A detection scheme for real-time Brownian relaxation of magnetic nanoparticles (MNPs) is demonstrated by a mixing-frequency method in this paper. MNPs are driven into the saturation region by a low frequency sinusoidal magnetic field. A high frequency sinusoidal magnetic field is then applied to generate mixing-frequency signals that are highly specific to the magnetization of MNPs. These highly sensitive mixing-frequency signals from MNPs are picked up by a pair of balanced built-in detection coils. The phase delays of the mixing-frequency signals behind the applied field are derived, and are experimentally verified. Commercial iron oxide MNPs with the core diameter of 35 nm are used for the measurement of Brownian relaxation. The results are fitted well with Debye model. Then a real-time measurement of the binding process between protein G and its antibody is demonstrated using MNPs as labels. This study provides a volume-based magnetic sensing scheme for the detection of binding kinetics and interaction affinities between biomolecules in real time.

1.
2.
Q.
Design
, San Diego, CA, http://www.qdusa.com/products/ppms.html.
3.
Imego Institute
, Göteborg, SWEDEN, http://www.imego.com/Products/dynomag/index.aspx.
4.
P. C.
Fannin
and
B. K. P.
Scaife
,
J. Magn. Magn. Mater.
72
,
95
(
1988
).
5.
T. L.
Paoli
and
J. F.
Svacek
,
Rev. Sci. Instrum.
47
,
1016
(
1976
).
6.
P. I.
Nikitin
,
P. M.
Vetoshko
, and
T. I.
Ksenevich
,
J. Magn. Magn. Mater.
311
,
445
(
2007
).
7.
H. -J.
Krause
,
N.
Wolters
,
Y.
Zhang
,
A.
Offenhausser
,
P.
Miethe
,
M. H. F.
Meyer
,
M.
Hartmann
, and
M.
Keusgen
,
J. Magn. Magn. Mater.
311
,
436
(
2007
).
8.
S. H.
Chung
,
A.
Hoffmann
,
S. D.
Bader
,
C.
Liu
,
B.
Kay
,
L.
Makowski
, and
L.
Chen
,
Appl. Phys. Lett.
85
,
2971
(
2004
).
9.
Y.
Bao
,
A. B.
Pakhomov
, and
K. M.
Krishnan
,
J. Appl. Phys.
99
,
08H107
(
2006
).
10.
R. E.
Rosensweig
,
J. Magn. Magn. Mater.
252
,
370
(
2002
).
11.
M. I.
Shliomis
and
Yu. L.
Raikher
,
IEEE Trans. Magn.
16
,
237
(
1980
).
12.
K.
Enpuku
,
T.
Tanaka
,
Y.
Tamai
,
F.
Dang
,
N.
Enomoto
,
J.
Hojo
,
H.
Kanzaki
, and
N.
Usuki
,
Jpn. J. Appl. Phys.
47
,
7859
(
2008
).
13.
C.
Mac Oireachtaigh
and
P. C.
Fannin
,
J. Magn. Magn. Mater.
320
,
871
(
2008
).
14.
B. K. P.
Scaife
,
J. Phys. D: Appl. Phys.
19
,
L195
(
1986
).
15.
C.
Hong
,
C. C.
Wu
,
Y. C.
Chiu
,
S. Y.
Yang
,
H. E.
Horng
, and
H. C.
Yang
,
Appl. Phys. Lett.
88
,
212512
(
2006
).
16.
J. S.
Daniels
,
E. P.
Anderson
,
N.
Pourmand
, and
T. H.
Lee
, presented at the
Instrumentation and Measurement Technology Conference (I2MTC)
,
2010
IEEE, (unpublished).
17.
A. M.
Rauwerdink
and
J. B.
Weaver
,
Appl. Phys. Lett.
96
,
033702
(
2010
).
You do not currently have access to this content.