Hexagonal orthoferrites of rare earths RFeO3 (R = Lu, Er-Tb) were grown epitaxially on (111)ZrO2(Y2O3) substrates using metal-organic chemical vapour deposition. Temperature and field dependences of magnetization were measured and analyzed for all samples and revealed weak ferromagnetic behavior below T = 120–140 K. The difference in electronic structure along with a distinct similarity in the crystal structure of hexagonal manganites RMnO3 and hexagonal orthoferrites RFeO3 are brought into focus in order to explain the results. Hexagonal orthoferrites are regarded as a promising family of multiferroics.

1.
W.
Eerenstein
,
N. D.
Mathur
, and
J. F.
Scott
,
Nature
442
,
759
(
2006
).
2.
R.
Thomas
,
J. F.
Scott
,
D. N.
Bose
, and
R. S.
Katiyar
,
J. Phys.: Condens. Mater
22
,
423201
(
2010
).
3.
H. L.
Yahel
, Jr
,
W. C.
Koehler
,
E. F.
Bertaut
, and
E. F.
Forrat
,
Acta Cryst.
16
,
957
(
1963
).
4.
T.
Kimura
,
T.
Goto
,
H.
Shintani
,
K.
Ishizaka
,
T.
Arima
, and
Y.
Tokura
,
Nature
426
,
55
(
2003
).
5.
B.
Lorenz
,
Y. Q.
Wang
, and
C. W.
Chu
,
J. Phys. D: Appl. Phys.
38
,
R123
(
2005
).
6.
T.
Kimura
,
G.
Lawes
,
T.
Goto
,
Y.
Tokura
, and
A. P.
Ramirez
,
Phys. Rev. B
71
,
224425
(
2005
).
7.
B. B.
Van Aken
,
A.
Meetsma
, and
T. T. M.
Palstra
,
Acta Cryst.
E57
,
i101
(
2001
).
8.
B. B.
Van Aken
,
T. T. M.
Palstra
,
A.
Filippetti
, and
N. A.
Spaldin
,
Nature Mater.
3
,
167
(
2004
).
9.
M.
Fiebig
,
Th.
Lottermoser
, and
R. V.
Pisarev
,
J. Appl. Phys.
93
,
8194
(
2003
).
10.
A. A.
Bosak
,
C.
Dubourdieu
,
J. P.
Snateur
,
O.
Yu. Gorbenko
, and
A. R.
Kaul
,
J. Mater. Chem.
12
,
800
(
2002
).
11.
E.
Magome
,
Ch.
Moriyoshi
,
Y.
Kuroiwa
,
A.
Masuno
, and
H.
Inoue
,
Jpn. J. Appl. Phys.
49
,
09ME06
(
2010
).
12.
A.
Masuno
,
S.
Sakai
,
Y.
Arai
,
H.
Tomioka
,
F.
Otsubo
,
H.
Inoue
,
Ch.
Moriyoshi
,
Y.
Kuroiwa
, and
J.
Yu
,
Ferroelectrics
378
,
169
(
2009
).
13.
Y.
Mizoguchi
,
H.
Onodera
,
H.
Yamauchi
,
M.
Kagawa
,
Y.
Syono
, and
T.
Hirai
,
Mater. Sci. Eng. A
217
,
164
(
1996
).
14.
A. A.
Bossak
,
I. E.
Graboy
,
O.
Yu. Gorbenko
,
A. R.
Kaul
,
M. S.
Kartavtseva
,
V. L.
Svetchnikov
, and
H. W.
Zandbergen
,
Chem. Mater.
16
,
17511755
(
2004
).
15.
M. S. V.
Kumar
,
K.
Nagashio
,
T.
Hibiya
,
K.
Kuribayashi
,
J. Am. Ceram. Soc.
91
,
806
(
2008
).
16.
J. H.
Lee
,
P.
Murugavel
,
H.
Ryu
,
D.
Lee
,
J. Y.
Jo
,
J. W.
Kim
,
H. J.
Kim
,
K. H.
Kim
,
Y.
Jo
,
M. H.
Jung
,
Y. H.
Oh
,
Y. W.
Kim
,
J. G.
Yoon
,
J. S.
Chung
, and
T. W.
Noh
,
Adv. Mater.
18
,
3125
, (
2006
).
17.
N. D.
Mermin
and
H.
Wagner
,
Phys. Rev. Lett.
17
,
1133
(
1966
).
18.
J. G.
Lin
,
Y. S.
Chen
, and
T. C.
Han
,
J. Appl. Phys.
107
,
09D902
(
2010
).
19.
Yu.
Danilov
,
Yu.
Drozdov
,
A.
Kudrin
,
O.
Vikhrova
,
B.
Zvonkov
,
M.
Sapozhnikov
,
L.
Fetisov
,
A.
Semisalova
, and
N.
Perov
,
J. Phys.:Conf. Ser.
200
,
062025
(
2010
).
20.
H.
Iida
,
T.
Koizumi
,
Y.
Uesu
,
Phase Transitions
,
84
(
9–10
),
747
(
2011
).
21.
A.
Muñoz
,
J. A.
Alonso
,
M. J.
Martínez-Lope
,
M. T.
Casáis
,
J. L.
Martínez
, and
M. T.
Fernández-Díaz
,
Phys. Rev. B
62
,
9498
(
2000
).
You do not currently have access to this content.