We introduce electro-coflow as a way to generate emulsion drops with an average size that can be larger, comparable, and smaller than the smallest geometric feature of the device. The method relies on using three immiscible liquids, two of them having a finite electrical conductivity. There are three regimes of operation that allow the steady generation of drops: dripping, electro-dripping, and an electrically dominated regime. We transit from one to the other by increasing the applied voltage and describe the changes in drop size by balancing the relevant forces in each regime.

1.
O. A.
Basaran
,
AIChE J.
48
,
1842
(
2002
).
2.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Adjari
,
Annu. Rev. Fluid Mech.
36
,
381
(
2004
).
3.
T. M.
Squires
and
S. R.
Quake
,
Rev. Mod. Phys.
77
,
977
(
2005
).
4.
A.
Gunther
and
K. F.
Jensen
,
Lab Chip
6
,
1487
(
2006
).
5.
P.
Garstecki
,
M. J.
Fuerstman
,
H. A.
Stone
, and
G. M.
Whitesides
,
Lab Chip
6
,
437
(
2006
).
6.
S. L.
Anna
,
N.
Bontoux
and
H. A.
Stone
,
Appl. Phys. Lett.
82
,
364
(
2003
).
7.
A. S.
Utada
,
A.
Fernandez-Nieves
,
H. A.
Stone
, and
D. A.
Weitz
,
Phys. Rev. Lett.
99
,
094502
(
2007
).
8.
A.
Barrero
and
I. G.
Loscertales
,
Annu. Rev. Fluid Mech.
39
,
89
(
2007
).
9.
S. L.
Anna
and
H. C.
Mayer
,
Phys. Fluids
18
,
121512
(
2006
).
10.
H.
Gu
,
F.
Malloggi
,
S. A.
Vanapalli
, and
F.
Mugele
,
Appl. Phys. Lett.
93
,
183507
(
2008
).
11.
H.
Kim
,
D.
Luo
,
D. R.
Link
,
D. A.
Weitz
,
M.
Marquez
, and
Z.
Cheng
,
Appl. Phys. Lett.
91
,
133106
(
2007
).
12.
P.
He
,
H.
Kim
,
D.
Luo
,
M.
Marquez
, and
Z.
Cheng
,
Appl. Phys. Lett.
96
,
174103
(
2010
).
13.
J.
Fernandez de la Mora
,
J.
Navascues
,
F.
Fernandez
, and
J.
Rosell-Llompart
,
J. Aerosol Sci.
21
,
S673
(
1990
).
14.
A.
Barrero
,
J. M.
Lopez-Herrera
,
A.
Boucard
,
I. G.
Loscertales
, and
M.
Marquez
,
J. Colloid Interface Sci.
272
,
104
(
2004
).
15.
I.
Romero-Sanz
,
R.
Bocanegra
,
J.
Fernandez de la Mora
, and
M.
Gamero-Castano
,
J. Appl. Phys.
94
,
3599
(
2003
).
16.
I.
Romero-Sanz
and
J.
Fernandez de la Mora
,
J. Appl. Phys.
95
,
2133
(
2004
).
18.
G. I.
Taylor
,
Proc. R. Soc. London, Ser. A
280
,
383
(
1964
).
19.
J.
Fernandez de la Mora
,
J. Fluid Mech.
243
,
561
(
1992
).
20.
J.
Doshi
and
D. H.
Reneker
,
J. Electrostat.
35
,
151
(
1995
).
21.
S. V.
Fridrikh
,
J. H.
Yu
,
M. P.
Brenner
, and
G. C.
Rutledge
,
Phys. Rev. Lett.
90
,
144502
(
2003
).
22.
D.
Li
and
Y.
Xia
,
Adv. Mater.
16
,
1151
(
2004
).
23.
A. S.
Utada
,
E.
Lorenceau
,
D. R.
Link
,
P. D.
Kaplan
,
H. A.
Stone
, and
D. A.
Weitz
,
Science
308
,
537
(
2005
).
24.
V. R.
Gundabala
,
N.
Vilanova
, and
A.
Fernandez-Nieves
,
Phys. Rev. Lett.
105
,
154503
(
2010
).
25.
X.
Zhang
and
O. A.
Basaran
,
Phys. Fluids
7
,
1184
(
1995
).
26.
M.
Cloupeau
and
B.
Prunet-Foch
,
J. Aerosol Sci.
25
,
1021
(
1994
).
27.
F. J.
Higuera
,
J. Fluid Mech.
513
,
239
(
2004
).
28.
A. M.
Gañan-Calvo
,
J.
Davila
, and
A.
Barrero
,
J. Aerosol Sci.
28
,
249
(
1997
).
29.
J.
Fernandez de la Mora
,
Annu. Rev. Fluid Mech.
39
,
217
(
2007
).
30.
P. B.
Umbanhowar
,
V.
Prasad
, and
D. A.
Weitz
,
Langmuir
16
,
347
(
2000
).
31.
A. M.
Gañan-Calvo
,
J. M.
Lopez-Herrera
, and
P.
Riesco-Chueca
,
J. Fluid Mech.
566
,
421
(
2006
).
32.
J.
Rosell-Llompart
and
J.
Fernandez de la Mora
,
J. Aerosol Sci.
25
,
1093
(
1994
).
You do not currently have access to this content.