The structural relaxation of pure amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) materials, that occurs during thermal annealing experiments, has been analyzed by Raman spectroscopy and differential scanning calorimetry. Unlike a-Si, the heat evolved from a-Si:H cannot be explained by relaxation of the Si–Si network strain but it reveals a derelaxation of the bond angle strain. Since the state of relaxation after annealing is very similar for pure and hydrogenated materials, our results give strong experimental support to the predicted configurational gap between a-Si and crystalline silicon.

1.
S.
Roorda
,
W. C.
Sinke
,
J. M.
Poate
,
D. C.
Jacobson
,
S.
Dierker
,
B. S.
Dennis
,
D. J.
Eaglesham
,
F.
Spaepen
, and
P.
Fuoss
,
Phys. Rev. B
44
,
3702
(
1991
).
2.
P. A.
Stolk
,
F. W.
Saris
,
A. J. M.
Berntsen
,
W. F.
van der Weg
,
L. T.
Sealy
,
R. C.
Barklie
,
G.
Krötz
, and
G.
Müller
,
J. Appl. Phys.
75
,
7266
(
1994
).
3.
P.
Roura
,
J.
Farjas
, and
P.
Roca i Cabarrocas
,
J. Appl. Phys.
104
,
073521
(
2008
).
4.
D.
Beeman
,
R.
Tsu
, and
M. F.
Thorpe
,
Phys. Rev. B
32
,
874
(
1985
).
5.
P.
Roura
and
J.
Farjas
,
Acta Mater.
57
,
2098
(
2009
).
6.
Z.
Remes̆
,
M.
Vanecek
,
A. H.
Mahan
, and
R. S.
Crandall
,
Phys. Rev. B
56
,
R12710
(
1997
).
7.
D.
Das
,
J.
Farjas
,
P.
Roura
,
G.
Viera
, and
E.
Bertran
,
Appl. Phys. Lett.
79
,
3705
(
2001
).
8.
P.
Roura
,
J.
Farjas
,
C.
Rath
,
J.
Serra-Miralles
,
E.
Bertran
, and
P.
Roca i Cabarrocas
,
Phys. Rev. B
73
,
085203
(
2006
).
9.
P.
Roura
,
J.
Farjas
, and
P.
Roca i Cabarrocas
,
Thin Solid Films
517
,
6239
(
2009
).
10.
S.
Chakraborty
and
D. A.
Drabold
,
Phys. Rev. B
79
,
115214
(
2009
).
11.
T.
Saito
,
T.
Karasawa
, and
I.
Ohdomari
,
J. Non-Cryst. Solids
50
,
271
(
1982
).
12.
K.
Zellama
,
L.
Chahed
,
P.
Sladek
,
M. L.
Theye
,
J. H.
von Bardeleben
, and
P.
Roca i Cabarrocas
,
Phys. Rev. B
53
,
3804
(
1996
).
13.
J.
Farjas
,
D.
Das
,
J.
Fort
,
P.
Roura
, and
E.
Bertran
,
Phys. Rev. B
65
,
115403
(
2002
).
14.
N. H.
Nickel
and
W. B.
Jackson
,
Phys. Rev. B
51
,
4872
(
1995
).
15.
Although this value is clearly higher than the theoretical 6.6°, the precise discrepancy depends on the precision of the Δθ(Γ/2) relationship used here [Eq. (1)].
16.
G.
Ganguly
,
I.
Sakata
, and
A.
Matsuda
,
J. Non-Cryst. Solids
198–200
,
300
(
1996
).
You do not currently have access to this content.