We report on a micromagnetic study on domain wall (DW) propagation in ferromagnetic nanotubes. It is found that DWs in a tubular geometry are much more robust than ones in flat strips. This is explained by topological considerations. Our simulations show that the Walker breakdown of the DW can be completely suppressed. Constant DW velocities above 1000 m/s are achieved by small fields. A different velocity barrier of the DW propagation is encountered, which significantly reduces the DW mobility. This effect occurs as the DW reaches the phase velocity of spin waves (SWs), thereby triggering a Cherenkov-like emission of SWs.

1.
S. S. P.
Parkin
,
M.
Hayashi
, and
L.
Thomas
,
Science
320
,
190
(
2008
).
2.
D. A.
Allwood
,
G.
Xiong
,
C. C.
Faulkner
,
D.
Atkinson
,
D.
Petit
, and
R. P.
Cowburn
,
Science
309
,
1688
(
2005
).
3.
N. L.
Schryer
and
L. R.
Walker
,
J. Appl. Phys.
45
,
5406
(
1974
).
4.
Y.
Nakatani
,
A.
Thiaville
, and
J.
Miltat
,
Nature Mater.
2
,
521
(
2003
).
5.
E. R.
Lewis
,
D.
Petit
,
L.
O’Brien
,
A.
Fernandez-Pacheco
,
J.
Sampaio
,
A.-V.
Jausovec
,
H. T.
Zeng
,
D. E.
Read
, and
R. P.
Cowburn
,
Nature Mater.
9
,
980
(
2010
).
6.
R. D.
McMichael
and
M. J.
Donahue
,
IEEE Trans. Magn.
33
,
4167
(
1997
).
7.
R.
Hertel
,
J. Magn. Magn. Mater.
249
,
251
(
2002
).
8.
R.
Hertel
and
J.
Kirschner
,
J. Magn. Magn. Mater.
278
,
291
(
2004
).
9.
P.
Landeros
,
O. J.
Suarez
,
A.
Cuchillo
, and
P.
Vargas
,
Phys. Rev. B
79
,
024404
(
2009
).
10.
The curvature of the tube also influences the DW stability and leads to another interesting property, i.e., the chirality-dependent DW dynamics. Under certain conditions with proper size or chirality, Walker breakdown mediated by a vortex-antivortex pair can take place. Those contents are beyond the scope of this paper and will be discussed in a forthcoming one.
11.
A.
Kákay
,
E.
Westphal
, and
R.
Hertel
,
IEEE Trans. Magn.
46
,
2303
(
2010
).
12.
See supplementary material at http://dx.doi.org/10.1063/1.3643037 for two movies showing SWs emission by a moving DW.
13.
A. L.
González
,
P.
Landeros
, and
Á. S.
Núñez
,
J. Magn. Magn. Mater.
320
,
530
(
2010
).
14.
D.
Bouzidi
and
H.
Suhl
,
Phys. Rev. Lett.
65
,
002587
(
1990
).
15.
V. G.
Bar’yakhtar
,
M. V.
Chetkin
,
B. A.
Ivanov
, and
S. N.
Gadetskii
, in
Dynamics of Topological Magnetic Solitons. Experiment and Theory
(
Springer
,
Berlin
,
1994
), Chap. 4.
16.
R.
Wieser
,
E. Y.
Vedmedenko
, and
R.
Wiesendanger
,
Phys. Rev. B
81
,
024405
(
2010
).
17.
W.
Döring
,
Z. Naturforsch.
3a
,
373
(
1948
).
18.
P. A.
Cherenkov
,
Dokl. Akad. Nauk SSSR
2
,
451
(
1934
).
19.
K.
Nielsch
,
J.
Choi
,
K.
Schwirn
,
R. B.
Wehrspohn
, and
U.
Gösele
,
Nano Lett.
2
,
677
(
2005
).
20.
K. T.
Chan
,
C.
Doran
,
E. G.
Shipton
, and
E. E.
Fullerton
,
IEEE Trans. Magn.
46
,
2209
(
2010
).

Supplementary Material

You do not currently have access to this content.