A surface acoustic wave (SAW) actuated rotary motor is reported here, consisting of a millimeter-sized spherical metal rotor placed on the surface of a lead zirconate titanate piezoelectric substrate upon which the SAW is made to propagate. At the design frequency of 3.2 MHz and with a fixed preload of 41.1 μN, the maximum rotational speed and torque achieved were approximately 1900 rpm and 5.37 μN-mm, respectively, producing a maximum output power of 1.19 μW. The surface vibrations were visualized using laser Doppler vibrometry and indicate that the rotational motion arises due to retrograde elliptical motions of the piezoelectric surface elements. Rotation about orthogonal axes in the plane of the substrate has been obtained by using orthogonally placed interdigital electrodes on the substrate to generate SAW impinging on the rotor, offering a means to generate rotation about an arbitrary axis in the plane of the substrate.

1.
B.
Watson
,
J.
Friend
, and
L.
Yeo
,
Sens. Actuators, A
152
,
219
(
2009
).
2.
D. K.-C.
Liu
,
J.
Friend
, and
L.
Yeo
,
Acoust. Sci. & Tech.
31
,
115
(
2010
).
3.
L. S.
Fan
,
Y. C.
Tai
, and
R.
Muller
,
Sens. Actuators
20
,
41
(
1989
).
4.
J.
Friend
,
L.
Yeo
, and
M.
Hogg
,
Appl. Phys. Lett.
92
,
014107
(
2008
).
5.
K.
Asai
and
M. K.
Kurosawa
,
Electron. Commun. Jpn.
88
(
1
),
37
(
2005
).
6.
M.
Barbic
,
J. J.
Mock
,
A. P.
Gray
, and
S.
Schultz
,
Appl. Phys. Lett.
79
,
1399
(
2001
).
7.
T.
Kanda
,
A.
Makino
,
T.
Ono
,
K.
Suzumori
,
T.
Morita
, and
M.
Kurosawa
,
Sens. Actuators A
127
,
131
(
2006
).
8.
A.
Flynn
,
L.
Tavrow
,
S.
Bart
,
R.
Brooks
,
D.
Ehrlich
,
K.
Udayakumar
, and
L.
Cross
,
J. Microelectromech. Syst.
1
,
44
(
1992
).
9.
S.
Biwersi
,
P.
Gaucher
,
J.
Hector
,
J.
Manceau
, and
F.
Bastien
,
Sens. Actuators, A
70
,
291
(
1998
).
10.
E.
Hong
,
S.
Trolier-McKinstry
,
R.
Smith
,
S.
Krishnaswamy
, and
C.
Freidhoff
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
53
,
697
(
2006
).
11.
K.
Hashimoto
,
Surface Acoustic Wave Devices in Telecommunications: Modelling and Simulation
(
Springer
,
Berlin, Germany
,
2000
).
12.
R.
White
and
F.
Voltmer
,
Appl. Phys. Lett.
7
,
314
(
1965
).
13.
M. K.
Kurosawa
,
M.
Takahashi
, and
T.
Higuchi
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
43
,
901
(
1996
).
14.
K.
Sakano
,
M. K.
Kurosawa
, and
T.
Shigematsu
,
Adv. Rob.
24
,
1407
(
2010
).
15.
J.
Campbell
and
W.
Jones
,
IEEE Transactions on Sonics Ultrason.
15
,
209
(
1968
).
16.
P. F.
Bordui
,
D. H.
Jundt
,
E. M.
Standifer
,
R. G.
Norwood
,
R. L.
Sawin
, and
J. D.
Galipeau
,
J. Appl. Phys.
85
,
3766
(
1999
).
17.
L.
Cheng
,
G.
Zhang
,
S.
Zhang
,
J.
Yu
, and
X.
Shui
,
Ultrasonics
39
,
591
(
2002
).
18.
R.
Shilton
,
N.
Glass
,
P.
Chan
,
L.
Yeo
, and
J.
Friend
,
Appl. Phys. Lett.
98
,
254103
(
2011
).
19.
R. P.
Hodgson
,
M.
Tan
,
L.
Yeo
, and
J.
Friend
,
Appl. Phys. Lett.
94
,
024102
(
2009
).
20.
J.
Saito
,
J.
Friend
,
K.
Nakamura
, and
S.
Ueha
,
Jpn. J. Appl. Phys.
44
,
4666
(
2005
).
21.
Y. J.
Hsiao
,
T. H.
Fang
,
Y. H.
Chang
,
Y. S.
Chang
, and
S.
Wu
,
Mater. Lett.
60
,
1140
(
2006
).
22.
C.
Tseng
,
J. Appl. Phys.
38
,
4281
(
1967
).
23.
S.
Ueha
and
Y.
Tomikawa
,
Ultrasonic Motors—Theory and Applications
, Monographs in Electrical and Electronic Engineering Vol. 29 (
Clarendon
,
Oxford
,
1993
).
24.
J. R.
Friend
, in
Proceedings of the 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibition
(
American Institute of Aeronautics and Astronautics
,
1996)
, Vol.
96
, Paper No. 1452, pp.
1
15
.
25.
J.
Wallaschek
,
Smart Mater. Struct.
7
,
369
(
1998
).
26.
K.-C.
Liu
,
J.
Friend
, and
L.
Yeo
,
Phys. Rev. E
80
,
046201
(
2009
).
27.
K.
Nakamura
,
M. K.
Kurosawa
,
H.
Kurebayashi
, and
S.
Ueha
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
38
,
481
(
1991
).
28.
J.
Friend
,
K.
Nakamura
, and
S.
Ueha
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
,
1343
(
2005
).
You do not currently have access to this content.