By assuming the H diffusion coefficient and H adsorption rate to be exponentially and linearly dependent on concentration, a physical model is developed to predict the hydrogenation process of Mg nanoblades. The predicted H uptake curves agree well with the experimental data from V-coated Mg nanoblades. The obtained H diffusion coefficients in between Mg and have nearly three orders of magnitude variation. The characteristic time of H surface adsorption is longer than that of H diffusion in Mg but shorter than that in for 100 nm thick nanoblades. A hydride shell is not formed during the hydrogenation.
REFERENCES
1.
B.
Sakintuna
, F.
Lamari-Darkrim
, and M.
Hirscher
, Int. J. Hydrogen Energy
32
, 1121
(2007
).2.
K. C.
Hoffman
, J. J.
Reilly
, F. J.
Salzano
, C. H.
Waide
, R. H.
Wiswall
, and W. E.
Winsche
, Int. J. Hydrogen Energy
1
, 133
(1976
).3.
L.
Zaluski
, A.
Zaluska
, and J. O.
Ström-Olsen
, J. Alloys Compd.
253–254
, 70
(1997
).4.
5.
E.
David
, J. Mater. Process. Technol.
162–163
, 169
(2005
).6.
D.
Fatay
, A.
Revesz
, and T.
Spassov
, J. Alloys Compd.
399
, 237
(2005
).7.
G.
Liang
, J.
Huot
, S.
Boily
, A.
Van Neste
, and R.
Schulz
, J. Alloys Compd.
291
, 295
(1999
).8.
G.
Liang
, J.
Huot
, S.
Boily
, A.
Van Neste
, and R.
Schulz
, J. Alloys Compd.
292
, 247
(1999
).9.
Y. P.
He
, Y. P.
Zhao
, L. W.
Huang
, H.
Wang
, and R. J.
Composto
, Appl. Phys. Lett.
93
, 163114
(2008
).10.
Y. P.
He
and Y. P.
Zhao
, Nanotechnology
20
, 204008
(2009
).11.
Y. P.
He
and Y. P.
Zhao
, Phys. Chem. Chem. Phys.
11
, 255
(2009
).12.
Y. P.
He
, J. G.
Fan
, and Y. P.
Zhao
, Int. J. Hydrogen Energy
35
, 4162
(2010
).13.
J.
Töpler
, H.
Buchner
, H.
Säufferer
, K.
Knorr
, and W.
Prandl
, J. Less-Common Met.
88
, 397
(1982
).14.
V.
Bérubé
, G.
Radtke
, M.
Dresselhaus
, and G.
Chen
, Int. J. Energy Res.
31
, 637
(2007
).15.
16.
X.
Yao
, Z. H.
Zhu
, H. M.
Cheng
, and G. Q.
Lu
, J. Mater. Res.
23
, 336
(2008
).17.
18.
P.
Spatz
, A.
Aebischer
, A.
Krozer
, and L.
Sclacpbach
, Z. Phys. Chem.
181
, 955
(1993
).19.
M. H.
Mintz
and Y.
Zeiri
, J. Alloys Compd.
216
, 159
(1995
).20.
I. E.
Gabis
, A. P.
Voit
, E. A.
Evard
, Y. V.
Zaika
, I. A.
Chernov
, and V. A.
Yartys
, J. Alloys Compd.
404–406
, 312
(2005
).21.
J.
Bloch
, J. Alloys Compd.
312
, 135
(2000
).22.
J.
Bloch
, J. Alloys Compd.
270
, 194
(1998
).23.
J.
Bloch
and M. H.
Mintz
, J. Alloys Compd.
253–254
, 529
(1997
).24.
V.
Bérubé
, G.
Chen
, and M. S.
Dresselhaus
, Int. J. Hydrogen Energy
33
, 4122
(2008
).25.
V.
Bérubé
, M. S.
Dresselhaus
, and G.
Chen
, Int. J. Hydrogen Energy
33
, 5617
(2008
).26.
H. G.
Schimmel
, J.
Huot
, L. C.
Chapon
, F. D.
Tichelaar
, and F. M.
Mulder
, J. Am. Chem. Soc.
127
, 14348
(2005
).27.
S.
Kumar
, G. L. N.
Reddy
, and V. S.
Raju
, J. Alloys Compd.
476
, 500
(2009
).© 2011 American Institute of Physics.
2011
American Institute of Physics
You do not currently have access to this content.