Different amounts of single wall carbon nanotubes (SWCNTs) have been sprayed on amorphous silicon substrates to form Schottky barrier solar cells. The measured external quantum efficiency showed a spectral behavior depending on the SWCNT network optical transparency, presenting a maximum up to 35% at a wavelength of about 460 nm. Ultrathin network of SWCNTs acts as semitransparent electrode and forms Schottky barrier with amorphous silicon, enabling new generation low cost amorphous silicon based solar cells. Numerical simulations show a poor efficiency of SWCNT contacts in collecting holes suggesting that improvement in contact quality is needed to further improve solar cell efficiency.
REFERENCES
1.
J. U.
Lee
, Appl. Phys. Lett.
87
, 073101
(2005
).2.
J.
Wei
, Y.
Jia
, Q.
Shu
, Z.
Gu
, K.
Wang
, D.
Zhuang
, G.
Zhang
, Z.
Wang
, J.
Luo
, A.
Cao
, and D.
Wu
, Nano Lett.
7
, 2317
(2007
).3.
Y.
Jia
, J.
Wei
, K.
Wang
, A.
Cao
, Q.
Shu
, X.
Gui
, Y.
Zhu
, D.
Zhuang
, G.
Zhang
, B.
Ma
, L.
Wang
, W. Z.
Wang
, J.
Luo
, and D.
Wu
, Adv. Mater. (Weinheim, Ger.)
20
, 4594
(2008
).4.
Z.
Li
, V. P.
Kunets
, V.
Saini
, Y.
Xu
, E.
Dervishi
, G. J.
Salamo
, A. R.
Biris
, and A. S.
Biris
, ACS Nano
3
, 1407
(2009
).5.
P.
Wadhwa
, B.
Liu
, M. A.
McCarthy
, Z.
Wu
, and A. G.
Rinzler
, Nano Lett.
10
, 5001
(2010
).6.
M. A.
El Khakani
, V.
Le Borgne
, B.
Aïssa
, F.
Rosei
, C.
Scilletta
, E.
Speiser
, M.
Scarselli
, P.
Castrucci
, and M.
De Crescenzi
, Appl. Phys. Lett.
95
, 083114
(2009
).7.
V.
Le Borgne
, P.
Castrucci
, S.
Del Gobbo
, M.
Scarselli
, M.
De Crescenzi
, M.
Mohamedi
, and M. A.
El Khakani
, Appl. Phys. Lett.
97
, 193105
(2010
).8.
P.
Castrucci
, F.
Tombolini
, M.
Scarselli
, E.
Speiser
, S.
Del Gobbo
, W.
Richter
, M.
De Crescenzi
, M.
Diociaiuti
, E.
Gatto
, and M.
Venanzi
, Appl. Phys. Lett.
89
, 253107
(2006
).9.
P.
Castrucci
, M.
Scarselli
, M.
De Crescenzi
, M. A.
El Khakani
, F.
Rosei
, N.
Braidy
, and J. -H.
Yi
, Appl. Phys. Lett.
85
, 3857
(2004
).10.
D. A.
Stewart
and F.
Léonard
, Phys. Rev. Lett.
93
, 107401
(2004
).11.
M. S.
Fuhrer
, J.
Nygård
, L.
Shih
, M.
Forero
, Y. -G.
Yoon
, M. S. C.
Mazzoni
, H. J.
Choi
, J.
Ihm
, M.
Steven
, G.
Louie
, A.
Zettl
, and P. L.
McEuen
, Science
288
, 494
(2000
).12.
S.
Lu
and B.
Panchapakesan
, Nanotechnology
17
, 1843
(2006
).13.
D. H.
Lien
, W. K.
Hsu
, H. W.
Zan
, N. H.
Tai
, and C. H.
Tsai
, Adv. Mater. (Weinheim, Ger.)
18
, 98
(2006
).14.
C. A.
Merchant
and N.
Markovic
, Appl. Phys. Lett.
92
, 243510
(2008
).15.
EQE is the ratio between the number of electrons generated by the device and the number of photons impinging it. For every wavelength , the photocurrent density generated by the sample and the lamp power density are measured and used as follows: where is the speed of light, is the Planck constant, and is the electronic charge.
16.
M.
Hack
and M.
Shur
, J. Appl. Phys.
58
, 997
(1985
).17.
M.
Glatthaar
, M.
Riede
, N.
Keegan
, K.
Sylvester-Hvid
, B.
Zimmermann
, M.
Niggemann
, A.
Hinsch
, and A.
Gombert
, Sol. Energy Mater. Sol. Cells
91
, 390
(2007
).© 2011 American Institute of Physics.
2011
American Institute of Physics
You do not currently have access to this content.