
,
Nature Photon.
3
,
148
(
2009
).
14.
N.
Shen
,
M.
Massaouti
,
M.
Gokkavas
,
J.
Manceau
,
E.
Ozbay
,
M.
Kafesaki
,
T.
Koschny
,
S.
Tzortzakis
, and
C. M.
Soukoulis
,
Phys. Rev. Lett.
106
,
037403
(
2011
).
15.
J.
Gu
,
R.
Singh
,
Z.
Tian
,
W.
Cao
,
Q.
Xing
,
M.
He
,
J. W.
Zhang
,
J.
Han
,
H.-T.
Chen
, and
W.
Zhang
,
Appl. Phys. Lett.
97
,
071102
(
2010
).
16.
B.
Jin
,
C.
Zhang
,
S.
Engelbrecht
,
A.
Pimenov
,
J.
Wu
,
Q.
Xu
,
C.
Cao
,
J.
Chen
,
W.
Xu
,
L.
Kang
 et al.,
Opt. Express
18
,
17504
(
2010
).
17.
R.
Singh
,
C.
Rockstuhl
,
F.
Lederer
, and
W.
Zhang
,
Phys. Rev. B
79
,
085111
(
2009
).
18.
N.
Liu
,
S.
Kaiser
, and
H.
Giessen
,
Adv. Mater.
20
,
4521
(
2008
).
19.
R. D.
Averitt
and
A. J.
Taylor
,
J. Phys.: Condensed Matter.
14
,
R1357
(
2002
).
20.
Computer Simulation Technology (CST), Darmstadt, Germany.
21.
Z.
Tian
,
A. K.
Azad
,
X.
Lu
,
J.
Gu
,
J.
Han
,
Q.
Xing
,
A. J.
Taylor
,
J. F.
O’Hara
, and
W.
Zhang
,
Opt. Express
18
,
12482
(
2010
).
You do not currently have access to this content.