Interactions between the walls in multiwalled nanotubes are key to determining their mechanical properties. Here, we report studies of radial deformation of multiwalled WS2 nanotubes in an atomic force microscope. The experimental results were fitted to a finite element model to determine the radial modulus. These results are compared with density-functional tight-binding calculations of a double-walled tube. Good agreement was obtained between experiment and calculations. The results indicate the importance of the sliding between layers in moderating the radial modulus. A plateau in the deformation curves is seen to have atomistic origins.

1.
K. S.
Nagapriya
,
O.
Goldbart
,
I.
Kaplan-Ashiri
,
G.
Seifert
,
R.
Tenne
, and
E.
Joselevich
,
Phys. Rev. Lett.
101
,
195501
(
2008
).
2.
I.
Kaplan-Ashiri
,
S. R.
Cohen
,
N.
Apter
,
Y.
Wang
, and
G.
Seifert
,
J. Phys. Chem. C
111
,
8432
(
2007
).
3.
V. N.
Popov
,
V. E.
van Doren
, and
M.
Balkanski
,
Solid State Commun.
114
,
395
(
2000
).
4.
L.
Wei
,
C.
Jun-fang
,
H.
Qinyu
, and
W.
Teng
,
Physica B
405
,
2498
(
2010
).
5.
FEA model described in detail in
E.
Cohen
,
O.
Goldbart
,
R.
Schreiber
,
S. R.
Cohen
,
D.
Barlam
,
T.
Lorenz
,
A.
Enyashin
, and
G.
Seifert
,
J. Vac. Sci. Technol. B
29
,
21009
(
2011
).
6.
D.
Porezag
,
T.
Frauenheim
,
T.
Köhler
,
G.
Seifert
, and
R.
Kaschner
,
Phys. Rev. B
51
,
12947
(
1995
).
7.
G.
Seifert
,
D.
Porezag
, and
T.
Frauenheim
,
Int. J. Quantum Chem.
58
,
185
(
1996
).
8.
M.
Stefanov
,
A. N.
Enyashin
,
T.
Heine
, and
G.
Seifert
,
J. Phys. Chem. C
112
,
17764
(
2008
).
9.
I.
Kaplan-Ashiri
,
S. R.
Cohen
,
K.
Gartsman
,
V.
Ivanovskaya
,
T.
Heine
,
G.
Seifert
,
I.
Wiesel
,
H. D.
Wagner
, and
R.
Tenne
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
523
(
2006
).
10.
G.
Seifert
,
H.
Terrones
,
M.
Terrones
,
G.
Jungnickel
, and
T.
Frauenheim
,
Phys. Rev. Lett.
85
,
146
(
2000
).
11.
I.
Milošević
,
B.
Nikolic
,
E.
Dobardžić
,
M.
Damnjanović
,
I.
Popov
, and
G.
Seifert
,
Phys. Rev. B
76
,
233414
(
2007
).
12.
J. P.
Salvetat
,
G. A. D.
Briggs
,
J. -M.
Bonard
,
R. R.
Basca
,
A. J.
Kulik
,
T.
Stöckli
,
N. A.
Burnham
, and
L.
Forró
,
Phys. Rev. Lett.
82
,
944
(
1999
).
13.
E. W.
Wong
,
P. E.
Sheehan
, and
C. M.
Lieber
,
Science
277
,
1971
(
1997
).
14.
P.
Poncharal
,
Z. L.
Wang
,
D.
Ugarte
, and
W. A.
de Heer
,
Science
283
,
1513
(
1999
).
15.
16.
Y. Y.
Xia
,
M. W.
Zhao
,
Y. C.
Ma
,
M. J.
Ying
,
X. D.
Liu
,
P. J.
Liu
, and
L. M.
Mei
,
Phys. Rev. B
65
,
155415
(
2002
).
17.
V. N.
Popov
and
V. E. V.
Doren
,
Phys. Rev. B
61
,
3078
(
2000
).
18.
I.
Palaci
,
S.
Fedrigo
,
H.
Brune
,
C.
Klinke
,
M.
Chen
, and
E.
Riedo
,
Phys. Rev. Lett.
94
,
175502
(
2005
).
19.
W.
Shen
,
B.
Jiang
,
B. S.
Han
, and
S. S.
Xie
,
Phys. Rev. Lett.
84
,
3634
(
2000
).
20.
W.
Minary-Jolandan
and
M. -F.
Yu
,
J. Appl. Phys.
103
,
073516
(
2008
).
21.
M. -F.
Yu
,
T.
Kowalewski
, and
R. S.
Ruoff
,
Phys. Rev. Lett.
85
,
1456
(
2000
).
22.
A. P. M.
Barboza
,
H.
Chacham
, and
B. R. A.
Neves
,
Phys. Rev. Lett.
102
,
025501
(
2009
).
You do not currently have access to this content.