We report a hybrid solar cell based on well-aligned crystalline silicon nanorods (SiNRs) and an organic semiconductor, 2,2′,7,7′-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9′-spirobifluorene (Spiro-OMeTAD), in a core-sheath heterojunction structure. The device is formed by spin coating Spiro-OMeTAD on SiNRs array fabricated by electroless chemical etching. A silver grid on a conductive poly (3,4-ethylene-dioxythiophene): polystyrenesulfonate layer is used as the top transparent anode. A power conversion efficiency of 10.3% has been obtained for a 1-cm2 cell with 0.35-µm long SiNRs. The high efficiency and simple solution process used suggest that such devices are promising for developing low cost and high efficiency SiNRs/organic solar cells.

1.
P.
Kuiqing
,
X.
Ying
,
W.
Yin
,
Y.
Yunjie
,
L.
Shuit-Tong
, and
Z.
Jing
,
Small
1
,
1062
(
2005
).
2.
E. C.
Garnett
and
P.
Yang
,
J. Am. Chem. Soc.
130
,
9224
(
2008
).
3.
E. C.
Garnett
,
C.
Peters
,
M.
Brongersma
,
C.
Yi
, and
M.
McGehee
,
Proceedings of the 35th IEEE Photovoltaics Specialists Conference
, Honolulu (
IEEE Piscataway
,
NJ
,
2010
), p.
000934
.
4.
S.-C.
Shiu
,
J.-J.
Chao
,
S.-C.
Hung
,
C.-L.
Yeh
, and
C.-F.
Lin
,
Chem. Mater.
22
,
3108
(
2010
).
5.
E.
Garnett
and
P.
Yang
,
Nano Lett.
10
,
1082
(
2010
).
6.
M. D.
Kelzenberg
,
S. W.
Boettcher
,
J. A.
Petykiewicz
,
D. B.
Turner-Evans
,
M. C.
Putnam
,
E. L.
Warren
,
J. M.
Spurgeon
,
R. M.
Briggs
,
N. S.
Lewis
, and
H. A.
Atwater
,
Nat. Mater.
9
,
239
(
2010
).
7.
H.
Lu
and
C.
Gang
,
Nano Lett.
7
,
3249
(
2007
).
8.
S. M.
Wong
,
H. Y.
Yu
,
Y. L.
Li
,
J. S.
Li
,
F.
Wang
,
M. F.
Yang
,
N.
Singh
,
P. G. Q.
Lo
, and
D. L.
Kwong
,
Proceedings of the Electron Devices Meeting
, San Francisco (
IEEE Piscataway
,
NJ
2010
), p.
31
2
.
9.
S.
Gunes
,
H.
Neugebauer
, and
N. S.
Sariciftci
,
Chem. Rev.
107
,
1324
(
2007
).
10.
G.
Kalita
,
S.
Adhikari
,
H. R.
Aryal
,
R.
Afre
,
T.
Soga
,
M.
Sharon
,
W.
Koichi
, and
M.
Umeno
,
J. Phys. D: Appl. Phys.
42
,
115104
(
2009
).
11.
U.
Bach
,
D.
Lupo
,
P.
Comte
,
J. E.
Moser
,
F.
Weissortel
,
J.
Salbeck
,
H.
Spreitzer
, and
M.
Gratzel
,
Nature
395
,
583
(
1998
).
12.
H.
Bi
and
R. R.
LaPierre
,
Nanotechnology
20
,
465205
(
2009
).
13.
I. K.
Ding
,
N.
Tetreault
,
J.
Brillet
,
B. E.
Hardin
,
E. H.
Smith
,
S. J.
Rosenthal
,
F.
Sauvage
,
M.
Gratzel
, and
M. D.
McGehee
,
Adv. Funct. Mater.
19
,
2431
(
2009
).
14.
H. J.
Snaith
,
R.
Humphry-Baker
,
P.
Chen
,
I.
Cesar
,
S. M.
Zakeeruddin
, and
M.
Gratzel
,
Nanotechnology
19
,
424003
(
2008
).
15.
K.
Peter
,
H.
Wietasch
,
B.
Peng
, and
M.
Thelakkat
,
Appl. Phys. A: Mater. Sci. Process. A
79
,
65
(
2004
).
16.
J. M.
Spurgeon
,
H. A.
Atwater
, and
N. S.
Lewis
,
J. Phys. Chem. C
112
,
6186
(
2008
).
17.
K.-Q.
Peng
and
S.-T.
Lee
,
Adv. Mater.
23
,
198
(
2011
).
You do not currently have access to this content.