We have measured optical transmission and reflection spectra of large scale graphene grown by chemical vapor deposition technique over the extensive frequency range from far-IR to uv (4 meV–6.2 eV). Large scale graphene exhibits an excitonic absorption peak in the uv-region (ω=4.6eV) and the constant interband absorption with σ1(ω)=e2/4 in the IR-visible region, respectively. In the far-IR range, Drude peak is observed, and its strength ωp,2d2 indicates the induced carrier density N2d=1.95×1012cm2. These results are highly consistent with the theoretical prediction/experimental results of the single layer graphene. It proves that, contrary to the doubts about its quality due to the chemical growth process, the sample has single layer optical response over the entire photon energy; therefore, it can be applied to large scale devices such as terahertz-IR detector, solar cell material, and visible uv-transparent conductor.

1.
K. S.
Kim
,
Y.
Zhao
,
H.
Jang
,
S. Y.
Lee
,
J. M.
Kim
,
K. S.
Kim
,
J. -H.
Ahn
,
P.
Kim
,
J. -Y.
Choi
, and
B. H.
Hong
,
Nature (London)
457
,
706
(
2009
).
2.
Z. Q.
Li
,
E. A.
Henriksen
,
Z.
Jiang
,
Z.
Hao
,
M. C.
Martin
,
P.
Kim
,
H. L.
Stormer
, and
D. N.
Basov
,
Nat. Phys.
4
,
532
(
2008
).
3.
Z.
Jiang
,
E. A.
Henriksen
,
L. C.
Tung
,
Y. J.
Wang
,
M. E.
Schwartz
,
M. Y.
Han
,
P.
Kim
, and
H. L.
Stormer
,
Phys. Rev. Lett.
98
,
197403
(
2007
).
4.
L. M.
Malard
,
D. C.
Elias
,
E. S.
Alves
, and
M. A.
Pimenta
,
Phys. Rev. Lett.
101
,
257401
(
2008
).
5.
S.
Berciaud
,
S.
Ryu
,
L. E.
Brus
, and
T. F.
Heinz
,
Nano Lett.
9
,
346
(
2009
).
6.
Z. H.
Ni
,
H. M.
Wang
,
J.
Kasim
,
H. M.
Fan
,
T.
Yu
,
Y. H.
Wu
,
Y. P.
Feng
, and
Z. X.
Shen
,
Nano Lett.
7
,
2758
(
2007
).
7.
J. M.
Dawlaty
,
S.
Shivaraman
,
M.
Chandrashekhar
,
F.
Rana
, and
M. G.
Spencer
,
Appl. Phys. Lett.
92
,
042116
(
2008
).
8.
L.
Yang
,
J.
Deslippe
,
C. -H.
Park
,
M. L.
Cohen
, and
S. G.
Louie
,
Phys. Rev. Lett.
103
,
186802
(
2009
).
9.
R. R.
Nair
,
P.
Blake
,
A. N.
Grigorenko
,
K. S.
Novoselov
,
T. J.
Booth
,
T.
Stauber
,
N. M. R.
Peres
, and
A. K.
Geim
,
Science
320
,
1308
(
2008
).
10.
X.
Li
,
W.
Cai
,
J.
An
,
S.
Kim
,
J.
Nah
,
D.
Yang
,
R.
Piner
,
A.
Velamakanni
,
I.
Jung
,
E.
Tutuc
,
S. K.
Banerjee
,
L.
Colombo
, and
R. S.
Ruoff
,
Science
324
,
1312
(
2009
).
11.
A.
Reina
,
H.
Son
,
L.
Jiao
,
B.
Fan
,
M. S.
Dresselhaus
,
Z.
Liu
, and
J.
Kong
,
J. Phys. Chem. C
112
,
17741
(
2008
).
12.
G. -C.
Jo
,
G. -S.
Chae
,
Y. -S.
Hwang
,
O. -N.
Kwon
,
K. -M.
Lee
,
K. -J.
Baek
, and
T. -H.
Rhee
, U.S. Patent No. 6,881,679 (19 April
2005
).
13.
J.
Song
,
T. Y.
Ko
, and
S.
Ryu
,
Bull. Korean Chem. Soc.
31
,
2679
(
2010
).
14.
M.
Ishigami
,
J. H.
Chen
,
W. G.
Cullen
,
M. S.
Fuhrer
, and
E. D.
Williams
,
Nano Lett.
7
,
1643
(
2007
).
15.
J. W.
Weber
,
V. E.
Calado
, and
M. C. M.
van de Sanden
,
Appl. Phys. Lett.
97
,
091904
(
2010
).
16.
A. B.
Kuzmenko
,
E.
van Heumen
,
F.
Carbone
, and
D.
van der Marel
,
Phys. Rev. Lett.
100
,
117401
(
2008
).
17.
V. P.
Gusynin
,
S. G.
Sharapov
, and
J. P.
Carbotte
,
Phys. Rev. Lett.
96
,
256802
(
2006
).
18.
L. A.
Falkovsky
and
A. A.
Varlamov
,
Eur. Phys. J. B
56
,
281
(
2007
).
19.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
20.
A. B.
Kuzmenko
,
Rev. Sci. Instrum.
76
,
083108
(
2005
).
21.
A.
Tsuneya
,
J. Phys. Soc. Jpn.
7
,
074716
(
2006
).
22.
E. H.
Hwang
,
S.
Adam
, and
S.
Das Sarma
,
Phys. Rev. Lett.
98
,
186806
(
2007
).
23.
K.
Nomura
and
A. H.
MacDonald
,
Phys. Rev. Lett.
98
,
076602
(
2007
).
You do not currently have access to this content.