We demonstrate that 3,4,9,10 perylenetetracarboxylic bisbenzimidazole (PTCBI) and 1,4,5,8-napthalene-tetracarboxylic-dianhydride (NTCDA) can function as electron conducting and exciton blocking layers when interposed between the acceptor layer and cathode. A low-resistance contact is provided by PTCBI, while NTCDA acts as an exciton blocking layer and optical spacer. Both materials serve as efficient electron conductors, leading to a fill factor as high as 0.70. By using an NTCDA/PTCBI compound blocking layer structure in a functionalized-squaraine/C60-based device, we obtain a spectrally corrected power conversion efficiency of 5.1±0.1% under 1 sun, AM 1.5G simulated solar illumination, an improvement of >25% compared to an analogous device using a conventional bathocuproine layer that has previously been shown to conduct electrons via damage-induced midgap states.

1.
H. Y.
Chen
,
J. H.
Hou
,
S. Q.
Zhang
,
Y. Y.
Liang
,
G. W.
Yang
,
Y.
Yang
,
L. P.
Yu
,
Y.
Wu
, and
G.
Li
,
Nat. Photonics
3
,
649
(
2009
).
2.
C. L.
Uhrich
,
G.
Schwartz
,
B.
Maennig
,
W. M.
Gnehr
,
S.
Sonntag
,
O.
Erfurth
,
E.
Wollrab
,
K.
Walzer
,
J.
Foerster
,
A.
Weiss
,
O.
Tsaryova
,
K.
Leo
,
M. K.
Riede
, and
M.
Pfeiffer
, in
Organic Photonics IV
, edited by
P. L.
Heremans
,
R.
Coehoorn
, and
C.
Adachi
(
SPIE-International Society for Optical Engineering
,
Bellingham
,
2010
), Vol.
7722
.
3.
P.
Peumans
,
V.
Bulovic
, and
S. R.
Forrest
,
Appl. Phys. Lett.
76
,
2650
(
2000
).
4.
M. Y.
Chan
,
S. L.
Lai
,
K. M.
Lau
,
C. S.
Lee
, and
S. T.
Lee
,
Appl. Phys. Lett.
89
,
163515
(
2006
).
5.
D.
Gebeyehu
,
M.
Pfeiffer
,
B.
Maennig
,
J.
Drechsel
,
A.
Werner
, and
K.
Leo
,
Thin Solid Films
451–452
,
29
(
2004
).
6.
B.
Maennig
,
J.
Drechsel
,
D.
Gebeyehu
,
P.
Simon
,
F.
Kozlowski
,
A.
Werner
,
F.
Li
,
S.
Grundmann
,
S.
Sonntag
,
M.
Koch
,
K.
Leo
,
M.
Pfeiffer
,
H.
Hoppe
,
D.
Meissner
,
N. S.
Sariciftci
,
I.
Riedel
,
V.
Dyakonov
, and
J.
Parisi
,
Appl. Phys. A: Mater. Sci. Process.
79
,
1
(
2004
).
7.
B. P.
Rand
,
J.
Li
,
J. G.
Xue
,
R. J.
Holmes
,
M. E.
Thompson
, and
S. R.
Forrest
,
Adv. Mater. (Weinheim, Ger.)
17
,
2714
(
2005
).
8.
K.
Suemori
,
T.
Miyata
,
M.
Yokoyama
, and
M.
Hiramoto
,
Appl. Phys. Lett.
85
,
6269
(
2004
).
9.
K. L.
Mutolo
,
E. I.
Mayo
,
B. P.
Rand
,
S. R.
Forrest
, and
M. E.
Thompson
,
J. Am. Chem. Soc.
128
,
8108
(
2006
).
10.
A.
Kahn
,
N.
Koch
, and
W. Y.
Gao
,
J. Polym. Sci., Part B: Polym. Phys.
41
,
2529
(
2003
).
11.
P.
Peumans
and
S. R.
Forrest
,
Appl. Phys. Lett.
79
,
126
(
2001
).
12.
F.
Yang
,
K.
Sun
, and
S. R.
Forrest
,
Adv. Mater. (Weinheim, Ger.)
19
,
4166
(
2007
).
13.
L.
Hall
,
S.
Wang
,
V. V.
Diev
,
G.
Wei
,
X.
Xiao
,
P. I.
Djurovich
,
S. R.
Forrest
,
M. E.
Thompson
(unpublished).
14.
G. D.
Wei
,
R. R.
Lunt
,
K.
Sun
,
S. Y.
Wang
,
M. E.
Thompson
, and
S. R.
Forrest
,
Nano Lett.
10
,
3555
(
2010
).
15.
S. R.
Forrest
,
Chem. Rev.
97
,
1793
(
1997
).
16.
American Society for Testing and Materials, Standards Nos. E1021, E948, and E973.
17.
V.
Shrotriya
,
G.
Li
,
Y.
Yao
,
T.
Moriarty
,
K.
Emery
, and
Y.
Yang
,
Adv. Funct. Mater.
16
,
2016
(
2006
).
18.
N. C.
Giebink
,
G. P.
Wiederrecht
,
M. R.
Wasielewski
, and
S. R.
Forrest
,
Phys. Rev. B
82
,
155305
(
2010
).
19.
B. P.
Rand
,
D. P.
Burk
, and
S. R.
Forrest
,
Phys. Rev. B
75
,
115327
(
2007
).
20.
L. A. A.
Pettersson
,
L. S.
Roman
, and
O.
Inganas
,
J. Appl. Phys.
86
,
487
(
1999
).
21.
C.
Falkenberg
,
C.
Uhrich
,
S.
Olthof
,
B.
Maennig
,
M. K.
Riede
, and
K.
Leo
,
J. Appl. Phys.
104
,
034506
(
2008
).
22.
I. G.
Hill
,
J.
Schwartz
, and
A.
Kahn
,
Org. Electron.
1
,
5
(
2000
).
23.
N. J.
Watkins
,
G. P.
Kushto
, and
A. J.
Makinen
,
J. Appl. Phys.
104
,
013712
(
2008
).
You do not currently have access to this content.