We study theoretically and experimentally the time evolution of GaAs nanoneedles grown by metal organic chemical vapor deposition on silicon and sapphire substrates. A theoretical model is presented which provides explicitly the nanoneedle length as a function of growth time under the assumption of a fixed aspect ratio. Experimental data confirms that the aspect ratio remains approximately constant during the growth. From fitting the experimental length-time dependences, we estimate the effective arrival rates and the Ga diffusion lengths as being 3.5 nm/min and 80 nm on the silicon and 2.9 nm/min and 400 nm on the sapphire substrates, respectively.

1.
D.
Bimberg
,
M.
Grundmann
, and
N. N.
Ledentsov
,
Quantum Dot Heterostructures
(
Wiley
,
New York
,
1999
).
2.
L.
Goldstein
,
F.
Glas
,
J. Y.
Marzin
,
M. N.
Charasse
, and
G.
Le Roux
,
Appl. Phys. Lett.
47
,
1099
(
1985
).
3.
W.
Lu
,
W. C. M.
Lieber
,
Nature Mater.
6
,
841
(
2007
).
4.
P. J.
Pauzauskie
and
P.
Yang
,
Mater. Today
9
,
36
(
2006
).
5.
B. J.
Ohlsson
,
M. T.
Björk
,
M. H.
Magnusson
,
K.
Deppert
, and
L.
Samuelson
,
Appl. Phys. Lett.
79
,
3335
(
2001
).
6.
F.
Glas
,
Phys. Rev. B
74
,
121302
(R) (
2006
).
7.
R. S.
Wagner
and
W. C.
Ellis
,
Appl. Phys. Lett.
4
,
89
(
1964
).
8.
A. L.
Pan
,
R. B.
Liu
,
M. H.
Sun
, and
C. Z.
Ning
,
ACS Nano
4
,
671
(
2010
).
9.
J. A.
Czaban
,
D. A.
Thompson
, and
R. R.
LaPierre
,
Nano Lett.
9
,
148
(
2009
).
10.
L. C.
Chuang
,
M.
Moewe
,
S.
Crankshaw
, and
C.
Chang-Hasnain
,
Appl. Phys. Lett.
92
,
013121
(
2008
).
11.
G. E.
Cirlin
,
V. G.
Dubrovskii
,
I. P.
Soshnikov
,
N. V.
Sibirev
,
Y. B.
Samsonenko
,
A. D.
Bouravleuv
,
J. C.
Harmand
, and
F.
Glas
,
Phys. Status Solidi (RRL)
3
,
112
(
2009
).
12.
D. E.
Perea
,
J. E.
Allen
,
S. J.
May
,
B. W.
Wessels
,
D. N.
Seidman
, and
L. J.
Lauhon
,
Nano Lett.
6
,
181
(
2006
).
13.
A. I.
Persson
,
M. W.
Larsson
,
S.
Stengstrom
,
B. J.
Ohlsson
,
L.
Samuelson
, and
L. R.
Wallenberg
,
Nature Mater.
3
,
677
(
2004
).
14.
M.
Moewe
,
L. C.
Chuang
,
V. G.
Dubrovskii
, and
C.
Chang-Hasnain
,
J. Appl. Phys.
104
,
044313
(
2008
).
15.
K. A.
Dick
,
P.
Caroff
,
J.
Bolinsson
,
M. E.
Messing
,
J.
Johansson
,
K.
Deppert
,
R. L.
Wallenberg
, and
L.
Samuelson
,
Semicond. Sci. Technol.
25
,
024009
(
2010
).
16.
H. J.
Joyce
,
J.
Wong-Leung
,
O.
Gao
,
H.
Hoe Tan
, and
C.
Jagadish
,
Nano Lett.
10
,
908
(
2010
).
17.
V. G.
Dubrovskii
,
N. V.
Sibirev
,
G. E.
Cirlin
,
A. D.
Bouravleuv
,
Y. B.
Samsonenko
,
D. L.
Dheeraj
,
H. L.
Zhou
,
C.
Sartel
,
J. C.
Harmand
,
G.
Patriarche
, and
F.
Glas
,
Phys. Rev. B
80
,
205305
(
2009
).
18.
H. J.
Joyce
,
Q.
Gao
,
H. H.
Tan
,
C.
Jagadish
,
Y.
Kim
,
X.
Zhang
,
Y.
Guo
, and
J.
Zou
,
Nano Lett.
7
,
921
(
2007
).
19.
M.
Moewe
,
L. C.
Chuang
,
S.
Crankshaw
,
C.
Chase
, and
C.
Chang-Hasnain
,
Appl. Phys. Lett.
93
,
023116
(
2008
).
20.
L. C.
Chuang
,
M.
Moewe
,
K. W.
Ng
,
T. -T. D.
Tran
,
S.
Crankshaw
,
R.
Chen
,
W. S.
Ko
, and
C.
Chang-Hasnain
,
Appl. Phys. Lett.
98
,
123101
(
2011
).
21.
V. G.
Dubrovskii
,
N. V.
Sibirev
,
X.
Zhang
, and
R. A.
Suris
,
Cryst. Growth Des.
10
,
3949
(
2010
).
22.
M.
Tchernycheva
,
L.
Travers
,
G.
Patriarche
,
F.
Glas
,
J. C.
Harmand
,
G. E.
Cirlin
, and
V. G.
Dubrovskii
,
J. Appl. Phys.
102
,
094313
(
2007
).
23.
M. C.
Plante
and
R. R.
LaPierre
,
J. Appl. Phys.
105
,
114304
(
2009
).
24.
J. C.
Harmand
,
F.
Glas
, and
G.
Patriarche
,
Phys. Rev. B
81
,
235436
(
2010
).
25.
X.
Zhang
,
V. G.
Dubrovskii
,
N. V.
Sibirev
,
G. E.
Cirlin
,
C.
Sartel
,
M.
Tchernycheva
,
J. C.
Harmand
, and
F.
Glas
,
Nanoscale Res. Lett.
5
,
1692
(
2010
).
26.
L. E.
Fröberg
,
W.
Seifert
, and
J.
Johansson
,
Phys. Rev. B
76
,
153401
(
2007
).
27.
V. G.
Dubrovskii
,
N. V.
Sibirev
,
R. A.
Suris
,
G. E.
Cirlin
,
J. C.
Harmand
, and
V. M.
Ustinov
,
Surf. Sci.
601
,
4395
(
2007
).
You do not currently have access to this content.