We present the experimental observation of parallel parametric amplification of selected thermal spin-wave modes in a transversally magnetized Ni81Fe19 microstripe. By employing Brillouin light scattering microscopy, we identify the dominant group, i.e., the spin-wave mode that is preferentially amplified. Due to the existing spin-wave quantization in the system, it is possible to select one specific mode to be parametrically excited by changing the bias magnetic field. This gives access to transversal spin-wave eigenmodes of the stripe which are promising for spin-wave information processing and also to modes localized at the stripe edges.
REFERENCES
1.
T.
Schneider
, A. A.
Serga
, B.
Leven
, B.
Hillebrands
, R. L.
Stamps
, and M. P.
Kostylev
, Appl. Phys. Lett.
92
, 022505
(2008
).2.
A.
Khitun
, M.
Bao
, and K. L.
Wang
, J. Phys. D: Appl. Phys.
43
, 264005
(2010
).3.
K. R.
Smith
, V. I.
Vasyuchka
, M.
Wu
, G. A.
Melkov
, and C. E.
Patton
, Phys. Rev. B
76
, 054412
(2007
).4.
A. V.
Chumak
, V. S.
Tiberkevich
, A. D.
Karenowska
, A. A.
Serga
, J. F.
Gregg
, A. N.
Slavin
, and B.
Hillebrands
, Nat. Commun.
1
, 141
(2010
).5.
A.
Slavin
and V.
Tiberkevich
, IEEE Trans. Magn.
44
, 7
(2008
).6.
A. A.
Serga
, A. V.
Chumak
, and B.
Hillebrands
, J. Phys. D: Appl. Phys.
43
, 264002
(2010
).7.
K.
Vogt
, H.
Schultheiss
, S. J.
Hermsdoerfer
, P.
Pirro
, A. A.
Serga
, and B.
Hillebrands
, Appl. Phys. Lett.
95
, 182508
(2009
).8.
V. E.
Demidov
, M. P.
Kostylev
, K.
Rott
, P.
Krzysteczko
, G.
Reiss
, and S. O.
Demokritov
, Appl. Phys. Lett.
95
, 112509
(2009
).9.
E.
Schlömann
, J. J.
Green
, and U.
Milano
, J. Appl. Phys.
31
, 386S
(1960
).10.
G. A.
Melkov
, A. A.
Serga
, A. N.
Slavin
, V. S.
Tiberkevich
, A. N.
Oleinik
, and A. V.
Bagada
, JETP
89
(6
), 1189
(1999
).11.
S. M.
Rezende
and F. M.
de Aguiar
, IEEE Proc.
78
, 6
(1990
).12.
S.
Schäfer
, A. V.
Chumak
, A. A.
Serga
, G. A.
Melkov
, and B.
Hillebrands
, Appl. Phys. Lett.
92
, 162514
(2008
).13.
V. E.
Demidov
, S. O.
Demokritov
, B.
Hillebrands
, M.
Laufenberg
, and P. P.
Freitas
, Appl. Phys. Lett.
85
, 2866
(2004
).14.
J.
Jorzick
, S. O.
Demokritov
, B.
Hillebrands
, D.
Berkov
, N. L.
Gorn
, K.
Guslienko
, and A. N.
Slavin
, Phys. Rev. Lett.
88
, 047204
(2002
).15.
B. A.
Kalinikos
and A. N.
Slavin
, J. Phys. C
19
, 7013
(1986
).16.
Due to the thin film geometry, the magnetization precession is elliptic as a result of the shape anisotropy. The ellipticity ε is defined as the amplitude of the in-plane precession over the amplitude of the out-of-plane precession.
17.
A. G.
Gurevich
and G. A.
Melkov
, Magnetization Oscillations and Waves
(CRC
, New York
, 1996
).18.
M. P.
Kostylev
, J.-G.
Hu
, and R. L.
Stamps
, Appl. Phys. Lett.
90
, 012507
(2007
).© 2011 American Institute of Physics.
2011
American Institute of Physics
You do not currently have access to this content.