We study theoretically and experimentally the time evolution of GaAs nanoneedles grown by metal organic chemical vapor deposition on silicon and sapphire substrates. A theoretical model is presented which provides explicitly the nanoneedle length as a function of growth time under the assumption of a fixed aspect ratio. Experimental data confirms that the aspect ratio remains approximately constant during the growth. From fitting the experimental length-time dependences, we estimate the effective arrival rates and the Ga diffusion lengths as being 3.5 nm/min and 80 nm on the silicon and 2.9 nm/min and 400 nm on the sapphire substrates, respectively.
REFERENCES
1.
D.
Bimberg
, M.
Grundmann
, and N. N.
Ledentsov
, Quantum Dot Heterostructures
(Wiley
, New York
, 1999
).2.
L.
Goldstein
, F.
Glas
, J. Y.
Marzin
, M. N.
Charasse
, and G.
Le Roux
, Appl. Phys. Lett.
47
, 1099
(1985
).3.
W.
Lu
, W. C. M.
Lieber
, Nature Mater.
6
, 841
(2007
).4.
P. J.
Pauzauskie
and P.
Yang
, Mater. Today
9
, 36
(2006
).5.
B. J.
Ohlsson
, M. T.
Björk
, M. H.
Magnusson
, K.
Deppert
, and L.
Samuelson
, Appl. Phys. Lett.
79
, 3335
(2001
).6.
F.
Glas
, Phys. Rev. B
74
, 121302
(R) (2006
).7.
R. S.
Wagner
and W. C.
Ellis
, Appl. Phys. Lett.
4
, 89
(1964
).8.
A. L.
Pan
, R. B.
Liu
, M. H.
Sun
, and C. Z.
Ning
, ACS Nano
4
, 671
(2010
).9.
J. A.
Czaban
, D. A.
Thompson
, and R. R.
LaPierre
, Nano Lett.
9
, 148
(2009
).10.
L. C.
Chuang
, M.
Moewe
, S.
Crankshaw
, and C.
Chang-Hasnain
, Appl. Phys. Lett.
92
, 013121
(2008
).11.
G. E.
Cirlin
, V. G.
Dubrovskii
, I. P.
Soshnikov
, N. V.
Sibirev
, Y. B.
Samsonenko
, A. D.
Bouravleuv
, J. C.
Harmand
, and F.
Glas
, Phys. Status Solidi (RRL)
3
, 112
(2009
).12.
D. E.
Perea
, J. E.
Allen
, S. J.
May
, B. W.
Wessels
, D. N.
Seidman
, and L. J.
Lauhon
, Nano Lett.
6
, 181
(2006
).13.
A. I.
Persson
, M. W.
Larsson
, S.
Stengstrom
, B. J.
Ohlsson
, L.
Samuelson
, and L. R.
Wallenberg
, Nature Mater.
3
, 677
(2004
).14.
M.
Moewe
, L. C.
Chuang
, V. G.
Dubrovskii
, and C.
Chang-Hasnain
, J. Appl. Phys.
104
, 044313
(2008
).15.
K. A.
Dick
, P.
Caroff
, J.
Bolinsson
, M. E.
Messing
, J.
Johansson
, K.
Deppert
, R. L.
Wallenberg
, and L.
Samuelson
, Semicond. Sci. Technol.
25
, 024009
(2010
).16.
H. J.
Joyce
, J.
Wong-Leung
, O.
Gao
, H.
Hoe Tan
, and C.
Jagadish
, Nano Lett.
10
, 908
(2010
).17.
V. G.
Dubrovskii
, N. V.
Sibirev
, G. E.
Cirlin
, A. D.
Bouravleuv
, Y. B.
Samsonenko
, D. L.
Dheeraj
, H. L.
Zhou
, C.
Sartel
, J. C.
Harmand
, G.
Patriarche
, and F.
Glas
, Phys. Rev. B
80
, 205305
(2009
).18.
H. J.
Joyce
, Q.
Gao
, H. H.
Tan
, C.
Jagadish
, Y.
Kim
, X.
Zhang
, Y.
Guo
, and J.
Zou
, Nano Lett.
7
, 921
(2007
).19.
M.
Moewe
, L. C.
Chuang
, S.
Crankshaw
, C.
Chase
, and C.
Chang-Hasnain
, Appl. Phys. Lett.
93
, 023116
(2008
).20.
L. C.
Chuang
, M.
Moewe
, K. W.
Ng
, T. -T. D.
Tran
, S.
Crankshaw
, R.
Chen
, W. S.
Ko
, and C.
Chang-Hasnain
, Appl. Phys. Lett.
98
, 123101
(2011
).21.
V. G.
Dubrovskii
, N. V.
Sibirev
, X.
Zhang
, and R. A.
Suris
, Cryst. Growth Des.
10
, 3949
(2010
).22.
M.
Tchernycheva
, L.
Travers
, G.
Patriarche
, F.
Glas
, J. C.
Harmand
, G. E.
Cirlin
, and V. G.
Dubrovskii
, J. Appl. Phys.
102
, 094313
(2007
).23.
M. C.
Plante
and R. R.
LaPierre
, J. Appl. Phys.
105
, 114304
(2009
).24.
J. C.
Harmand
, F.
Glas
, and G.
Patriarche
, Phys. Rev. B
81
, 235436
(2010
).25.
X.
Zhang
, V. G.
Dubrovskii
, N. V.
Sibirev
, G. E.
Cirlin
, C.
Sartel
, M.
Tchernycheva
, J. C.
Harmand
, and F.
Glas
, Nanoscale Res. Lett.
5
, 1692
(2010
).26.
L. E.
Fröberg
, W.
Seifert
, and J.
Johansson
, Phys. Rev. B
76
, 153401
(2007
).27.
V. G.
Dubrovskii
, N. V.
Sibirev
, R. A.
Suris
, G. E.
Cirlin
, J. C.
Harmand
, and V. M.
Ustinov
, Surf. Sci.
601
, 4395
(2007
).© 2011 American Institute of Physics.
2011
American Institute of Physics
You do not currently have access to this content.