We present measurements of ferromagnet/superconductor (NiCu/NbN) and plain superconducting (NbN) nanostripes with the linewidth ranging from 150 to 300 nm. The NiCu (3 nm)/NbN (8 nm) bilayers, as compared to NbN (8 nm), showed a up to six times increase in their critical current density, reaching at 4.2 K the values of 5.5MA/cm2 for a 150 nm wide nanostripe meander and 12.1MA/cm2 for a 300 nm one. We also observed six-time sensitivity enhancement when the 150 nm wide NiCu/NbN nanostripe was used as an optical detector. The strong critical current enhancement is explained by the vortex pinning strength and density increase in NiCu/NbN bilayers and confirmed by approximately tenfold increase in the vortex polarizability factor.

1.
G. N.
Gol’tsman
,
O.
Okunev
,
G.
Chulkova
,
A.
Lipatov
,
A.
Semenov
,
K.
Smirnov
,
B.
Voronov
,
A.
Dzardanov
,
C.
Williams
, and
R.
Sobolewski
,
Appl. Phys. Lett.
79
,
705
(
2001
).
2.
R. H.
Hadfield
,
Nat. Photonics
3
,
696
(
2009
), and references therein.
3.
A. D.
Semenov
,
H. -W.
Hübers
,
J.
Schubert
,
G. N.
Goltsman
,
A. I.
Elantiev
,
B. M.
Voronov
, and
E. M.
Gershenzon
,
J. Appl. Phys.
88
,
6758
(
2000
).
4.
A. D.
Semenov
,
G. N.
Gol’tsman
, and
R.
Sobolewski
,
Supercond. Sci. Technol.
15
,
R1
(
2002
), and references therein.
5.
S. N.
Dorenbos
,
E. M.
Reiger
,
U.
Perinetti
,
V.
Zwiller
,
T.
Zijlstra
, and
T. M.
Klapwijk
,
Appl. Phys. Lett.
93
,
131101
(
2008
).
6.
A.
Casaburi
,
N.
Zen
,
K.
Suzuki
,
M.
Ejrnaes
,
S.
Pagano
,
R.
Cristiano
, and
M.
Ohkubo
,
Appl. Phys. Lett.
94
,
212502
(
2009
).
7.
S.
Cherednichenko
,
V.
Drakinskiy
,
K.
Ueda
, and
M.
Naito
,
Appl. Phys. Lett.
90
,
023507
(
2007
).
8.
H.
Shibata
,
T.
Maruyama
,
T.
Akazaki
,
H.
Takesue
,
T.
Honjo
, and
Y.
Tokura
,
Physica C
468
,
1992
(
2008
).
9.
A.
Verevkin
,
J.
Zhang
,
R.
Sobolewski
,
A.
Lipatov
,
O.
Okunev
,
G.
Chulkova
,
A.
Korneev
,
K.
Smirnov
,
G. N.
Gol’tsman
, and
A.
Semenov
,
Appl. Phys. Lett.
80
,
4687
(
2002
).
10.
R.
Sobolewski
,
A.
Verevkin
,
G. N.
Gol’tsman
,
A.
Lipatov
, and
K.
Wilsher
,
IEEE Trans. Appl. Supercond.
13
,
1151
(
2003
).
11.
A. I.
Buzdin
,
Rev. Mod. Phys.
77
,
935
(
2005
), and references therein.
12.
D.
Pan
,
G. P.
Pepe
,
V.
Pagliarulo
,
C.
De Lisio
,
L.
Parlato
,
M.
Khafizov
,
I.
Komissarov
, and
R.
Sobolewski
,
Phys. Rev. B
78
,
174503
(
2008
).
13.
J.
Engelmann
,
S.
Haindl
,
I.
Moench
,
L.
Schultz
, and
B.
Holzapfel
,
Proceedings of the International Conference on Superconductivity and Magnetism
, Antalya, Turkey, 26–30 April
2010
.
14.
H.
Myoren
,
Y.
Mada
,
Y.
Matsui
,
T.
Taino
, and
S.
Takada
,
J. Phys.: Conf. Ser.
97
,
012329
(
2008
).
15.
M.
Ejrnaes
,
A.
Casaburi
,
O.
Quaranta
,
S.
Marchetti
,
A.
Gaggero
,
F.
Mattioli
,
R.
Leoni
,
S.
Pagano
, and
R.
Cristiano
,
Supercond. Sci. Technol.
22
,
055006
(
2009
).
16.
R. H.
Hadfield
,
A. J.
Miller
,
S. W.
Nam
,
R. L.
Kautz
, and
R. E.
Schwall
,
Appl. Phys. Lett.
87
,
203505
(
2005
).
17.
H.
Liu
,
Z.
Ye
,
W.
Wu
, and
K. D. D.
Rathnayaka
,
J. Appl. Phys.
105
,
07E305
(
2009
).
18.
In this context, recently becoming popular name “superconducting nanowire single photon detectors (SNSPD)” for SSPDs is actually incorrect, although indeed more descriptive.
19.
K.
Il’in
,
M.
Siegel
,
A.
Engel
,
H.
Bartolf
,
A.
Schilling
,
A.
Semenov
, and
H. -W.
Huebers
,
J. Low Temp. Phys.
151
,
585
(
2008
).
20.
A.
Engel
,
H.
Bartolf
,
A.
Schilling
,
K.
Il'in
,
M.
Siegel
,
A.
Semenov
, and
H. -W.
Huebers
,
J. Phys.: Conf. Ser.
97
,
012152
(
2008
).
21.
T.
Taneda
,
G. P.
Pepe
,
L.
Parlato
,
A. A.
Golubov
, and
R.
Sobolewski
,
Phys. Rev. B
75
,
174507
(
2007
).
22.
A.
Buzdin
and
D.
Feinberg
,
Physica C
256
,
303
(
1996
).
23.
H.
Bartolf
,
A.
Engel
,
A.
Schilling
,
K.
Il’in
,
M.
Siegel
,
H. -W.
Hübers
, and
A.
Semenov
,
Phys. Rev. B
81
,
024502
(
2010
).
24.
F. A.
Hegmann
and
J. S.
Preston
,
Phys. Rev. B
48
,
16023
(
1993
).
You do not currently have access to this content.