Metal oxides are typically insulating materials that can be made conductive through aliovalent doping and/or non-stoichiometry. Recent studies have identified conductive states at surfaces and interfaces of pure oxide materials; high electron concentrations are present, resulting in a high-mobility two-dimensional electron gas. We demonstrate for In2O3 that the energy required to form an oxygen vacancy decreases rapidly towards the (111) surface, where the coordination environment is lowered. This is a general feature of metal oxide systems that can result in a metal–insulator transition where donors are produced at chemically reduced extended defects.

1.
J.
Mannhart
and
D.
Schlom
,
Science
327
,
1607
(
2010
).
3.
A.
Santander-Syro
,
O.
Copie
,
T.
Kondo
,
F.
Fortuna
,
S.
Pailhes
,
R.
Weht
,
X.
Qiu
,
F.
Bertran
,
A.
Nicolaou
, and
A.
Taleb-Ibrahimi
,
Nature
469
,
189
(
2011
).
4.
P. D. C.
King
,
T. D.
Veal
,
D. J.
Payne
,
A.
Bourlange
,
R. G.
Egdell
, and
C. F.
McConville
,
Phys. Rev. Lett.
101
,
116808
(
2008
).
5.
P. D. C.
King
,
T. D.
Veal
,
C. F.
McConville
,
J.
Zúñiga Pérez
,
V.
Muñoz Sanjosé
,
M.
Hopkinson
,
E. D. L.
Rienks
,
M. F.
Jensen
, and
P.
Hofmann
,
Phys. Rev. Lett.
104
,
256803
(
2010
).
6.
W.
Meevasana
,
P. D. C.
King
,
R. H.
He
,
S.-K.
Mo
,
M.
Hasimoto
,
A.
Tamai
,
P.
Songsiriritthigul
,
F.
Baumberger
, and
Z.-X.
Shen
,
Nat. Mater.
10
,
114
(
2011
).
8.
K. H. L.
Zhang
,
A.
Walsh
,
C. R. A.
Catlow
,
V. K.
Lazarov
, and
R. G.
Egdell
,
Nano Lett.
79
,
3740
(
2010
).
9.
A.
Walsh
and
C. R. A.
Catlow
,
J. Mater. Chem.
20
,
10438
(
2010
).
10.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
,
Comput. Phys. Commun.
180
,
2175
(
2009
).
11.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
,
J. Chem. Phys.
101
,
9783
(
1994
).
12.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
,
Phys. Rev. Lett.
100
,
136406
(
2008
).
13.
D. M.
Duffy
,
J. P.
Hoare
, and
P. W.
Tasker
,
J. Phys. C
17
,
195
(
1983
).
14.
A.
Walsh
,
C. R. A.
Catlow
,
A. A.
Sokol
, and
S. M.
Woodley
,
Chem. Mater.
21
,
4962
(
2009
).
15.
J. D.
Gale
and
A. L.
Rohl
,
Mol. Simul.
29
,
291
(
2003
).
16.
A sheet donor density of 5 × 1012 cm−2 is distributed across the surface based on the calculated vacancy formation energies and T = 750 K. A rigorous approach requires temperature dependent defect free energies, which would enable quantitative predictions of equilibrium constants.
17.
S.
Lany
and
A.
Zunger
,
Phys. Rev. Lett.
106
,
069601
(
2011
).
18.
N. F.
Mott
,
Rev. Mod. Phys.
40
,
677
(
1968
).
19.
P. P.
Edwards
and
M. J.
Sienko
,
Phys. Rev. B
17
,
2575
(
1978
).
20.
J.
Woning
and
R. A.
Van Santen
,
Chem. Phys. Lett.
101
,
541
(
1983
).
21.
A.
Migani
,
G. N.
Vayssilov
,
S. T.
Bromley
,
F.
Illas
, and
K. M.
Neyman
,
J. Mater. Chem.
20
,
10535
(
2010
).
22.
X. T.
Sayle
,
S. C.
Parker
, and
C. R. A.
Catlow
,
J. Chem. Soc., Chem. Commun.
1992
,
977
(
1992
).
23.
M.
Nolan
,
J. E.
Fearon
, and
G. W.
Watson
,
Solid State Ionics
177
,
3069
(
2006
).
24.
C. R. A.
Catlow
,
A. A.
Sokol
, and
A.
Walsh
,
Chem. Commun.
47
,
3386
(
2011
).
25.
W.
Walukiewicz
,
Physica B
302–303
,
123
(
2001
).
26.
S. B.
Zhang
,
S.-H.
Wei
, and
A.
Zunger
,
Phys. Rev. Lett.
84
,
1232
(
2000
).
You do not currently have access to this content.