By assuming the H diffusion coefficient and H adsorption rate to be exponentially and linearly dependent on concentration, a physical model is developed to predict the hydrogenation process of Mg nanoblades. The predicted H uptake curves agree well with the experimental data from V-coated Mg nanoblades. The obtained H diffusion coefficients in MgHx between Mg and MgH2 have nearly three orders of magnitude variation. The characteristic time of H surface adsorption is longer than that of H diffusion in Mg but shorter than that in MgH2 for 100 nm thick nanoblades. A hydride shell is not formed during the hydrogenation.

1.
B.
Sakintuna
,
F.
Lamari-Darkrim
, and
M.
Hirscher
,
Int. J. Hydrogen Energy
32
,
1121
(
2007
).
2.
K. C.
Hoffman
,
J. J.
Reilly
,
F. J.
Salzano
,
C. H.
Waide
,
R. H.
Wiswall
, and
W. E.
Winsche
,
Int. J. Hydrogen Energy
1
,
133
(
1976
).
3.
L.
Zaluski
,
A.
Zaluska
, and
J. O.
Ström-Olsen
,
J. Alloys Compd.
253–254
,
70
(
1997
).
4.
R.
Griessen
and
T.
Riesterer
,
Top. Appl. Phys.
63
,
219
(
1988
).
5.
E.
David
,
J. Mater. Process. Technol.
162–163
,
169
(
2005
).
6.
D.
Fatay
,
A.
Revesz
, and
T.
Spassov
,
J. Alloys Compd.
399
,
237
(
2005
).
7.
G.
Liang
,
J.
Huot
,
S.
Boily
,
A.
Van Neste
, and
R.
Schulz
,
J. Alloys Compd.
291
,
295
(
1999
).
8.
G.
Liang
,
J.
Huot
,
S.
Boily
,
A.
Van Neste
, and
R.
Schulz
,
J. Alloys Compd.
292
,
247
(
1999
).
9.
Y. P.
He
,
Y. P.
Zhao
,
L. W.
Huang
,
H.
Wang
, and
R. J.
Composto
,
Appl. Phys. Lett.
93
,
163114
(
2008
).
10.
Y. P.
He
and
Y. P.
Zhao
,
Nanotechnology
20
,
204008
(
2009
).
11.
Y. P.
He
and
Y. P.
Zhao
,
Phys. Chem. Chem. Phys.
11
,
255
(
2009
).
12.
Y. P.
He
,
J. G.
Fan
, and
Y. P.
Zhao
,
Int. J. Hydrogen Energy
35
,
4162
(
2010
).
13.
J.
Töpler
,
H.
Buchner
,
H.
Säufferer
,
K.
Knorr
, and
W.
Prandl
,
J. Less-Common Met.
88
,
397
(
1982
).
14.
V.
Bérubé
,
G.
Radtke
,
M.
Dresselhaus
, and
G.
Chen
,
Int. J. Energy Res.
31
,
637
(
2007
).
15.
M. N.
Ozisik
,
Finite Difference Methods in Heat Transfer
(
CRC
,
Boca Raton
,
1994
).
16.
X.
Yao
,
Z. H.
Zhu
,
H. M.
Cheng
, and
G. Q.
Lu
,
J. Mater. Res.
23
,
336
(
2008
).
17.
J.
Renner
and
H. J.
Grabke
,
Z. Metallkd.
69
,
639
(
1978
).
18.
P.
Spatz
,
A.
Aebischer
,
A.
Krozer
, and
L.
Sclacpbach
,
Z. Phys. Chem.
181
,
955
(
1993
).
19.
M. H.
Mintz
and
Y.
Zeiri
,
J. Alloys Compd.
216
,
159
(
1995
).
20.
I. E.
Gabis
,
A. P.
Voit
,
E. A.
Evard
,
Y. V.
Zaika
,
I. A.
Chernov
, and
V. A.
Yartys
,
J. Alloys Compd.
404–406
,
312
(
2005
).
21.
J.
Bloch
,
J. Alloys Compd.
312
,
135
(
2000
).
22.
J.
Bloch
,
J. Alloys Compd.
270
,
194
(
1998
).
23.
J.
Bloch
and
M. H.
Mintz
,
J. Alloys Compd.
253–254
,
529
(
1997
).
24.
V.
Bérubé
,
G.
Chen
, and
M. S.
Dresselhaus
,
Int. J. Hydrogen Energy
33
,
4122
(
2008
).
25.
V.
Bérubé
,
M. S.
Dresselhaus
, and
G.
Chen
,
Int. J. Hydrogen Energy
33
,
5617
(
2008
).
26.
H. G.
Schimmel
,
J.
Huot
,
L. C.
Chapon
,
F. D.
Tichelaar
, and
F. M.
Mulder
,
J. Am. Chem. Soc.
127
,
14348
(
2005
).
27.
S.
Kumar
,
G. L. N.
Reddy
, and
V. S.
Raju
,
J. Alloys Compd.
476
,
500
(
2009
).
You do not currently have access to this content.