Two sets of silicon (Si) heterojunctions with either Au or PEDOT:PSS contacts have been prepared to compare interfacial majority carrier charge transfer processes at Si/metal and Si/polymer heterojunctions. Current-voltage (J-V) responses at a range of temperatures, wavelength-dependent internal quantum yields, and steady-state J-V responses under illumination for these devices are reported. The cumulative data suggest that the velocity of majority carrier charge transfer, vn, is several orders of magnitude smaller at n-Si/PEDOT:PSS contacts than at n-Si/Au junctions, resulting in superior photoresponse characteristics for these inorganic/organic heterojunctions.

1.
M.
Gratzel
,
J. Photochem. Photobiol., A
164
,
3
(
2004
).
2.
W. J. E.
Beek
,
M. M.
Wienk
,
M.
Kemerink
,
X. N.
Yang
, and
R. A. J.
Janssen
,
J. Phys. Chem. B
109
,
9505
(
2005
).
3.
M. J.
Sailor
,
F. L.
Klavetter
,
R. H.
Grubbs
, and
N. S.
Lewis
,
Nature (London)
346
,
155
(
1990
).
4.
W. N.
Wang
and
E. A.
Schiff
,
Appl. Phys. Lett.
91
,
133504
(
2007
).
5.
S.
Smith
and
S. R.
Forrest
,
Appl. Phys. Lett.
84
,
5019
(
2004
).
6.
S. M. N.
Sze
and
K.
Kwok
,
Physics of Semiconductor Devices
, 3rd ed. (
Wiley
,
New York
,
2007
).
7.
C.
Daniels-Hafer
,
M.
Jang
,
S. W.
Boettcher
,
R. G.
Danner
, and
M. C.
Lonergan
,
J. Phys. Chem. B
106
,
1622
(
2002
).
8.
L. M.
Andersson
,
F. L.
Zhang
, and
O.
Inganas
,
Appl. Phys. Lett.
91
,
071108
(
2007
).
9.
A.
Carbone
,
P.
Mazzetti
, and
F.
Rossi
,
Appl. Phys. Lett.
95
,
233303
(
2009
).
10.
J.
Reichman
,
Appl. Phys. Lett.
38
,
251
(
1981
).
11.
W. W.
Gärtner
,
Phys. Rev.
116
,
84
(
1959
).
12.
C.
Jacoboni
,
C.
Canali
,
G.
Ottaviani
, and
A. A.
Quaranta
,
Solid-State Electron.
20
,
77
(
1977
).
13.
S.
Maldonado
and
N. S.
Lewis
,
J. Electrochem. Soc.
156
,
H123
(
2009
).
14.
J. G.
Fossum
,
IEEE Trans. Electron Devices
24
,
322
(
1977
).
15.
C.
Renaud
and
T. P.
Nguyen
,
J. Appl. Phys.
106
,
053707
(
2009
).
16.
S. C.
Shiu
,
J. J.
Chao
,
S. C.
Hung
,
C. L.
Yeh
, and
C. F.
Lin
,
Chem. Mater.
22
,
3108
(
2010
).
17.
D. P.
Halliday
,
J. W.
Gray
,
P. N.
Adams
, and
A. P.
Monkman
,
Synth. Met.
102
,
877
(
1999
).
18.
H.
Gerischer
,
Advances in Electrochemistry and Electrical Engineering
(
Wiley
,
New York
,
2004
), Vol.
4
, pp.
142
178
.
19.
G. R.
Hutchison
,
M. A.
Ratner
, and
T. J.
Marks
,
J. Am. Chem. Soc.
127
,
16866
(
2005
).
20.
D. L.
Pulfrey
,
IEEE Trans. Electron Devices
25
,
1308
(
1978
).
21.
A.
Kumar
,
M. D.
Rosenblum
,
D. L.
Gilmore
,
B. J.
Tufts
,
M. L.
Rosenbluth
, and
N. S.
Lewis
,
Appl. Phys. Lett.
56
,
1919
(
1990
).
22.
S.
Maldonado
,
D.
Knapp
, and
N. S.
Lewis
,
J. Am. Chem. Soc.
130
,
3300
(
2008
).
23.
E. G.
Kim
and
J. L.
Bredas
,
J. Am. Chem. Soc.
130
,
16880
(
2008
).
24.
The effective conduction band density of states can be estimated by Nc=2(2πmekBT/h2)3/2, where me is the effective electron mass.
25.
J.
Hwang
,
F.
Amy
, and
A.
Kahn
,
Org. Electron.
7
,
387
(
2006
).
26.
E. L.
Williams
,
G. E.
Jabbour
,
Q.
Wang
,
S. E.
Shaheen
,
D. S.
Ginley
, and
E. A.
Schiff
,
Appl. Phys. Lett.
87
,
223504
(
2005
).
27.
See supplementary material at http://dx.doi.org/10.1063/1.3480599 for a full description of the materials, device preparation, experimental methods, impedance measurements, and optical corrections used to determine internal quantum yields.

Supplementary Material

You do not currently have access to this content.