High mobility III-V substrates with high-k oxides are required for device scaling without loss of channel mobility. Interest has focused on the self-cleaning effect on selected III-V substrates during atomic layer deposition of Al2O3. A thin (1nm)Al2O3 interface control layer is deposited on In0.53Ga0.47As prior to HfO2 growth, providing the benefit of self-cleaning and improving the interface quality by reducing interface state defect densities by 50% while maintaining scaling trends. Significant reductions in leakage current density and increased breakdown voltage are found, indicative of a band structure improvement due to the reduction/removal of the In0.53Ga0.47As native oxides.

1.
P. K.
Hurley
,
K.
Cherkaoui
,
É.
O’Connor
,
M. C.
Lemme
,
H. D. B.
Gottlob
,
M.
Schmidt
,
S.
Hall
,
Y.
Lu
,
O.
Buiu
,
B.
Raeissi
,
J.
Piscator
,
O.
Engstrom
, and
S. B.
Newcomb
,
J. Electrochem. Soc.
155
,
G13
(
2008
).
2.
C. W.
Wilmsen
,
Physics and Chemistry of III-V Compound Semiconductor Interfaces
(
Plenum
,
New York
,
1985
).
3.
É.
O’Connor
,
S.
Monaghan
,
R. D.
Long
,
A.
O’Mahony
,
I. M.
Povey
,
K.
Cherkaoui
,
M. E.
Pemble
,
G.
Brammertz
,
M.
Heyns
,
S. B.
Newcomb
,
V. V.
Afanas’ev
, and
P. K.
Hurley
,
Appl. Phys. Lett.
94
,
102902
(
2009
).
4.
N.
Goel
,
P.
Majhi
,
C. O.
Chui
,
W.
Tsai
,
D.
Choi
, and
J. S.
Harris
,
Appl. Phys. Lett.
89
,
163517
(
2006
).
5.
É.
O’Connor
,
R. D.
Long
,
K.
Cherkaoui
,
K. K.
Thomas
,
F.
Chalvet
,
I. M.
Povey
,
M. E.
Pemble
,
P. K.
Hurley
,
B.
Brennan
,
G.
Hughes
, and
S. B.
Newcomb
,
Appl. Phys. Lett.
92
,
022902
(
2008
).
6.
W.
Tsai
,
N.
Goel
,
S.
Koveshnikov
,
P.
Majhi
, and
W.
Wang
,
Microelectron. Eng.
86
,
1540
(
2009
).
7.
K.
Kukli
,
J.
Niinistö
,
A.
Tamm
,
J.
Lu
,
M.
Ritala
,
M.
Leskelä
,
M.
Putkonen
,
L.
Niinistö
,
F.
Song
,
P.
Williams
, and
P. N.
Heys
,
Microelectron. Eng.
84
,
2010
(
2007
).
8.
J.
Robertson
and
B.
Falabretti
,
Mater. Sci. Eng., B
135
,
267
(
2006
).
9.
D. P.
Norton
,
Mater. Sci. Eng. R.
43
,
139
(
2004
).
10.
M.
Passlack
,
R.
Droopad
,
P.
Fejes
, and
L.
Wang
,
IEEE Electron Device Lett.
30
,
2
(
2009
).
11.
T. S.
Moss
,
Proc. Phys. Soc. London, Sect. B
63
,
167
(
1950
).
12.
P. D.
Ye
,
G. D.
Wilk
,
B.
Yang
J.
Kwo
,
S. N. G.
Chu
,
S.
Nakahara
,
H. -J. L.
Gossmann
,
J. P.
Mannaerts
,
M.
Hong
,
K. K.
Ng
, and
J.
Bude
,
Appl. Phys. Lett.
83
,
180
(
2003
).
13.
M. M.
Frank
,
G. D.
Wilk
,
D.
Starodub
,
T.
Gustafsson
,
E.
Garfunkel
,
Y. J.
Chabal
,
J.
Grazul
, and
D. A.
Miller
,
Appl. Phys. Lett.
86
,
152904
(
2005
).
14.
C. L.
Hinkle
,
A. M.
Sonnet
,
E. M.
Vogel
,
S.
McDonnell
,
G. J.
Hughes
,
M.
Milojevic
,
B.
Lee
,
F. S.
Aguirre-Tostado
,
K. J.
Choi
,
H. C.
Kim
,
J.
Kim
, and
R. M.
Wallace
,
Appl. Phys. Lett.
92
,
071901
(
2008
).
15.
B.
Brennan
,
M.
Milojevic
,
H. C.
Kim
,
P. K.
Hurley
,
J.
Kim
,
G.
Hughes
, and
R. M.
Wallace
,
Electrochem. Solid-State Lett.
12
,
H205
(
2009
).
16.
Professor G. Snider, University of Notre Dame, one-dimensional (1D) Poisson–Schrödinger solver, parameters used with HR-TEM oxide thicknesses; Al2O3:k=9, Eg=8.8eV, ΔEc=3.45eV; HfO2:k=20, Eg=6.0eV, and ΔEc=2.25eV; In0.53Ga0.47As native oxide: k=9, Eg=4.1eV, ΔEc=1.5eV. InP/In0.53Ga0.47As thickness/doping as specified. Temperature=300K.
17.
S. M.
Sze
,
Physics of Semiconductor Devices
, 2nd ed. (
Wiley
,
New York
,
1981
).
18.
F.
Crupi
,
G.
Giusi
,
G.
Iannaccone
,
P.
Magnone
,
C.
Pace
,
E.
Simoen
, and
C.
Claeys
,
J. Appl. Phys.
106
,
073710
(
2009
).
19.
G.
Brammertz
,
H. -C.
Lin
,
M.
Caymax
,
M.
Meuris
,
M.
Heyns
, and
M.
Passlack
,
Appl. Phys. Lett.
95
,
202109
(
2009
).
20.
T. P.
O’Regan
,
P. K.
Hurley
,
B.
Sorée
, and
M. V.
Fischetti
,
Appl. Phys. Lett.
96
,
213514
(
2010
).
21.
E. H.
Nicollian
and
J. R.
Brews
,
MOS Physics and Technology
(
Wiley
,
New York
,
1982
).
You do not currently have access to this content.