We present the experimental observation of parallel parametric amplification of selected thermal spin-wave modes in a transversally magnetized Ni81Fe19 microstripe. By employing Brillouin light scattering microscopy, we identify the dominant group, i.e., the spin-wave mode that is preferentially amplified. Due to the existing spin-wave quantization in the system, it is possible to select one specific mode to be parametrically excited by changing the bias magnetic field. This gives access to transversal spin-wave eigenmodes of the stripe which are promising for spin-wave information processing and also to modes localized at the stripe edges.

1.
T.
Schneider
,
A. A.
Serga
,
B.
Leven
,
B.
Hillebrands
,
R. L.
Stamps
, and
M. P.
Kostylev
,
Appl. Phys. Lett.
92
,
022505
(
2008
).
2.
A.
Khitun
,
M.
Bao
, and
K. L.
Wang
,
J. Phys. D: Appl. Phys.
43
,
264005
(
2010
).
3.
K. R.
Smith
,
V. I.
Vasyuchka
,
M.
Wu
,
G. A.
Melkov
, and
C. E.
Patton
,
Phys. Rev. B
76
,
054412
(
2007
).
4.
A. V.
Chumak
,
V. S.
Tiberkevich
,
A. D.
Karenowska
,
A. A.
Serga
,
J. F.
Gregg
,
A. N.
Slavin
, and
B.
Hillebrands
,
Nat. Commun.
1
,
141
(
2010
).
5.
A.
Slavin
and
V.
Tiberkevich
,
IEEE Trans. Magn.
44
,
7
(
2008
).
6.
A. A.
Serga
,
A. V.
Chumak
, and
B.
Hillebrands
,
J. Phys. D: Appl. Phys.
43
,
264002
(
2010
).
7.
K.
Vogt
,
H.
Schultheiss
,
S. J.
Hermsdoerfer
,
P.
Pirro
,
A. A.
Serga
, and
B.
Hillebrands
,
Appl. Phys. Lett.
95
,
182508
(
2009
).
8.
V. E.
Demidov
,
M. P.
Kostylev
,
K.
Rott
,
P.
Krzysteczko
,
G.
Reiss
, and
S. O.
Demokritov
,
Appl. Phys. Lett.
95
,
112509
(
2009
).
9.
E.
Schlömann
,
J. J.
Green
, and
U.
Milano
,
J. Appl. Phys.
31
,
386S
(
1960
).
10.
G. A.
Melkov
,
A. A.
Serga
,
A. N.
Slavin
,
V. S.
Tiberkevich
,
A. N.
Oleinik
, and
A. V.
Bagada
,
JETP
89
(
6
),
1189
(
1999
).
11.
S. M.
Rezende
and
F. M.
de Aguiar
,
IEEE Proc.
78
,
6
(
1990
).
12.
S.
Schäfer
,
A. V.
Chumak
,
A. A.
Serga
,
G. A.
Melkov
, and
B.
Hillebrands
,
Appl. Phys. Lett.
92
,
162514
(
2008
).
13.
V. E.
Demidov
,
S. O.
Demokritov
,
B.
Hillebrands
,
M.
Laufenberg
, and
P. P.
Freitas
,
Appl. Phys. Lett.
85
,
2866
(
2004
).
14.
J.
Jorzick
,
S. O.
Demokritov
,
B.
Hillebrands
,
D.
Berkov
,
N. L.
Gorn
,
K.
Guslienko
, and
A. N.
Slavin
,
Phys. Rev. Lett.
88
,
047204
(
2002
).
15.
B. A.
Kalinikos
and
A. N.
Slavin
,
J. Phys. C
19
,
7013
(
1986
).
16.
Due to the thin film geometry, the magnetization precession is elliptic as a result of the shape anisotropy. The ellipticity ε is defined as the amplitude of the in-plane precession over the amplitude of the out-of-plane precession.
17.
A. G.
Gurevich
and
G. A.
Melkov
,
Magnetization Oscillations and Waves
(
CRC
,
New York
,
1996
).
18.
M. P.
Kostylev
,
J.-G.
Hu
, and
R. L.
Stamps
,
Appl. Phys. Lett.
90
,
012507
(
2007
).
You do not currently have access to this content.