Nonequilibrium and equilibrium molecular dynamics simulations are employed to study the thermal transport in sintered silicon nanoclusters made of 15 nm diameter nanoparticles arranged on a simple cubic lattice. Both simulation techniques indicate a reduction in the thermal conductivity from 120W/mK (bulk) to 1.5 W/m K (nanoclusters) at 500 K. This dramatic reduction is attributed to the reduced thermal conductivity of nanoparticle (15 W/m K) and most prominently to the nanosized constriction resistance due to necking between the two nanoparticles. Comparison with the existing models, radial distribution function and vibrational analysis show that the phonon transport in the nanosized neck region is ballistic rather than diffusive.

1.
J.
Eapen
,
R.
Rusconi
,
R.
Piazza
, and
S.
Yip
,
J. Heat Transfer
132
,
102402
(
2010
).
2.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
3.
D.
Lee
,
J. -W.
Kim
, and
B. G.
Kim
,
J. Phys. Chem. B
110
,
4323
(
2006
).
4.
A.
Hu
,
J. Y.
Guo
,
H.
Alarifi
,
G.
Patane
,
Y.
Zhou
,
G.
Compagnini
, and
C. X.
Xu
,
Appl. Phys. Lett.
97
,
153117
(
2010
).
5.
S. J.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
)
6.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
7.
F.
Müller-Plathe
,
J. Chem. Phys.
106
,
6082
(
1997
).
8.
The thermal profile in the region of 15 Å distance from the source (sink) is ignored for the nanocluster thermal conductivity calculation.
9.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
Phys. Rev. B
65
,
144306
(
2002
).
10.
B.
Nikolić
and
P. B.
Allen
,
Phys. Rev. B
60
,
3963
(
1999
).
11.
12.
L. V.
Zhigilei
,
D.
Srivastava
, and
B. J.
Garrison
,
Surf. Sci.
374
,
333
(
1997
).
13.
S.
Shin
,
M.
Kaviany
,
T. G.
Desai
and
R.
Bonner
,
Phys. Rev. B
82
,
081302
(R) (
2010
).
You do not currently have access to this content.