The helix angle, chirality, and radius of helical ribbons are predicted with a comprehensive, three-dimensional analysis that incorporates elasticity, differential geometry, and variational principles. In many biological and engineered systems, ribbon helicity is commonplace and may be driven by surface stress, residual strain, and geometric or elastic mismatch between layers of a laminated composite. Unless coincident with the principle geometric axes of the ribbon, these anisotropies will lead to spontaneous, three-dimensional helical deformations. Analytical, closed-form ribbon shape predictions are validated with table-top experiments. More generally, our approach can be applied to develop materials and systems with tunable helical geometries.

1.
D. S.
Chung
,
G. B.
Benedek
,
F. M.
Konikoff
, and
J. M.
Donovan
,
Proc. Natl. Acad. Sci. U.S.A.
90
,
11341
(
1993
).
2.
R. L. B.
Selinger
,
J. V.
Selinger
,
A. P.
Malanoski
, and
J. M.
Schnur
,
Phys. Rev. Lett.
93
,
158103
(
2004
).
3.
X. Y.
Kong
and
Z. L.
Wang
,
Nano Lett.
3
,
1625
(
2003
).
4.
L.
Zhang
,
E.
Deckhardt
,
A.
Weber
,
C.
Schönenberger
, and
D.
Grützmacher
,
Nanotechnology
16
,
655
(
2005
).
6.
S.
Srivastava
,
A.
Santos
,
K.
Critchley
,
K. -S.
Kim
,
P.
Podsiadlo
,
K.
Sun
,
J.
Lee
,
C.
Xu
,
G. D.
Lilly
,
S. C.
Glotzer
, and
N. A.
Kotov
,
Science
327
,
1355
(
2010
).
7.
N.
Chouaieb
,
A.
Goriely
, and
J. H.
Maddocks
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
9398
(
2006
).
8.
G. G.
Stoney
,
Proc. R. Soc. London, Ser. A
82
,
172
(
1909
).
9.
S.
Timoshenko
,
J. Opt. Soc. Am.
11
,
233
(
1925
).
10.
Z.
Suo
,
E. Y.
Ma
,
H.
Gleskova
, and
S.
Wagner
,
Appl. Phys. Lett.
74
,
1177
(
1999
).
11.
J.
Zang
,
M.
Huang
, and
F.
Liu
,
Phys. Rev. Lett.
98
,
146102
(
2007
).
12.
Y. V.
Zastavker
,
N.
Asherie
,
A.
Lomakin
,
J.
Pande
,
J. M.
Donovan
,
J. M.
Schnur
, and
G. B.
Benedek
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
7883
(
1999
).
13.
B.
Smith
,
Y. V.
Zastaver
, and
G. B.
Benedek
,
Phys. Rev. Lett.
87
,
278101
(
2001
).
14.
G.
Hwang
,
C.
Dockendorf
,
D.
Bell
,
L.
Dong
,
H.
Hashimoto
,
D.
Poulikakos
, and
B.
Nelson
,
Int. J. Optomechatronics
2
,
88
(
2008
).
15.
J. J.
Abbott
,
K. E.
Peyer
,
M. C.
Lagomarsino
,
L.
Zhang
,
L.
Dong
,
I. K.
Kaliakatsos
, and
B. J.
Nelson
,
Int. J. Robot. Res.
28
,
1434
(
2009
).
16.
J.
Wang
,
X.
Feng
,
G.
Wang
, and
S.
Yu
,
Appl. Phys. Lett.
92
,
191901
(
2008
).
17.
The latex sheets were produced by Small Parts Inc. and the elastic strips were acrylic, scotch wall-mounting tape, produced by 3M. Their Young’s moduli are 1.4 and 10.3 MPa, respectively, measured by Instron 5848 micro-tester. The Poisson’s ratio of acrylic is taken to be 0.37 from biomaterials database at University of Michigan and is 0.49 for latex sheets [from
Comput. Struct.
81
,
715
(
2003
)].
You do not currently have access to this content.