We report the implementation of a quantum random number generator based on photon arrival times. Due to fast and high resolution timing we are able to generate the highest bitrate of any current generator based on photon arrival times. Bias in the raw data due to the exponential distribution of the arrival times is removed by postprocessing which is directly integrated in the field programmable logic of the timing electronics.
REFERENCES
1.
N.
Gisin
, G.
Ribordy
, W.
Tittel
, and H.
Zbinden
, Rev. Mod. Phys.
74
, 145
(2002
).2.
A.
Stefanov
, N.
Gisin
, O.
Guinnard
, L.
Guinnard
, and H.
Zbinden
, J. Mod. Opt.
47
, 595
(2000
).3.
M. A.
Wayne
, E. R.
Jeffrey
, G. M.
Akselrod
, and P. G.
Kwiat
, J. Mod. Opt.
56
, 0516
(2009
).4.
M.
Fürst
, H.
Weier
, S.
Nauerth
, D. G.
Marangon
, C.
Kurtsiefer
, and H.
Weinfurter
, Opt. Express
18
, 13029
(2010
).5.
M. A.
Wayne
and P. G.
Kwiat
, Opt. Express
18
, 9351
(2010
).6.
M.
Wahl
, H. -J.
Rahn
, T.
Röhlicke
, G.
Kell
, D.
Nettels
, F.
Hillger
, B.
Schuler
, and R.
Erdmann
, Rev. Sci. Instrum.
79
, 123113
(2008
).7.
S. K.
Sanadhya
and P.
Sarkar
, Information Security and Privacy Lecture Notes in Computer Science
(Springer
, Berlin
, 2008
), Vol. 5107
, pp. 254
–266
.8.
S.
Indesteege
, F.
Mendel
, B.
Preneel
, and C.
Rechberger
, Selected Areas in Cryptography Lecture Notes in Computer Science
(Springer
, Berlin
, 2009
), Vol. 5381
.9.
B.
Chor
, O.
Goldreich
, J.
Hasted
, J.
Freidmann
, S.
Rudich
, and R.
Smolensky
, Proceedings of the IEEE Annual Symposium on Foundations of Computer Science
, (IEEE
, Los Alamitos, CA
1985
), pp. 396
–407
.10.
B.
Sunar
, W. J.
Martin
, and D. R.
Stinson
, IEEE Trans. Comput.
56
, 109
(2007
).11.
D.
Schellekens
, B.
Preneel
, and I.
Verbauwhede
, CiteSeer, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.5319, 2006
.12.
P.
Lacharme
, Proceedings of FSE
(Springer
, Berlin
, 2008
), pp. 334
–342
.13.
P.
Lacharme
, IEEE Trans. Inf. Theory
55
, 4742
(2009
).14.
D. B.
Thomas
and W.
Luk
, Proceedings of FPL
, 23 September 2008
.15.
Further detection during the dead time does not change the length of the dead time.
16.
Data extracted with 8 bits actually passed statistical testing and resulted in a bitrate of 76 Mbit/s.
17.
18.
For critical cryptographic applications the resilient function may be chosen with higher compression to limit the extracted number of bits per photon to min-entropy, 14.6 bits in our case.
19.
P.
L’Ecuyer
and R.
Simard
, ACM Trans. Math. Softw.
33
, 22
(2007
).20.
For bitrates of other QRNGs, see http://qrbg.irb.hr/, http://www.qutools.com/products/quRNG/index.php?page=3, http://www.idquantique.com/ordering/shop.html.
© 2011 American Institute of Physics.
2011
American Institute of Physics
You do not currently have access to this content.